Codebase list centrifuge / lintian-fixes/main aligner_swsse_ee_i16.cpp
lintian-fixes/main

Tree @lintian-fixes/main (Download .tar.gz)

aligner_swsse_ee_i16.cpp @lintian-fixes/mainraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

/**
 * aligner_sw_sse.cpp
 *
 * Versions of key alignment functions that use vector instructions to
 * accelerate dynamic programming.  Based chiefly on the striped Smith-Waterman
 * paper and implementation by Michael Farrar.  See:
 *
 * Farrar M. Striped Smith-Waterman speeds database searches six times over
 * other SIMD implementations. Bioinformatics. 2007 Jan 15;23(2):156-61.
 * http://sites.google.com/site/farrarmichael/smith-waterman
 *
 * While the paper describes an implementation of Smith-Waterman, we extend it
 * do end-to-end read alignment as well as local alignment.  The change
 * required for this is minor: we simply let vmax be the maximum element in the
 * score domain rather than the minimum.
 *
 * The vectorized dynamic programming implementation lacks some features that
 * make it hard to adapt to solving the entire dynamic-programming alignment
 * problem.  For instance:
 *
 * - It doesn't respect gap barriers on either end of the read
 * - It just gives a maximum; not enough information to backtrace without
 *   redoing some alignment
 * - It's a little difficult to handle st_ and en_, especially st_.
 * - The query profile mechanism makes handling of ambiguous reference bases a
 *   little tricky (16 cols in query profile lookup table instead of 5)
 *
 * Given the drawbacks, it is tempting to use SSE dynamic programming as a
 * filter rather than as an aligner per se.  Here are a few ideas for how it
 * can be extended to handle more of the alignment problem:
 *
 * - Save calculated scores to a big array as we go.  We return to this array
 *   to find and backtrace from good solutions.
 */

#include <limits>
#include "aligner_sw.h"

static const size_t NBYTES_PER_REG  = 16;
static const size_t NWORDS_PER_REG  = 8;
static const size_t NBITS_PER_WORD  = 16;
static const size_t NBYTES_PER_WORD = 2;

// In 16-bit end-to-end mode, we have the option of using signed saturated
// arithmetic.  Because we have signed arithmetic, there's no need to add/subtract
// bias when building an applying the query profile.  The lowest value we can
// use is 0x8000, and the greatest is 0x7fff.

typedef int16_t TCScore;

/**
 * Build query profile look up tables for the read.  The query profile look
 * up table is organized as a 1D array indexed by [i][j] where i is the
 * reference character in the current DP column (0=A, 1=C, etc), and j is
 * the segment of the query we're currently working on.
 */
void SwAligner::buildQueryProfileEnd2EndSseI16(bool fw) {
	bool& done = fw ? sseI16fwBuilt_ : sseI16rcBuilt_;
	if(done) {
		return;
	}
	done = true;
	const BTDnaString* rd = fw ? rdfw_ : rdrc_;
	const BTString* qu = fw ? qufw_ : qurc_;
    // daehwan - allows to align a portion of a read, not the whole
	// const size_t len = rd->length();
    const size_t len = dpRows();
	const size_t seglen = (len + (NWORDS_PER_REG-1)) / NWORDS_PER_REG;
	// How many __m128i's are needed
	size_t n128s =
		64 +                    // slack bytes, for alignment?
		(seglen * ALPHA_SIZE)   // query profile data
		* 2;                    // & gap barrier data
	assert_gt(n128s, 0);
	SSEData& d = fw ? sseI16fw_ : sseI16rc_;
	d.profbuf_.resizeNoCopy(n128s);
	assert(!d.profbuf_.empty());
	d.maxPen_      = d.maxBonus_ = 0;
	d.lastIter_    = d.lastWord_ = 0;
	d.qprofStride_ = d.gbarStride_ = 2;
	d.bias_ = 0; // no bias when words are signed
	// For each reference character A, C, G, T, N ...
	for(size_t refc = 0; refc < ALPHA_SIZE; refc++) {
		// For each segment ...
		for(size_t i = 0; i < seglen; i++) {
			size_t j = i;
			int16_t *qprofWords =
				reinterpret_cast<int16_t*>(d.profbuf_.ptr() + (refc * seglen * 2) + (i * 2));
			int16_t *gbarWords =
				reinterpret_cast<int16_t*>(d.profbuf_.ptr() + (refc * seglen * 2) + (i * 2) + 1);
			// For each sub-word (byte) ...
			for(size_t k = 0; k < NWORDS_PER_REG; k++) {
				int sc = 0;
				*gbarWords = 0;
				if(j < len) {
					int readc = (*rd)[j];
					int readq = (*qu)[j];
					sc = sc_->score(readc, (int)(1 << refc), readq - 33);
					size_t j_from_end = len - j - 1;
					if(j < (size_t)sc_->gapbar ||
					   j_from_end < (size_t)sc_->gapbar)
					{
						// Inside the gap barrier
						*gbarWords = 0x8000; // add this twice
					}
				}
				if(refc == 0 && j == len-1) {
					// Remember which 128-bit word and which smaller word has
					// the final row
					d.lastIter_ = i;
					d.lastWord_ = k;
				}
				if(sc < 0) {
					if((size_t)(-sc) > d.maxPen_) {
						d.maxPen_ = (size_t)(-sc);
					}
				} else {
					if((size_t)sc > d.maxBonus_) {
						d.maxBonus_ = (size_t)sc;
					}
				}
				*qprofWords = (int16_t)sc;
				gbarWords++;
				qprofWords++;
				j += seglen; // update offset into query
			}
		}
	}
}

#ifndef NDEBUG
/**
 * Return true iff the cell has sane E/F/H values w/r/t its predecessors.
 */
static bool cellOkEnd2EndI16(
	SSEData& d,
	size_t row,
	size_t col,
	int refc,
	int readc,
	int readq,
	const Scoring& sc)     // scoring scheme
{
	TCScore floorsc = 0x8000;
	TCScore ceilsc = MAX_I64;
	TAlScore offsetsc = -0x7fff;
	TAlScore sc_h_cur = (TAlScore)d.mat_.helt(row, col);
	TAlScore sc_e_cur = (TAlScore)d.mat_.eelt(row, col);
	TAlScore sc_f_cur = (TAlScore)d.mat_.felt(row, col);
	if(sc_h_cur > floorsc) {
		sc_h_cur += offsetsc;
	}
	if(sc_e_cur > floorsc) {
		sc_e_cur += offsetsc;
	}
	if(sc_f_cur > floorsc) {
		sc_f_cur += offsetsc;
	}
	bool gapsAllowed = true;
	size_t rowFromEnd = d.mat_.nrow() - row - 1;
	if(row < (size_t)sc.gapbar || rowFromEnd < (size_t)sc.gapbar) {
		gapsAllowed = false;
	}
	bool e_left_trans = false, h_left_trans = false;
	bool f_up_trans   = false, h_up_trans = false;
	bool h_diag_trans = false;
	if(gapsAllowed) {
		TAlScore sc_h_left = floorsc;
		TAlScore sc_e_left = floorsc;
		TAlScore sc_h_up   = floorsc;
		TAlScore sc_f_up   = floorsc;
		if(col > 0 && sc_e_cur > floorsc && sc_e_cur <= ceilsc) {
			sc_h_left = d.mat_.helt(row, col-1) + offsetsc;
			sc_e_left = d.mat_.eelt(row, col-1) + offsetsc;
			e_left_trans = (sc_e_left > floorsc && sc_e_cur == sc_e_left - sc.readGapExtend());
			h_left_trans = (sc_h_left > floorsc && sc_e_cur == sc_h_left - sc.readGapOpen());
			assert(e_left_trans || h_left_trans);
		}
		if(row > 0 && sc_f_cur > floorsc && sc_f_cur <= ceilsc) {
			sc_h_up = d.mat_.helt(row-1, col) + offsetsc;
			sc_f_up = d.mat_.felt(row-1, col) + offsetsc;
			f_up_trans = (sc_f_up > floorsc && sc_f_cur == sc_f_up - sc.refGapExtend());
			h_up_trans = (sc_h_up > floorsc && sc_f_cur == sc_h_up - sc.refGapOpen());
			assert(f_up_trans || h_up_trans);
		}
	} else {
		assert_geq(floorsc, sc_e_cur);
		assert_geq(floorsc, sc_f_cur);
	}
	if(col > 0 && row > 0 && sc_h_cur > floorsc && sc_h_cur <= ceilsc) {
		TAlScore sc_h_upleft = d.mat_.helt(row-1, col-1) + offsetsc;
		TAlScore sc_diag = sc.score(readc, (int)refc, readq - 33);
		h_diag_trans = sc_h_cur == sc_h_upleft + sc_diag;
	}
	assert(
		sc_h_cur <= floorsc ||
		e_left_trans ||
		h_left_trans ||
		f_up_trans   ||
		h_up_trans   ||
		h_diag_trans ||
		sc_h_cur > ceilsc ||
		row == 0 ||
		col == 0);
	return true;
}
#endif /*ndef NDEBUG*/

