Codebase list apertium-separable / HEAD
HEAD

Tree @HEAD (Download .tar.gz)

[Lttoolbox](https://wiki.apertium.org/wiki/Lttoolbox) provides a module for reordering
separable/discontiguous multiwords and processing them in the pipeline.
Multiwords are manually written in an additional xml-format dictionary.

## Installing

The module is part of the [nightly
repositories](https://wiki.apertium.org/wiki/Nightly_repositories) as `apt-get install
apertium-separable`.

If you'd like to compile it manuallye.g., for development purposesyou
can follow these instructions:

Prerequisites and compilation are the same as lttoolbox and apertium.
See [Installation](https://wiki.apertium.org/wiki/Installation).

The code can be found at
<https://github.com/apertium/apertium-separable>, and instructions for
compiling the module are:

    ./autogen.sh
    ./configure
    make
    make install

You'll need `lttoolbox` from git (or, greater than the current release
3.5.1) and associated libraries.

## Lexical transfer in the pipeline

lsx-proc runs directly AFTER apertium-tagger and apertium-pretransfer:  
(note: previously this page had said that lsx-proc runs between BETWEEN
apertium-tagger and apertium-pretransfer. it has now been determined
that it should run AFTER pretransfer.)

     | apertium-tagger -g en-es.prob |  apertium-pretransfer | lsx-proc en-es.autoseq.bin | 

## Usage

### Creating the lsx-dictionary

The lsx dictionary format is largely similar to those of the [
morphological](https://wiki.apertium.org/wiki/Morphological_dictionary) and [
bilingual](https://wiki.apertium.org/wiki/Bilingual_dictionary) dictionaries. (see also:
[Apertium_New_Language_Pair_HOWTO](https://wiki.apertium.org/wiki/Apertium_New_Language_Pair_HOWTO)

We begin with a declaration of the dictionary. There is currently
nothing in it, only a declaration that we want to begin a new
dictionary.

    <dictionary type="separable">
    </dictionary>

Then add the alphabet entry, this can be empty as the alphabet is only
used for tokenisation and the lsx module comes after the text is
tokenised. Now we have:

    <dictionary type="separable">
        <alphabet></alphabet> 
    </dictionary>

Next we need to add the symbol definitions, abbreviated to sdefs. These
are the symbols that your words are tagged with, e.g. noun or verb or
adj. Again, you should be able to just copy the sdef section from your
language's monodix, and it should contain many more than in this basic
example.

    <dictionary type="separable">
        <alphabet></alphabet>
        <sdefs>
            <sdef n="adj"/>
            <sdef n="adv"/>
            <sdef n="n"/>
            <sdef n="sep"/>
            <sdef n="vblex"/>
        </sdefs>
    </dictionary>

Now we need to add the paradigm definitions, abbreviated to pardefs.
These represent patterns of word orders. The following example
represents words tagged as adjective, noun, noun phrase, and frequency
adjectives. See the note below about the tags , , . The lemma can be
represented as anychars (, such as in adj and n below; or by typing out
the word itself, such as in freq-adv below. Pardefs can be used to
create other pardefs, such as in SN below. Adding paradigms into the
dictionary, we get:

    <dictionary type="separable">
        <alphabet></alphabet>
        <sdefs>
            ...
        </sdefs>
        <pardefs>
            <pardef n="adj"> <!-- to represent all adjectives -->
                <e><i><w/><s n="adj"/><j/></i></e> <!-- word only has the adj tag -->
                <e><i><w/><s n="adj"/><t/><j/></i></e> <!-- word has the adj tag followed by one or more other tags -->
            </pardef>
            <pardef n="n"> #to represent all nouns
                <e><i><w/><s n="n"/><t/><j/></i></e> <!-- word has the n tag followed by one or more other tags -->
            </pardef>
            <pardef n="SN"> #to represent all noun phrases
                <e><par n="n"/></e>
                <e><par n="adj"/><par n="n"/></e> <!-- word phrase is comprised of an adjective word followed by a noun word -->
                <e><par n="adj"/><par n="adj"/><par n="n"/></e> <!-- word phrase is comprised of two adjectives followed by a noun -->
            </pardef>
            <pardef n="freq-adv">
                <e><i>always<s n="adv"/><j/></i></e> <!-- i.e. ^always<adv>$ -->
                <e><i>anually<s n="adv"/><j/></i></e>
                <e><i>bianually<s n="adv"/><j/></i></e>
            </pardef>
        </pardefs>
    </dictionary>