#ifdef NDEBUG

#define assert_all_eq0(x)
#define assert_all_gt(x, y)
#define assert_all_gt_lo(x)
#define assert_all_lt(x, y)
#define assert_all_lt_hi(x)

#else

#define assert_all_eq0(x) { \
	__m128i z = _mm_setzero_si128(); \
	__m128i tmp = _mm_setzero_si128(); \
	z = _mm_xor_si128(z, z); \
	tmp = _mm_cmpeq_epi16(x, z); \
	assert_eq(0xffff, _mm_movemask_epi8(tmp)); \
}

#define assert_all_gt(x, y) { \
	__m128i tmp = _mm_cmpgt_epi16(x, y); \
	assert_eq(0xffff, _mm_movemask_epi8(tmp)); \
}

#define assert_all_gt_lo(x) { \
	__m128i z = _mm_setzero_si128(); \
	__m128i tmp = _mm_setzero_si128(); \
	z = _mm_xor_si128(z, z); \
	tmp = _mm_cmpgt_epi16(x, z); \
	assert_eq(0xffff, _mm_movemask_epi8(tmp)); \
}

#define assert_all_lt(x, y) { \
	__m128i tmp = _mm_cmplt_epi16(x, y); \
	assert_eq(0xffff, _mm_movemask_epi8(tmp)); \
}

#define assert_all_leq(x, y) { \
	__m128i tmp = _mm_cmpgt_epi16(x, y); \
	assert_eq(0x0000, _mm_movemask_epi8(tmp)); \
}

#define assert_all_lt_hi(x) { \
	__m128i z = _mm_setzero_si128(); \
	__m128i tmp = _mm_setzero_si128(); \
	z = _mm_cmpeq_epi16(z, z); \
	z = _mm_srli_epi16(z, 1); \
	tmp = _mm_cmplt_epi16(x, z); \
	assert_eq(0xffff, _mm_movemask_epi8(tmp)); \
}
#endif

/**
 * Aligns by filling a dynamic programming matrix with the SSE-accelerated,
 * banded DP approach of Farrar.  As it goes, it determines which cells we
 * might backtrace from and tallies the best (highest-scoring) N backtrace
 * candidate cells per diagonal.  Also returns the alignment score of the best
 * alignment in the matrix.
 *
 * This routine does *not* maintain a matrix holding the entire matrix worth of
 * scores, nor does it maintain any other dense O(mn) data structure, as this
 * would quickly exhaust memory for queries longer than about 10,000 kb.
 * Instead, in the fill stage it maintains two columns worth of scores at a
 * time (current/previous, or right/left) - these take O(m) space.  When
 * finished with the current column, it determines which cells from the
 * previous column, if any, are candidates we might backtrace from to find a
 * full alignment.  A candidate cell has a score that rises above the threshold
 * and isn't improved upon by a match in the next column.  The best N
 * candidates per diagonal are stored in a O(m + n) data structure.
 */
TAlScore SwAligner::alignGatherEE16(int& flag, bool debug) {
	assert_leq(rdf_, rd_->length());
	assert_leq(rdf_, qu_->length());
	assert_lt(rfi_, rff_);
	assert_lt(rdi_, rdf_);
	assert_eq(rd_->length(), qu_->length());
	assert_geq(sc_->gapbar, 1);
	assert(repOk());
#ifndef NDEBUG
	for(size_t i = (size_t)rfi_; i < (size_t)rff_; i++) {
		assert_range(0, 16, (int)rf_[i]);
	}
#endif

	SSEData& d = fw_ ? sseI16fw_ : sseI16rc_;
	SSEMetrics& met = extend_ ? sseI16ExtendMet_ : sseI16MateMet_;
	if(!debug) met.dp++;
	buildQueryProfileEnd2EndSseI16(fw_);
	assert(!d.profbuf_.empty());

	assert_eq(0, d.maxBonus_);
	size_t iter =
		(dpRows() + (NWORDS_PER_REG-1)) / NWORDS_PER_REG; // iter = segLen
	
	// Now set up the score vectors.  We just need two columns worth, which
	// we'll call "left" and "right".
	d.vecbuf_.resize(4 * 2 * iter);
	d.vecbuf_.zero();
	__m128i *vbuf_l = d.vecbuf_.ptr();
	__m128i *vbuf_r = d.vecbuf_.ptr() + (4 * iter);
	
	// This is the data structure that holds candidate cells per diagonal.
	const size_t ndiags = rff_ - rfi_ + dpRows() - 1;
	if(!debug) {
		btdiag_.init(ndiags, 2);
	}

	// Data structure that holds checkpointed anti-diagonals
	TAlScore perfectScore = sc_->perfectScore(dpRows());
	bool checkpoint = true;
	bool cpdebug = false;
#ifndef NDEBUG
	cpdebug = dpRows() < 1000;
#endif
	cper_.init(
		dpRows(),      // # rows
		rff_ - rfi_,   // # columns
		cperPerPow2_,  // checkpoint every 1 << perpow2 diags (& next)
		perfectScore,  // perfect score (for sanity checks)
		false,         // matrix cells have 8-bit scores?
		cperTri_,      // triangular mini-fills?
		false,         // alignment is local?
		cpdebug);      // save all cells for debugging?
		
	// Many thanks to Michael Farrar for releasing his striped Smith-Waterman
	// implementation:
	//
	//  http://sites.google.com/site/farrarmichael/smith-waterman
	//
	// Much of the implmentation below is adapted from Michael's code.

	// Set all elts to reference gap open penalty
	__m128i rfgapo   = _mm_setzero_si128();
	__m128i rfgape   = _mm_setzero_si128();
	__m128i rdgapo   = _mm_setzero_si128();
	__m128i rdgape   = _mm_setzero_si128();
	__m128i vlo      = _mm_setzero_si128();
	__m128i vhi      = _mm_setzero_si128();
	__m128i vhilsw   = _mm_setzero_si128();
	__m128i vlolsw   = _mm_setzero_si128();
	__m128i ve       = _mm_setzero_si128();
	__m128i vf       = _mm_setzero_si128();
	__m128i vh       = _mm_setzero_si128();
	__m128i vhd      = _mm_setzero_si128();
	__m128i vhdtmp   = _mm_setzero_si128();
	__m128i vtmp     = _mm_setzero_si128();

	assert_gt(sc_->refGapOpen(), 0);
	assert_leq(sc_->refGapOpen(), MAX_I16);
	rfgapo = _mm_insert_epi16(rfgapo, sc_->refGapOpen(), 0);
	rfgapo = _mm_shufflelo_epi16(rfgapo, 0);
	rfgapo = _mm_shuffle_epi32(rfgapo, 0);
	
	// Set all elts to reference gap extension penalty
	assert_gt(sc_->refGapExtend(), 0);
	assert_leq(sc_->refGapExtend(), MAX_I16);
	assert_leq(sc_->refGapExtend(), sc_->refGapOpen());
	rfgape = _mm_insert_epi16(rfgape, sc_->refGapExtend(), 0);
	rfgape = _mm_shufflelo_epi16(rfgape, 0);
	rfgape = _mm_shuffle_epi32(rfgape, 0);

	// Set all elts to read gap open penalty
	assert_gt(sc_->readGapOpen(), 0);
	assert_leq(sc_->readGapOpen(), MAX_I16);
	rdgapo = _mm_insert_epi16(rdgapo, sc_->readGapOpen(), 0);
	rdgapo = _mm_shufflelo_epi16(rdgapo, 0);
	rdgapo = _mm_shuffle_epi32(rdgapo, 0);
	
	// Set all elts to read gap extension penalty
	assert_gt(sc_->readGapExtend(), 0);
	assert_leq(sc_->readGapExtend(), MAX_I16);
	assert_leq(sc_->readGapExtend(), sc_->readGapOpen());
	rdgape = _mm_insert_epi16(rdgape, sc_->readGapExtend(), 0);
	rdgape = _mm_shufflelo_epi16(rdgape, 0);
	rdgape = _mm_shuffle_epi32(rdgape, 0);