Finally, we add the main entries. Here is the final result of our small
example dictionary:

    <dictionary type="separable">
        <alphabet></alphabet>
        <sdefs>
            <sdef n="adj"/>
            <sdef n="adv"/>
            <sdef n="n"/>
            <sdef n="sep"/>
            <sdef n="vblex"/>
        </sdefs>
        <pardefs>
            <pardef n="adj">
                <e><i><w/><s n="adj"/><j/></i></e>
                <e><i><w/><s n="adj"/><t/><j/></i></e>
            </pardef>
            <pardef n="n">
                <e><i><w/><s n="n"/><t/><j/></i></e>
            </pardef>
            <pardef n="SN">
                <e><par n="n"/></e>
                <e><par n="adj"/><par n="n"/></e>
                <e><par n="adj"/><par n="adj"/><par n="n"/></e>
            </pardef>
            <pardef n="freq-adv">
                <e><i>always<s n="adv"/><j/></i></e>
                <e><i>anually<s n="adv"/><j/></i></e>
                <e><i>bianually<s n="adv"/><j/></i></e>
            </pardef>
        </pardefs>
        <section id="main" type="standard">
            <e lm="be late" c="llegar tarde">
                <p><l>be<s n="vbser"/></l><r>be<g><b/>late</g><s n="vbser"/></r></p><i><t/><j/></i>
                <par n="SAdv"/><p><l>late<t/><j/></l><r></r></p>
            </e>
            <e lm="take away" c="sacar, quitar">
                <p><l>take<s n="vblex"/></l><r>take<g><b/>away</g><s n="vblex"/></r></p><i><t/><j/></i>
                <par n="SN"/><p><l>away<t/><j/></l><r></r></p>
            </e>
        </section>
    </dictionary>

Note:

  - stands for one or more alphabetic symbols

  - stands for one or more tags (multicharacter symbols).

  - stands for the word boundary symbol $

i.e.

  - `<e><i><w/><s n="adj"/><t/><j/></i></e>` is equivalent to
    `any-one-or-more-chars`<adj><required-anytag>`<...optional-anytag...><$>`
      - ^tall<adj><sint><...>$
  - `<e><i><w/><s n="adj"/><j/></i></e>` is equivalent to
    `any-one-or-more-chars`<adj>`<$>`
      - ^tall<adj>$

A larger example dictionary can be found at
<https://github.com/apertium/apertium-separable/blob/master/examples/apertium-eng-spa.eng-spa.lsx>.

The lsx dictionary file names are of the form `apertium-A-B.A-B.lsx`,
where apertium-A-B is the name of the language pair. For example, file
`apertium-eng-cat.eng-cat.lsx` is the lsx dictionary for the `eng-cat`
pair. The names of the compiled binaries are of the form
`apertium-A-B.autoseq.bin`. For example, `eng-cat.autoseq.bin`.

### Compilation

Compilation into the binary format is achieved by means of the lsx-comp
program. Specifying lr as the mode will produce an analyser, and rl will
produce a generator.

    $ lsx-comp lr apertium-eng-spa.eng-spa.lsx eng-spa.autoseq.bin
    main@standard 61 73

### Processing

Processing can be done using the lsx-proc program.

The input to `lsx-proc` is the output of `apertium-tagger` and
`apertium-pretransfer`,

    $ echo '^take<vblex><imp>$ ^prpers<prn><obj><p3><nt><sg>$ ^out of<pr>$ ^there<adv>$^.<sent>$' | lsx-proc eng-spa.autoseq.bin
    ^take# out<vblex><sep><imp>$ ^prpers<prn><obj><p3><nt><sg>$ ^of<pr>$ ^there<adv>$^.<sent>$

### Example usages

Example #1: A sentence in plain text,

    The Aragonese took Ramiro out of a monastery and made him king.