	// Set all elts to 0x8000 (min value for signed 16-bit)
	vlo = _mm_cmpeq_epi16(vlo, vlo);             // all elts = 0xffff
	vlo = _mm_slli_epi16(vlo, NBITS_PER_WORD-1); // all elts = 0x8000
	
	// Set all elts to 0x7fff (max value for signed 16-bit)
	vhi = _mm_cmpeq_epi16(vhi, vhi);             // all elts = 0xffff
	vhi = _mm_srli_epi16(vhi, 1);                // all elts = 0x7fff
	
	// vlolsw: topmost (least sig) word set to 0x8000, all other words=0
	vlolsw = _mm_shuffle_epi32(vlo, 0);
	vlolsw = _mm_srli_si128(vlolsw, NBYTES_PER_REG - NBYTES_PER_WORD);
	
	// vhilsw: topmost (least sig) word set to 0x7fff, all other words=0
	vhilsw = _mm_shuffle_epi32(vhi, 0);
	vhilsw = _mm_srli_si128(vhilsw, NBYTES_PER_REG - NBYTES_PER_WORD);
	
	// Points to a long vector of __m128i where each element is a block of
	// contiguous cells in the E, F or H matrix.  If the index % 3 == 0, then
	// the block of cells is from the E matrix.  If index % 3 == 1, they're
	// from the F matrix.  If index % 3 == 2, then they're from the H matrix.
	// Blocks of cells are organized in the same interleaved manner as they are
	// calculated by the Farrar algorithm.
	const __m128i *pvScore; // points into the query profile

	const size_t colstride = ROWSTRIDE_2COL * iter;
	
	// Initialize the H and E vectors in the first matrix column
	__m128i *pvELeft = vbuf_l + 0; __m128i *pvERight = vbuf_r + 0;
	/* __m128i *pvFLeft = vbuf_l + 1; */ __m128i *pvFRight = vbuf_r + 1;
	__m128i *pvHLeft = vbuf_l + 2; __m128i *pvHRight = vbuf_r + 2;
	
	// Maximum score in final row
	bool found = false;
	TCScore lrmax = MIN_I16;
	
	for(size_t i = 0; i < iter; i++) {
		_mm_store_si128(pvERight, vlo); pvERight += ROWSTRIDE_2COL;
		// Could initialize Hs to high or low.  If high, cells in the lower
		// triangle will have somewhat more legitiate scores, but still won't
		// be exhaustively scored.
		_mm_store_si128(pvHRight, vlo); pvHRight += ROWSTRIDE_2COL;
	}
	
	assert_gt(sc_->gapbar, 0);
	size_t nfixup = 0;

	// Fill in the table as usual but instead of using the same gap-penalty
	// vector for each iteration of the inner loop, load words out of a
	// pre-calculated gap vector parallel to the query profile.  The pre-
	// calculated gap vectors enforce the gap barrier constraint by making it
	// infinitely costly to introduce a gap in barrier rows.
	//
	// AND use a separate loop to fill in the first row of the table, enforcing
	// the st_ constraints in the process.  This is awkward because it
	// separates the processing of the first row from the others and might make
	// it difficult to use the first-row results in the next row, but it might
	// be the simplest and least disruptive way to deal with the st_ constraint.
	
	for(size_t i = (size_t)rfi_; i < (size_t)rff_; i++) {
		// Swap left and right; vbuf_l is the vector on the left, which we
		// generally load from, and vbuf_r is the vector on the right, which we
		// generally store to.
		swap(vbuf_l, vbuf_r);
		pvELeft = vbuf_l + 0; pvERight = vbuf_r + 0;
		/* pvFLeft = vbuf_l + 1; */ pvFRight = vbuf_r + 1;
		pvHLeft = vbuf_l + 2; pvHRight = vbuf_r + 2;
		
		// Fetch the appropriate query profile.  Note that elements of rf_ must
		// be numbers, not masks.
		const int refc = (int)rf_[i];
		
		// Fetch the appropriate query profile
		size_t off = (size_t)firsts5[refc] * iter * 2;
		pvScore = d.profbuf_.ptr() + off; // even elts = query profile, odd = gap barrier
		
		// Set all cells to low value
		vf = _mm_cmpeq_epi16(vf, vf);
		vf = _mm_slli_epi16(vf, NBITS_PER_WORD-1);
		vf = _mm_or_si128(vf, vlolsw);
		
		// Load H vector from the final row of the previous column
		vh = _mm_load_si128(pvHLeft + colstride - ROWSTRIDE_2COL);
		// Shift 2 bytes down so that topmost (least sig) cell gets 0
		vh = _mm_slli_si128(vh, NBYTES_PER_WORD);
		// Fill topmost (least sig) cell with high value
		vh = _mm_or_si128(vh, vhilsw);
		
		// For each character in the reference text:
		size_t j;
		for(j = 0; j < iter; j++) {
			// Load cells from E, calculated previously
			ve = _mm_load_si128(pvELeft);
			vhd = _mm_load_si128(pvHLeft);
			assert_all_lt(ve, vhi);
			pvELeft += ROWSTRIDE_2COL;
			
			// Store cells in F, calculated previously
			vf = _mm_adds_epi16(vf, pvScore[1]); // veto some ref gap extensions
			vf = _mm_adds_epi16(vf, pvScore[1]); // veto some ref gap extensions
			_mm_store_si128(pvFRight, vf);
			pvFRight += ROWSTRIDE_2COL;
			
			// Factor in query profile (matches and mismatches)
			vh = _mm_adds_epi16(vh, pvScore[0]);
			
			// Update H, factoring in E and F
			vh = _mm_max_epi16(vh, vf);
			
			// Update vE value
			vhdtmp = vhd;
			vhd = _mm_subs_epi16(vhd, rdgapo);
			vhd = _mm_adds_epi16(vhd, pvScore[1]); // veto some read gap opens
			vhd = _mm_adds_epi16(vhd, pvScore[1]); // veto some read gap opens
			ve = _mm_subs_epi16(ve, rdgape);
			ve = _mm_max_epi16(ve, vhd);
			vh = _mm_max_epi16(vh, ve);

			// Save the new vH values
			_mm_store_si128(pvHRight, vh);
			pvHRight += ROWSTRIDE_2COL;
			vtmp = vh;
			assert_all_lt(ve, vhi);
			
			// Load the next h value
			vh = vhdtmp;
			pvHLeft += ROWSTRIDE_2COL;

			// Save E values
			_mm_store_si128(pvERight, ve);
			pvERight += ROWSTRIDE_2COL;
			
			// Update vf value
			vtmp = _mm_subs_epi16(vtmp, rfgapo);
			vf = _mm_subs_epi16(vf, rfgape);
			assert_all_lt(vf, vhi);
			vf = _mm_max_epi16(vf, vtmp);
			
			pvScore += 2; // move on to next query profile / gap veto
		}
		// pvHStore, pvELoad, pvEStore have all rolled over to the next column
		pvFRight -= colstride; // reset to start of column
		vtmp = _mm_load_si128(pvFRight);
		
		pvHRight -= colstride; // reset to start of column
		vh = _mm_load_si128(pvHRight);
		
		pvScore = d.profbuf_.ptr() + off + 1; // reset veto vector
		
		// vf from last row gets shifted down by one to overlay the first row
		// rfgape has already been subtracted from it.
		vf = _mm_slli_si128(vf, NBYTES_PER_WORD);
		vf = _mm_or_si128(vf, vlolsw);
		
		vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
		vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
		vf = _mm_max_epi16(vtmp, vf);
		vtmp = _mm_cmpgt_epi16(vf, vtmp);
		int cmp = _mm_movemask_epi8(vtmp);
		
		// If any element of vtmp is greater than H - gap-open...
		j = 0;
		while(cmp != 0x0000) {
			// Store this vf
			_mm_store_si128(pvFRight, vf);
			pvFRight += ROWSTRIDE_2COL;
			
			// Update vh w/r/t new vf
			vh = _mm_max_epi16(vh, vf);
			
			// Save vH values
			_mm_store_si128(pvHRight, vh);
			pvHRight += ROWSTRIDE_2COL;
			
			pvScore += 2;
			
			assert_lt(j, iter);
			if(++j == iter) {
				pvFRight -= colstride;
				vtmp = _mm_load_si128(pvFRight);   // load next vf ASAP
				pvHRight -= colstride;
				vh = _mm_load_si128(pvHRight);     // load next vh ASAP
				pvScore = d.profbuf_.ptr() + off + 1;
				j = 0;
				vf = _mm_slli_si128(vf, NBYTES_PER_WORD);
				vf = _mm_or_si128(vf, vlolsw);
			} else {
				vtmp = _mm_load_si128(pvFRight);   // load next vf ASAP
				vh = _mm_load_si128(pvHRight);     // load next vh ASAP
			}
			
			// Update F with another gap extension
			vf = _mm_subs_epi16(vf, rfgape);
			vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
			vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
			vf = _mm_max_epi16(vtmp, vf);
			vtmp = _mm_cmpgt_epi16(vf, vtmp);
			cmp = _mm_movemask_epi8(vtmp);
			nfixup++;
		}

		
		// Check in the last row for the maximum so far
		__m128i *vtmp = vbuf_r + 2 /* H */ + (d.lastIter_ * ROWSTRIDE_2COL);
		// Note: we may not want to extract from the final row
		TCScore lr = ((TCScore*)(vtmp))[d.lastWord_];
		found = true;
		if(lr > lrmax) {
			lrmax = lr;
		}
		
		// Now we'd like to know whether the bottommost element of the right
		// column is a candidate we might backtrace from.  First question is:
		// did it exceed the minimum score threshold?
		TAlScore score = (TAlScore)(lr - 0x7fff);
		if(lr == MIN_I16) {
			score = MIN_I64;
		}
		if(!debug && score >= minsc_) {
			DpBtCandidate cand(dpRows() - 1, i - rfi_, score);
			btdiag_.add(i - rfi_, cand);
		}

		// Save some elements to checkpoints
		if(checkpoint) {
			
			__m128i *pvE = vbuf_r + 0;
			__m128i *pvF = vbuf_r + 1;
			__m128i *pvH = vbuf_r + 2;
			size_t coli = i - rfi_;
			if(coli < cper_.locol_) cper_.locol_ = coli;
			if(coli > cper_.hicol_) cper_.hicol_ = coli;
			
			if(cperTri_) {
				size_t rc_mod = coli & cper_.lomask_;
				assert_lt(rc_mod, cper_.per_);
				int64_t row = -rc_mod-1;
				int64_t row_mod = row;
				int64_t row_div = 0;
				size_t idx = coli >> cper_.perpow2_;
				size_t idxrow = idx * cper_.nrow_;
				assert_eq(4, ROWSTRIDE_2COL);
				bool done = false;
				while(true) {
					row += (cper_.per_ - 2);
					row_mod += (cper_.per_ - 2);
					for(size_t j = 0; j < 2; j++) {
						row++;
						row_mod++;
						if(row >= 0 && (size_t)row < cper_.nrow_) {
							// Update row divided by iter_ and mod iter_
							while(row_mod >= (int64_t)iter) {
								row_mod -= (int64_t)iter;
								row_div++;
							}
							size_t delt = idxrow + row;
							size_t vecoff = (row_mod << 5) + row_div;
							assert_lt(row_div, 8);
							int16_t h_sc = ((int16_t*)pvH)[vecoff];
							int16_t e_sc = ((int16_t*)pvE)[vecoff];
							int16_t f_sc = ((int16_t*)pvF)[vecoff];
							if(h_sc != MIN_I16) h_sc -= 0x7fff;
							if(e_sc != MIN_I16) e_sc -= 0x7fff;
							if(f_sc != MIN_I16) f_sc -= 0x7fff;
							assert_leq(h_sc, cper_.perf_);
							assert_leq(e_sc, cper_.perf_);
							assert_leq(f_sc, cper_.perf_);
							CpQuad *qdiags = ((j == 0) ? cper_.qdiag1s_.ptr() : cper_.qdiag2s_.ptr());
							qdiags[delt].sc[0] = h_sc;
							qdiags[delt].sc[1] = e_sc;
							qdiags[delt].sc[2] = f_sc;
						} // if(row >= 0 && row < nrow_)
						else if(row >= 0 && (size_t)row >= cper_.nrow_) {
							done = true;
							break;
						}
					} // end of loop over anti-diags
					if(done) {
						break;
					}
					idx++;
					idxrow += cper_.nrow_;
				}
			} else {
				// If this is the first column, take this opportunity to
				// pre-calculate the coordinates of the elements we're going to
				// checkpoint.
				if(coli == 0) {
					size_t cpi    = cper_.per_-1;
					size_t cpimod = cper_.per_-1;
					size_t cpidiv = 0;
					cper_.commitMap_.clear();
					while(cpi < cper_.nrow_) {
						while(cpimod >= iter) {
							cpimod -= iter;
							cpidiv++;
						}
						size_t vecoff = (cpimod << 5) + cpidiv;
						cper_.commitMap_.push_back(vecoff);
						cpi += cper_.per_;
						cpimod += cper_.per_;
					}
				}
				// Save all the rows
				size_t rowoff = 0;
				size_t sz = cper_.commitMap_.size();
				for(size_t i = 0; i < sz; i++, rowoff += cper_.ncol_) {
					size_t vecoff = cper_.commitMap_[i];
					int16_t h_sc = ((int16_t*)pvH)[vecoff];
					int16_t e_sc = ((int16_t*)pvE)[vecoff];
					int16_t f_sc = ((int16_t*)pvF)[vecoff];
					if(h_sc != MIN_I16) h_sc -= 0x7fff;
					if(e_sc != MIN_I16) e_sc -= 0x7fff;
					if(f_sc != MIN_I16) f_sc -= 0x7fff;
					assert_leq(h_sc, cper_.perf_);
					assert_leq(e_sc, cper_.perf_);
					assert_leq(f_sc, cper_.perf_);
					CpQuad& dst = cper_.qrows_[rowoff + coli];
					dst.sc[0] = h_sc;
					dst.sc[1] = e_sc;
					dst.sc[2] = f_sc;
				}
				// Is this a column we'd like to checkpoint?
				if((coli & cper_.lomask_) == cper_.lomask_) {
					// Save the column using memcpys
					assert_gt(coli, 0);
					size_t wordspercol = cper_.niter_ * ROWSTRIDE_2COL;
					size_t coloff = (coli >> cper_.perpow2_) * wordspercol;
					__m128i *dst = cper_.qcols_.ptr() + coloff;
					memcpy(dst, vbuf_r, sizeof(__m128i) * wordspercol);
				}
			}
			if(cper_.debug_) {
				// Save the column using memcpys
				size_t wordspercol = cper_.niter_ * ROWSTRIDE_2COL;
				size_t coloff = coli * wordspercol;
				__m128i *dst = cper_.qcolsD_.ptr() + coloff;
				memcpy(dst, vbuf_r, sizeof(__m128i) * wordspercol);
			}
		}
	}
	
	// Update metrics
	if(!debug) {
		size_t ninner = (rff_ - rfi_) * iter;
		met.col   += (rff_ - rfi_);             // DP columns
		met.cell  += (ninner * NWORDS_PER_REG); // DP cells
		met.inner += ninner;                    // DP inner loop iters
		met.fixup += nfixup;                    // DP fixup loop iters
	}

	flag = 0;

	// Did we find a solution?
	TAlScore score = MIN_I64;
	if(!found) {
		flag = -1; // no
		if(!debug) met.dpfail++;
		return MIN_I64;
	} else {
		score = (TAlScore)(lrmax - 0x7fff);
		if(score < minsc_) {
			flag = -1; // no
			if(!debug) met.dpfail++;
			return score;
		}
	}
	
	// Could we have saturated?
	if(lrmax == MIN_I16) {
		flag = -2; // yes
		if(!debug) met.dpsat++;
		return MIN_I64;
	}
	
	// Now take all the backtrace candidates in the btdaig_ structure and
	// dump them into the btncand_ array.  They'll be sorted later.
	if(!debug) {
		btdiag_.dump(btncand_);
		assert(!btncand_.empty());
	}
	
	// Return largest score
	if(!debug) met.dpsucc++;
	return score;
}

/**
 * Solve the current alignment problem using SSE instructions that operate on 8
 * signed 16-bit values packed into a single 128-bit register.
 */
TAlScore SwAligner::alignNucleotidesEnd2EndSseI16(int& flag, bool debug) {
	assert_leq(rdf_, rd_->length());
	assert_leq(rdf_, qu_->length());
	assert_lt(rfi_, rff_);
	assert_lt(rdi_, rdf_);
	assert_eq(rd_->length(), qu_->length());
	assert_geq(sc_->gapbar, 1);
	assert(repOk());
#ifndef NDEBUG
	for(size_t i = (size_t)rfi_; i < (size_t)rff_; i++) {
		assert_range(0, 16, (int)rf_[i]);
	}
#endif

	SSEData& d = fw_ ? sseI16fw_ : sseI16rc_;
	SSEMetrics& met = extend_ ? sseI16ExtendMet_ : sseI16MateMet_;
	if(!debug) met.dp++;
	buildQueryProfileEnd2EndSseI16(fw_);
	assert(!d.profbuf_.empty());

	assert_eq(0, d.maxBonus_);
	size_t iter =
		(dpRows() + (NWORDS_PER_REG-1)) / NWORDS_PER_REG; // iter = segLen

	// Many thanks to Michael Farrar for releasing his striped Smith-Waterman
	// implementation:
	//
	//  http://sites.google.com/site/farrarmichael/smith-waterman
	//
	// Much of the implmentation below is adapted from Michael's code.