This is the output of feeding the sentence through `apertium-tagger` and
then `apertium-pretransfer`:

    ^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take<vblex><past>$ ^Ramiro<np><ant><m><sg>$ ^out of<pr>$ ^a<det><ind><sg>$
    ^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$

This is the output of feeding the output above through `lsx-proc` with
apertium-eng-spa.eng-spa.lsx:

    ^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take# out<vblex><sep><past>$ ^Ramiro<np><ant><m><sg>$ ^of<pr>$ ^a<det><ind><sg>$
    ^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$

## Troubleshooting

### Segmentation fault

Segmentation fault upon compilation or usage  
The lsx-dictionary compiles fine with zero entries but gives a seg fault
once entries are added  
...no solution found yet  
something is not updated or something in the makefile (?)

make sure that the makefile ...

### Complaints about step_override()

git pull in lttoolbox (and do make, make install)  
You'll need an up-to-date version of lttoolbox and associated libraries,
and zlib (debian: zlib1g-dev).  

### Undefined symbol

In your dictionary you are probably using a symbol that you didn't
define in the sdefs. Add the symbol to the sdefs.

## Future work

### Offloading multiwords from transducers to lsx

In theory we're offloading multiwords from the transducers to lsx. This
leaves open some questions:

  - how do we do N N compounds with lsx?
  - how does translation *to* a multiword work? In theory it's possible
    to invert the transducer, but an attempt to try this results in a
    transducer that looks right but silently fails to apply to input.
    Also, it will need to be able to handle the output of transfer.
    [Firespeaker](https://wiki.apertium.org/wiki/User:Firespeaker)
    ([talk](Uhttps://wiki.apertium.org/wiki/User_talk:Firespeaker)) 00:02, 1 September 2017
    (CEST)

### Recycling dictionaries and/or paradigms

lsx-dictionaries are packaged in language pairs. the eng-spa
lsx-dictionary can mostly be reaped by eng-cat. could we make use of the
similarity?

### Beta testing

Support for language pairs: we haven't gotten much extensive beta
testing. The following are language pairs that have packaged the
lsx-module:

  -   - eng-cat
      - eng-deu (?)
      - kaz-kir

Beta test with more language pairs

### Transfer-like super powers

  - Transfer-like capabilities for the lexicon (super powers). E.g.,
    gustar / 

### The one-to-many bug

Given the following lsx file:

    <dictionary type="sequential">
        <alphabet>АӘБВГҒДЕЁЖЗИІЙКҚЛМНҢОӨПРСТУҰҮФХҺЦЧШЩЬЫЪЭЮЯаәбвгғдеёжзиійкқлмнңоөпрстуұүфхһцчшщьыъэюя</alphabet>
        <sdefs>
            <sdef n="adj"/>
            <sdef n="adv"/>
            <sdef n="n"/>
            <sdef n="nom"/>
            <sdef n="dat"/>
            <sdef n="v"/>
        </sdefs>
        <pardefs>
            <pardef n="adj">
                <e><i><w/><s n="adj"/><j/></i></e>
                <e><i><w/><s n="adj"/><t/><j/></i></e>
            </pardef>
            <pardef n="n">
                <e><i><w/><s n="n"/><t/><j/></i></e>
            </pardef>
            <pardef n="SN">
                <e><par n="n"/></e>
                <e><par n="adj"/><par n="n"/></e>
                <e><par n="adj"/><par n="adj"/><par n="n"/></e>
            </pardef>
        </pardefs>
        <section id="main" type="standard">
            <e lm="кабарда" c="хабар ет">
                <p><l>хабар<b/>ет<s n="v"/></l>
                    <r>хабар<s n="n"/><s n="nom"/><j/>ет<s n="v"/></r></p><i><t/><j/></i>
            </e>
            <e lm="абайла" c="абай бол">
                <p><l>абай<b/>бол<s n="v"/></l>
                    <r>абай<s n="adj"/><j/>бол<s n="v"/></r></p><i><t/><j/></i>
            </e>
            <e lm="абайла" c="абай бол">
                <p><l>абай<b/>бол<s n="v"/></l>
                    <r>абай<s n="adj"/><j/>бол<s n="v"/></r></p><i><t/>+ма<t/><j/></i>
                <!-- p><l>абай<s n="adj"/><j/>бол<s n="v"/><t/></l>
                    <r>абай<b/>бол<s n="v"/><t/></r></p -->
            </e>
            <e lm="сууга түш" c="шомылда">
                <p><l>сууга<b/>түш<s n="v"/></l>
                    <r>суу<s n="n"/><s n="dat"/><j/>түш<s n="v"/></r></p><i><t/><j/></i>
            </e>
    