	// Set all elts to reference gap open penalty
	__m128i rfgapo   = _mm_setzero_si128();
	__m128i rfgape   = _mm_setzero_si128();
	__m128i rdgapo   = _mm_setzero_si128();
	__m128i rdgape   = _mm_setzero_si128();
	__m128i vlo      = _mm_setzero_si128();
	__m128i vhi      = _mm_setzero_si128();
	__m128i vhilsw   = _mm_setzero_si128();
	__m128i vlolsw   = _mm_setzero_si128();
	__m128i ve       = _mm_setzero_si128();
	__m128i vf       = _mm_setzero_si128();
	__m128i vh       = _mm_setzero_si128();
#if 0
	__m128i vhd      = _mm_setzero_si128();
	__m128i vhdtmp   = _mm_setzero_si128();
#endif
	__m128i vtmp     = _mm_setzero_si128();

	assert_gt(sc_->refGapOpen(), 0);
	assert_leq(sc_->refGapOpen(), MAX_I16);
	rfgapo = _mm_insert_epi16(rfgapo, sc_->refGapOpen(), 0);
	rfgapo = _mm_shufflelo_epi16(rfgapo, 0);
	rfgapo = _mm_shuffle_epi32(rfgapo, 0);
	
	// Set all elts to reference gap extension penalty
	assert_gt(sc_->refGapExtend(), 0);
	assert_leq(sc_->refGapExtend(), MAX_I16);
	assert_leq(sc_->refGapExtend(), sc_->refGapOpen());
	rfgape = _mm_insert_epi16(rfgape, sc_->refGapExtend(), 0);
	rfgape = _mm_shufflelo_epi16(rfgape, 0);
	rfgape = _mm_shuffle_epi32(rfgape, 0);

	// Set all elts to read gap open penalty
	assert_gt(sc_->readGapOpen(), 0);
	assert_leq(sc_->readGapOpen(), MAX_I16);
	rdgapo = _mm_insert_epi16(rdgapo, sc_->readGapOpen(), 0);
	rdgapo = _mm_shufflelo_epi16(rdgapo, 0);
	rdgapo = _mm_shuffle_epi32(rdgapo, 0);
	
	// Set all elts to read gap extension penalty
	assert_gt(sc_->readGapExtend(), 0);
	assert_leq(sc_->readGapExtend(), MAX_I16);
	assert_leq(sc_->readGapExtend(), sc_->readGapOpen());
	rdgape = _mm_insert_epi16(rdgape, sc_->readGapExtend(), 0);
	rdgape = _mm_shufflelo_epi16(rdgape, 0);
	rdgape = _mm_shuffle_epi32(rdgape, 0);

	// Set all elts to 0x8000 (min value for signed 16-bit)
	vlo = _mm_cmpeq_epi16(vlo, vlo);             // all elts = 0xffff
	vlo = _mm_slli_epi16(vlo, NBITS_PER_WORD-1); // all elts = 0x8000
	
	// Set all elts to 0x7fff (max value for signed 16-bit)
	vhi = _mm_cmpeq_epi16(vhi, vhi);             // all elts = 0xffff
	vhi = _mm_srli_epi16(vhi, 1);                // all elts = 0x7fff
	
	// vlolsw: topmost (least sig) word set to 0x8000, all other words=0
	vlolsw = _mm_shuffle_epi32(vlo, 0);
	vlolsw = _mm_srli_si128(vlolsw, NBYTES_PER_REG - NBYTES_PER_WORD);
	
	// vhilsw: topmost (least sig) word set to 0x7fff, all other words=0
	vhilsw = _mm_shuffle_epi32(vhi, 0);
	vhilsw = _mm_srli_si128(vhilsw, NBYTES_PER_REG - NBYTES_PER_WORD);
	
	// Points to a long vector of __m128i where each element is a block of
	// contiguous cells in the E, F or H matrix.  If the index % 3 == 0, then
	// the block of cells is from the E matrix.  If index % 3 == 1, they're
	// from the F matrix.  If index % 3 == 2, then they're from the H matrix.
	// Blocks of cells are organized in the same interleaved manner as they are
	// calculated by the Farrar algorithm.
	const __m128i *pvScore; // points into the query profile

	d.mat_.init(dpRows(), rff_ - rfi_, NWORDS_PER_REG);
	const size_t colstride = d.mat_.colstride();
	assert_eq(ROWSTRIDE, colstride / iter);
	
	// Initialize the H and E vectors in the first matrix column
	__m128i *pvHTmp = d.mat_.tmpvec(0, 0);
	__m128i *pvETmp = d.mat_.evec(0, 0);
	
	// Maximum score in final row
	bool found = false;
	TCScore lrmax = MIN_I16;
	
	for(size_t i = 0; i < iter; i++) {
		_mm_store_si128(pvETmp, vlo);
		// Could initialize Hs to high or low.  If high, cells in the lower
		// triangle will have somewhat more legitiate scores, but still won't
		// be exhaustively scored.
		_mm_store_si128(pvHTmp, vlo);
		pvETmp += ROWSTRIDE;
		pvHTmp += ROWSTRIDE;
	}
	// These are swapped just before the innermost loop
	__m128i *pvHStore = d.mat_.hvec(0, 0);
	__m128i *pvHLoad  = d.mat_.tmpvec(0, 0);
	__m128i *pvELoad  = d.mat_.evec(0, 0);
	__m128i *pvEStore = d.mat_.evecUnsafe(0, 1);
	__m128i *pvFStore = d.mat_.fvec(0, 0);
	__m128i *pvFTmp   = NULL;
	
	assert_gt(sc_->gapbar, 0);
	size_t nfixup = 0;
	
	// Fill in the table as usual but instead of using the same gap-penalty
	// vector for each iteration of the inner loop, load words out of a
	// pre-calculated gap vector parallel to the query profile.  The pre-
	// calculated gap vectors enforce the gap barrier constraint by making it
	// infinitely costly to introduce a gap in barrier rows.
	//
	// AND use a separate loop to fill in the first row of the table, enforcing
	// the st_ constraints in the process.  This is awkward because it
	// separates the processing of the first row from the others and might make
	// it difficult to use the first-row results in the next row, but it might
	// be the simplest and least disruptive way to deal with the st_ constraint.
	
	colstop_ = rff_ - 1;
	lastsolcol_ = 0;
	
	for(size_t i = (size_t)rfi_; i < (size_t)rff_; i++) {
		assert(pvFStore == d.mat_.fvec(0, i - rfi_));
		assert(pvHStore == d.mat_.hvec(0, i - rfi_));
		
		// Fetch the appropriate query profile.  Note that elements of rf_ must
		// be numbers, not masks.
		const int refc = (int)rf_[i];
		size_t off = (size_t)firsts5[refc] * iter * 2;
		pvScore = d.profbuf_.ptr() + off; // even elts = query profile, odd = gap barrier
		
		// Set all cells to low value
		vf = _mm_cmpeq_epi16(vf, vf);
		vf = _mm_slli_epi16(vf, NBITS_PER_WORD-1);
		vf = _mm_or_si128(vf, vlolsw);
		
		// Load H vector from the final row of the previous column
		vh = _mm_load_si128(pvHLoad + colstride - ROWSTRIDE);
		// Shift 2 bytes down so that topmost (least sig) cell gets 0
		vh = _mm_slli_si128(vh, NBYTES_PER_WORD);
		// Fill topmost (least sig) cell with high value
		vh = _mm_or_si128(vh, vhilsw);
		
		// For each character in the reference text:
		size_t j;
		for(j = 0; j < iter; j++) {
			// Load cells from E, calculated previously
			ve = _mm_load_si128(pvELoad);
#if 0
			vhd = _mm_load_si128(pvHLoad);
#endif
			assert_all_lt(ve, vhi);
			pvELoad += ROWSTRIDE;
			
			// Store cells in F, calculated previously
			vf = _mm_adds_epi16(vf, pvScore[1]); // veto some ref gap extensions
			vf = _mm_adds_epi16(vf, pvScore[1]); // veto some ref gap extensions
			_mm_store_si128(pvFStore, vf);
			pvFStore += ROWSTRIDE;
			
			// Factor in query profile (matches and mismatches)
			vh = _mm_adds_epi16(vh, pvScore[0]);
			
			// Update H, factoring in E and F
			vh = _mm_max_epi16(vh, ve);
			vh = _mm_max_epi16(vh, vf);
			
			// Save the new vH values
			_mm_store_si128(pvHStore, vh);
			pvHStore += ROWSTRIDE;
			
			// Update vE value
			vtmp = vh;
#if 0
			vhdtmp = vhd;
			vhd = _mm_subs_epi16(vhd, rdgapo);
			vhd = _mm_adds_epi16(vhd, pvScore[1]); // veto some read gap opens
			vhd = _mm_adds_epi16(vhd, pvScore[1]); // veto some read gap opens
			ve = _mm_subs_epi16(ve, rdgape);
			ve = _mm_max_epi16(ve, vhd);
#else
			vh = _mm_subs_epi16(vh, rdgapo);
			vh = _mm_adds_epi16(vh, pvScore[1]); // veto some read gap opens
			vh = _mm_adds_epi16(vh, pvScore[1]); // veto some read gap opens
			ve = _mm_subs_epi16(ve, rdgape);
			ve = _mm_max_epi16(ve, vh);
#endif
			assert_all_lt(ve, vhi);
			
			// Load the next h value
#if 0
			vh = vhdtmp;
#else
			vh = _mm_load_si128(pvHLoad);
#endif
			pvHLoad += ROWSTRIDE;
			
			// Save E values
			_mm_store_si128(pvEStore, ve);
			pvEStore += ROWSTRIDE;
			
			// Update vf value
			vtmp = _mm_subs_epi16(vtmp, rfgapo);
			vf = _mm_subs_epi16(vf, rfgape);
			assert_all_lt(vf, vhi);
			vf = _mm_max_epi16(vf, vtmp);
			
			pvScore += 2; // move on to next query profile / gap veto
		}
		// pvHStore, pvELoad, pvEStore have all rolled over to the next column
		pvFTmp = pvFStore;
		pvFStore -= colstride; // reset to start of column
		vtmp = _mm_load_si128(pvFStore);
		
		pvHStore -= colstride; // reset to start of column
		vh = _mm_load_si128(pvHStore);
		
#if 0
#else
		pvEStore -= colstride; // reset to start of column
		ve = _mm_load_si128(pvEStore);
#endif
		
		pvHLoad = pvHStore;    // new pvHLoad = pvHStore
		pvScore = d.profbuf_.ptr() + off + 1; // reset veto vector
		
		// vf from last row gets shifted down by one to overlay the first row
		// rfgape has already been subtracted from it.
		vf = _mm_slli_si128(vf, NBYTES_PER_WORD);
		vf = _mm_or_si128(vf, vlolsw);
		
		vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
		vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
		vf = _mm_max_epi16(vtmp, vf);
		vtmp = _mm_cmpgt_epi16(vf, vtmp);
		int cmp = _mm_movemask_epi8(vtmp);
		
		// If any element of vtmp is greater than H - gap-open...
		j = 0;
		while(cmp != 0x0000) {
			// Store this vf
			_mm_store_si128(pvFStore, vf);
			pvFStore += ROWSTRIDE;
			
			// Update vh w/r/t new vf
			vh = _mm_max_epi16(vh, vf);
			
			// Save vH values
			_mm_store_si128(pvHStore, vh);
			pvHStore += ROWSTRIDE;
			
			// Update E in case it can be improved using our new vh
#if 0
#else
			vh = _mm_subs_epi16(vh, rdgapo);
			vh = _mm_adds_epi16(vh, *pvScore); // veto some read gap opens
			vh = _mm_adds_epi16(vh, *pvScore); // veto some read gap opens
			ve = _mm_max_epi16(ve, vh);
			_mm_store_si128(pvEStore, ve);
			pvEStore += ROWSTRIDE;
#endif
			pvScore += 2;
			
			assert_lt(j, iter);
			if(++j == iter) {
				pvFStore -= colstride;
				vtmp = _mm_load_si128(pvFStore);   // load next vf ASAP
				pvHStore -= colstride;
				vh = _mm_load_si128(pvHStore);     // load next vh ASAP
#if 0
#else
				pvEStore -= colstride;
				ve = _mm_load_si128(pvEStore);     // load next ve ASAP
#endif
				pvScore = d.profbuf_.ptr() + off + 1;
				j = 0;
				vf = _mm_slli_si128(vf, NBYTES_PER_WORD);
				vf = _mm_or_si128(vf, vlolsw);
			} else {
				vtmp = _mm_load_si128(pvFStore);   // load next vf ASAP
				vh = _mm_load_si128(pvHStore);     // load next vh ASAP
#if 0
#else
				ve = _mm_load_si128(pvEStore);     // load next vh ASAP
#endif
			}
			
			// Update F with another gap extension
			vf = _mm_subs_epi16(vf, rfgape);
			vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
			vf = _mm_adds_epi16(vf, *pvScore); // veto some ref gap extensions
			vf = _mm_max_epi16(vtmp, vf);
			vtmp = _mm_cmpgt_epi16(vf, vtmp);
			cmp = _mm_movemask_epi8(vtmp);
			nfixup++;
		}

#ifndef NDEBUG
		if((rand() & 15) == 0) {
			// This is a work-intensive sanity check; each time we finish filling
			// a column, we check that each H, E, and F is sensible.
			for(size_t k = 0; k < dpRows(); k++) {
				assert(cellOkEnd2EndI16(
					d,
					k,                   // row
					i - rfi_,            // col
					refc,                // reference mask
					(int)(*rd_)[rdi_+k], // read char
					(int)(*qu_)[rdi_+k], // read quality
					*sc_));              // scoring scheme
			}
		}
#endif
		
		__m128i *vtmp = d.mat_.hvec(d.lastIter_, i-rfi_);
		// Note: we may not want to extract from the final row
		TCScore lr = ((TCScore*)(vtmp))[d.lastWord_];
		found = true;
		if(lr > lrmax) {
			lrmax = lr;
		}

		// pvELoad and pvHLoad are already where they need to be
		
		// Adjust the load and store vectors here.  
		pvHStore = pvHLoad + colstride;
		pvEStore = pvELoad + colstride;
		pvFStore = pvFTmp;
	}
	
	// Update metrics
	if(!debug) {
		size_t ninner = (rff_ - rfi_) * iter;
		met.col   += (rff_ - rfi_);             // DP columns
		met.cell  += (ninner * NWORDS_PER_REG); // DP cells
		met.inner += ninner;                    // DP inner loop iters
		met.fixup += nfixup;                    // DP fixup loop iters
	}
	
	flag = 0;
	
	// Did we find a solution?
	TAlScore score = MIN_I64;
	if(!found) {
		flag = -1; // no
		if(!debug) met.dpfail++;
		return MIN_I64;
	} else {
		score = (TAlScore)(lrmax - 0x7fff);
		if(score < minsc_) {
			flag = -1; // no
			if(!debug) met.dpfail++;
			return score;
		}
	}
	
	// Could we have saturated?
	if(lrmax == MIN_I16) {
		flag = -2; // yes
		if(!debug) met.dpsat++;
		return MIN_I64;
	}
	