        </section>
    </dictionary>

and the following code to compile it (where `$(PREFIX1)` is kaz-kir and
`$(PREFIX2)` is kir-kaz and `$(BASENAME)` is apertium-kaz-kir; the above
file is apertium-kaz-kir.kir-kaz.lsx):

    $(PREFIX1).autoseq.bin: $(BASENAME).$(PREFIX1).lsx
        lsx-comp $< $@
    
    $(PREFIX2).autoseq.bin: $(BASENAME).$(PREFIX2).lsx
        lsx-comp $< $@
    
    $(PREFIX1).revautoseq.bin: $(BASENAME).$(PREFIX1).lsx
        lt-print $(PREFIX1).autoseq.bin |  sed 's/ /@_SPACE_@/g' > $(PREFIX1).autoseq.att
        hfst-txt2fst -e ε < $(PREFIX1).autoseq.att > $(PREFIX1).autoseq.hfst
        hfst-invert $(PREFIX1).autoseq.hfst | hfst-minimise > $(PREFIX1).revautoseq.hfst
        hfst-fst2txt $(PREFIX1).revautoseq.hfst | gzip -9 -c -n > $(PREFIX1).revautoseq.att.gz
        zcat < $(PREFIX1).revautoseq.att.gz > $(PREFIX1).revautoseq.att
        sed 's/@0@/ε/g' $(PREFIX1).revautoseq.att > $(PREFIX1).revautoseq.1.att
        lt-comp lr $(PREFIX1).revautoseq.1.att $@
    
    
    $(PREFIX2).revautoseq.bin: $(BASENAME).$(PREFIX2).lsx
        lt-print $(PREFIX2).autoseq.bin |  sed 's/ /@_SPACE_@/g' > $(PREFIX2).autoseq.att
        hfst-txt2fst -e ε < $(PREFIX2).autoseq.att > $(PREFIX2).autoseq.hfst
        hfst-invert $(PREFIX2).autoseq.hfst | hfst-minimise > $(PREFIX2).revautoseq.hfst
        hfst-fst2txt $(PREFIX2).revautoseq.hfst | gzip -9 -c -n > $(PREFIX2).revautoseq.att.gz
        zcat < $(PREFIX2).revautoseq.att.gz > $(PREFIX2).revautoseq.att
        sed 's/@0@/ε/g' $(PREFIX2).revautoseq.att > $(PREFIX2).revautoseq.1.att
        lt-comp lr $(PREFIX2).revautoseq.1.att $@

EXPECTED OUTPUT:

we expect lr compilation to give the following behaviour:

    $ echo "^хабар ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.autoseq.bin
    ^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$

and

    $ echo "^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.autoseq.bin
    ^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$

WHEREAS with rl compilation (outputting with name revautoseq), we expect
the following behaviour:

    $ echo "^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.revautoseq.bin
    ^хабар ет<v><iv><ifi><p1><sg>$

and

    $ echo "^хабар ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.revautoseq.bin
    ^хабар ет<v><iv><ifi><p1><sg>$

## See also

  - [Apertium system
    architecture](https://wiki.apertium.org/wiki/Apertium_system_architecture)
  - GSOC project [ proposal](https://wiki.apertium.org/wiki/User:Irene/proposal), [
    workplan](https://wiki.apertium.org/wiki/User:Irene/workplan), [
    report](https://wiki.apertium.org/wiki/Lsx_module/report)
  - [/GCI_2017](https://wiki.apertium.org/wiki/Apertium_separable/GCI_2017)