	// Return largest score
	if(!debug) met.dpsucc++;
	return score;
}

/**
 * Given a filled-in DP table, populate the btncand_ list with candidate cells
 * that might be at the ends of valid alignments.  No need to do this unless
 * the maximum score returned by the align*() func is >= the minimum.
 *
 * Only cells that are exhaustively scored are candidates.  Those are the
 * cells inside the shape made of o's in this:
 *
 *  |-maxgaps-|
 *  *********************************    -
 *   ********************************    |
 *    *******************************    |
 *     ******************************    |
 *      *****************************    |
 *       **************************** read len
 *        ***************************    |
 *         **************************    |
 *          *************************    |
 *           ************************    |
 *            ***********oooooooooooo    -
 *            |-maxgaps-|
 *  |-readlen-|
 *  |-------skip--------|
 *
 * And it's possible for the shape to be truncated on the left and right sides.
 *
 * 
 */
bool SwAligner::gatherCellsNucleotidesEnd2EndSseI16(TAlScore best) {
	// What's the minimum number of rows that can possibly be spanned by an
	// alignment that meets the minimum score requirement?
	assert(sse16succ_);
	const size_t ncol = rff_ - rfi_;
	const size_t nrow = dpRows();
	assert_gt(nrow, 0);
	btncand_.clear();
	btncanddone_.clear();
	SSEData& d = fw_ ? sseI16fw_ : sseI16rc_;
	SSEMetrics& met = extend_ ? sseI16ExtendMet_ : sseI16MateMet_;
	assert(!d.profbuf_.empty());
	const size_t colstride = d.mat_.colstride();
	ASSERT_ONLY(bool sawbest = false);
	__m128i *pvH = d.mat_.hvec(d.lastIter_, 0);
	for(size_t j = 0; j < ncol; j++) {
		TAlScore sc = (TAlScore)(((TCScore*)pvH)[d.lastWord_] - 0x7fff);
		assert_leq(sc, best);
		ASSERT_ONLY(sawbest = (sawbest || sc == best));
		if(sc >= minsc_) {
			// Yes, this is legit
			met.gathsol++;
			btncand_.expand();
			btncand_.back().init(nrow-1, j, sc);
		}
		pvH += colstride;
	}
	assert(sawbest);
	if(!btncand_.empty()) {
		d.mat_.initMasks();
	}
	return !btncand_.empty();
}

#define MOVE_VEC_PTR_UP(vec, rowvec, rowelt) { \
	if(rowvec == 0) { \
		rowvec += d.mat_.nvecrow_; \
		vec += d.mat_.colstride_; \
		rowelt--; \
	} \
	rowvec--; \
	vec -= ROWSTRIDE; \
}

#define MOVE_VEC_PTR_LEFT(vec, rowvec, rowelt) { vec -= d.mat_.colstride_; }

#define MOVE_VEC_PTR_UPLEFT(vec, rowvec, rowelt) { \
 	MOVE_VEC_PTR_UP(vec, rowvec, rowelt); \
 	MOVE_VEC_PTR_LEFT(vec, rowvec, rowelt); \
}

#define MOVE_ALL_LEFT() { \
	MOVE_VEC_PTR_LEFT(cur_vec, rowvec, rowelt); \
	MOVE_VEC_PTR_LEFT(left_vec, left_rowvec, left_rowelt); \
	MOVE_VEC_PTR_LEFT(up_vec, up_rowvec, up_rowelt); \
	MOVE_VEC_PTR_LEFT(upleft_vec, upleft_rowvec, upleft_rowelt); \
}

#define MOVE_ALL_UP() { \
	MOVE_VEC_PTR_UP(cur_vec, rowvec, rowelt); \
	MOVE_VEC_PTR_UP(left_vec, left_rowvec, left_rowelt); \
	MOVE_VEC_PTR_UP(up_vec, up_rowvec, up_rowelt); \
	MOVE_VEC_PTR_UP(upleft_vec, upleft_rowvec, upleft_rowelt); \
}

#define MOVE_ALL_UPLEFT() { \
	MOVE_VEC_PTR_UPLEFT(cur_vec, rowvec, rowelt); \
	MOVE_VEC_PTR_UPLEFT(left_vec, left_rowvec, left_rowelt); \
	MOVE_VEC_PTR_UPLEFT(up_vec, up_rowvec, up_rowelt); \
	MOVE_VEC_PTR_UPLEFT(upleft_vec, upleft_rowvec, upleft_rowelt); \
}

#define NEW_ROW_COL(row, col) { \
	rowelt = row / d.mat_.nvecrow_; \
	rowvec = row % d.mat_.nvecrow_; \
	eltvec = (col * d.mat_.colstride_) + (rowvec * ROWSTRIDE); \
	cur_vec = d.mat_.matbuf_.ptr() + eltvec; \
	left_vec = cur_vec; \
	left_rowelt = rowelt; \
	left_rowvec = rowvec; \
	MOVE_VEC_PTR_LEFT(left_vec, left_rowvec, left_rowelt); \
	up_vec = cur_vec; \
	up_rowelt = rowelt; \
	up_rowvec = rowvec; \
	MOVE_VEC_PTR_UP(up_vec, up_rowvec, up_rowelt); \
	upleft_vec = up_vec; \
	upleft_rowelt = up_rowelt; \
	upleft_rowvec = up_rowvec; \
	MOVE_VEC_PTR_LEFT(upleft_vec, upleft_rowvec, upleft_rowelt); \
}

/**
 * Given the dynamic programming table and a cell, trace backwards from the
 * cell and install the edits and score/penalty in the appropriate fields
 * of res.  The RandomSource is used to break ties among equally good ways
 * of tracing back.
 *
 * Whenever we enter a cell, we check whether the read/ref coordinates of
 * that cell correspond to a cell we traversed constructing a previous
 * alignment.  If so, we backtrack to the last decision point, mask out the
 * path that led to the previously observed cell, and continue along a
 * different path; or, if there are no more paths to try, we give up.
 *
 * If an alignment is found, 'off' is set to the alignment's upstream-most
 * reference character's offset into the chromosome and true is returned.
 * Otherwise, false is returned.
 */
bool SwAligner::backtraceNucleotidesEnd2EndSseI16(
	TAlScore       escore, // in: expected score
	SwResult&      res,    // out: store results (edits and scores) here
	size_t&        off,    // out: store diagonal projection of origin
	size_t&        nbts,   // out: # backtracks
	size_t         row,    // start in this row
	size_t         col,    // start in this column
	RandomSource&  rnd)    // random gen, to choose among equal paths
{
	assert_lt(row, dpRows());
	assert_lt(col, (size_t)(rff_ - rfi_));
	SSEData& d = fw_ ? sseI16fw_ : sseI16rc_;
	SSEMetrics& met = extend_ ? sseI16ExtendMet_ : sseI16MateMet_;
	met.bt++;
	assert(!d.profbuf_.empty());
	assert_lt(row, rd_->length());
	btnstack_.clear(); // empty the backtrack stack
	btcells_.clear();  // empty the cells-so-far list
	AlnScore score; score.score_ = 0;
	// score.gaps_ = score.ns_ = 0;
	size_t origCol = col;
	size_t gaps = 0, readGaps = 0, refGaps = 0;
	res.alres.reset();
    EList<Edit>& ned = res.alres.ned();
	assert(ned.empty());
	assert_gt(dpRows(), row);
	ASSERT_ONLY(size_t trimEnd = dpRows() - row - 1);
	size_t trimBeg = 0;
	size_t ct = SSEMatrix::H; // cell type
	// Row and col in terms of where they fall in the SSE vector matrix
	size_t rowelt, rowvec, eltvec;
	size_t left_rowelt, up_rowelt, upleft_rowelt;
	size_t left_rowvec, up_rowvec, upleft_rowvec;
	__m128i *cur_vec, *left_vec, *up_vec, *upleft_vec;
	NEW_ROW_COL(row, col);
	while((int)row >= 0) {
		met.btcell++;
		nbts++;
		int readc = (*rd_)[rdi_ + row];
		int refm  = (int)rf_[rfi_ + col];
		int readq = (*qu_)[row];
		assert_leq(col, origCol);
		// Get score in this cell
		bool empty = false, reportedThru, canMoveThru, branch = false;
		int cur = SSEMatrix::H;
		if(!d.mat_.reset_[row]) {
			d.mat_.resetRow(row);
		}
		reportedThru = d.mat_.reportedThrough(row, col);
		canMoveThru = true;
		if(reportedThru) {
			canMoveThru = false;
		} else {
			empty = false;
			if(row > 0) {
				assert_gt(row, 0);
				size_t rowFromEnd = d.mat_.nrow() - row - 1;
				bool gapsAllowed = true;
				if(row < (size_t)sc_->gapbar ||
				   rowFromEnd < (size_t)sc_->gapbar)
				{
					gapsAllowed = false;
				}
				const TAlScore floorsc = MIN_I64;
				const int offsetsc = -0x7fff;
				// Move to beginning of column/row
				if(ct == SSEMatrix::E) { // AKA rdgap
					assert_gt(col, 0);
					TAlScore sc_cur = ((TCScore*)(cur_vec + SSEMatrix::E))[rowelt] + offsetsc;
					assert(gapsAllowed);
					// Currently in the E matrix; incoming transition must come from the
					// left.  It's either a gap open from the H matrix or a gap extend from
					// the E matrix.
					// TODO: save and restore origMask as well as mask
					int origMask = 0, mask = 0;
					// Get H score of cell to the left
					TAlScore sc_h_left = ((TCScore*)(left_vec + SSEMatrix::H))[left_rowelt] + offsetsc;
					if(sc_h_left > floorsc && sc_h_left - sc_->readGapOpen() == sc_cur) {
						mask |= (1 << 0);
					}
					// Get E score of cell to the left
					TAlScore sc_e_left = ((TCScore*)(left_vec + SSEMatrix::E))[left_rowelt] + offsetsc;
					if(sc_e_left > floorsc && sc_e_left - sc_->readGapExtend() == sc_cur) {
						mask |= (1 << 1);
					}
					origMask = mask;
					assert(origMask > 0 || sc_cur <= sc_->match());
					if(d.mat_.isEMaskSet(row, col)) {
						mask = (d.mat_.masks_[row][col] >> 8) & 3;
					}
					if(mask == 3) {
#if 1
						// Pick H -> E cell
						cur = SW_BT_OALL_READ_OPEN;
						d.mat_.eMaskSet(row, col, 2); // might choose E later
#else
						if(rnd.nextU2()) {
							// Pick H -> E cell
							cur = SW_BT_OALL_READ_OPEN;
							d.mat_.eMaskSet(row, col, 2); // might choose E later
						} else {
							// Pick E -> E cell
							cur = SW_BT_RDGAP_EXTEND;
							d.mat_.eMaskSet(row, col, 1); // might choose H later
						}
#endif
						branch = true;
					} else if(mask == 2) {
						// I chose the E cell
						cur = SW_BT_RDGAP_EXTEND;
						d.mat_.eMaskSet(row, col, 0); // done
					} else if(mask == 1) {
						// I chose the H cell
						cur = SW_BT_OALL_READ_OPEN;
						d.mat_.eMaskSet(row, col, 0); // done
					} else {
						empty = true;
						// It's empty, so the only question left is whether we should be
						// allowed in terimnate in this cell.  If it's got a valid score
						// then we *shouldn't* be allowed to terminate here because that
						// means it's part of a larger alignment that was already reported.
						canMoveThru = (origMask == 0);
					}
					assert(!empty || !canMoveThru);
				} else if(ct == SSEMatrix::F) { // AKA rfgap
					assert_gt(row, 0);
					assert(gapsAllowed);
					TAlScore sc_h_up = ((TCScore*)(up_vec  + SSEMatrix::H))[up_rowelt] + offsetsc;
					TAlScore sc_f_up = ((TCScore*)(up_vec  + SSEMatrix::F))[up_rowelt] + offsetsc;
					TAlScore sc_cur  = ((TCScore*)(cur_vec + SSEMatrix::F))[rowelt] + offsetsc;
					// Currently in the F matrix; incoming transition must come from above.
					// It's either a gap open from the H matrix or a gap extend from the F
					// matrix.
					// TODO: save and restore origMask as well as mask
					int origMask = 0, mask = 0;
					// Get H score of cell above
					if(sc_h_up > floorsc && sc_h_up - sc_->refGapOpen() == sc_cur) {
						mask |= (1 << 0);
					}
					// Get F score of cell above
					if(sc_f_up > floorsc && sc_f_up - sc_->refGapExtend() == sc_cur) {
						mask |= (1 << 1);
					}
					origMask = mask;
					assert(origMask > 0 || sc_cur <= sc_->match());
					if(d.mat_.isFMaskSet(row, col)) {
						mask = (d.mat_.masks_[row][col] >> 11) & 3;
					}
					if(mask == 3) {
#if 1
						// I chose the H cell
						cur = SW_BT_OALL_REF_OPEN;
						d.mat_.fMaskSet(row, col, 2); // might choose E later
#else
						if(rnd.nextU2()) {
							// I chose the H cell
							cur = SW_BT_OALL_REF_OPEN;
							d.mat_.fMaskSet(row, col, 2); // might choose E later
						} else {
							// I chose the F cell
							cur = SW_BT_RFGAP_EXTEND;
							d.mat_.fMaskSet(row, col, 1); // might choose E later
						}
#endif
						branch = true;
					} else if(mask == 2) {
						// I chose the F cell
						cur = SW_BT_RFGAP_EXTEND;
						d.mat_.fMaskSet(row, col, 0); // done
					} else if(mask == 1) {
						// I chose the H cell
						cur = SW_BT_OALL_REF_OPEN;
						d.mat_.fMaskSet(row, col, 0); // done
					} else {
						empty = true;
						// It's empty, so the only question left is whether we should be
						// allowed in terimnate in this cell.  If it's got a valid score
						// then we *shouldn't* be allowed to terminate here because that
						// means it's part of a larger alignment that was already reported.
						canMoveThru = (origMask == 0);
					}
					assert(!empty || !canMoveThru);
				} else {
					assert_eq(SSEMatrix::H, ct);
					TAlScore sc_cur      = ((TCScore*)(cur_vec + SSEMatrix::H))[rowelt]    + offsetsc;
					TAlScore sc_f_up     = ((TCScore*)(up_vec  + SSEMatrix::F))[up_rowelt] + offsetsc;
					TAlScore sc_h_up     = ((TCScore*)(up_vec  + SSEMatrix::H))[up_rowelt] + offsetsc;
					TAlScore sc_h_left   = col > 0 ? (((TCScore*)(left_vec   + SSEMatrix::H))[left_rowelt]   + offsetsc) : floorsc;
					TAlScore sc_e_left   = col > 0 ? (((TCScore*)(left_vec   + SSEMatrix::E))[left_rowelt]   + offsetsc) : floorsc;
					TAlScore sc_h_upleft = col > 0 ? (((TCScore*)(upleft_vec + SSEMatrix::H))[upleft_rowelt] + offsetsc) : floorsc;
					TAlScore sc_diag     = sc_->score(readc, refm, readq - 33);
					// TODO: save and restore origMask as well as mask
					int origMask = 0, mask = 0;
					if(gapsAllowed) {
						if(sc_h_up     > floorsc && sc_cur == sc_h_up   - sc_->refGapOpen()) {
							mask |= (1 << 0);
						}
						if(sc_h_left   > floorsc && sc_cur == sc_h_left - sc_->readGapOpen()) {
							mask |= (1 << 1);
						}
						if(sc_f_up     > floorsc && sc_cur == sc_f_up   - sc_->refGapExtend()) {
							mask |= (1 << 2);
						}
						if(sc_e_left   > floorsc && sc_cur == sc_e_left - sc_->readGapExtend()) {
							mask |= (1 << 3);
						}
					}
					if(sc_h_upleft > floorsc && sc_cur == sc_h_upleft + sc_diag) {
						mask |= (1 << 4);
					}
					origMask = mask;
					assert(origMask > 0 || sc_cur <= sc_->match());
					if(d.mat_.isHMaskSet(row, col)) {
						mask = (d.mat_.masks_[row][col] >> 2) & 31;
					}
					assert(gapsAllowed || mask == (1 << 4) || mask == 0);
					int opts = alts5[mask];
					int select = -1;
					if(opts == 1) {
						select = firsts5[mask];
						assert_geq(mask, 0);
						d.mat_.hMaskSet(row, col, 0);
					} else if(opts > 1) {
#if 1
						if(       (mask & 16) != 0) {
							select = 4; // H diag
						} else if((mask & 1) != 0) {
							select = 0; // H up
						} else if((mask & 4) != 0) {
							select = 2; // F up
						} else if((mask & 2) != 0) {
							select = 1; // H left
						} else if((mask & 8) != 0) {
							select = 3; // E left
						}
#else
						select = randFromMask(rnd, mask);
#endif
						assert_geq(mask, 0);
						mask &= ~(1 << select);
						assert(gapsAllowed || mask == (1 << 4) || mask == 0);
						d.mat_.hMaskSet(row, col, mask);
						branch = true;
					} else { /* No way to backtrack! */ }
					if(select != -1) {
						if(select == 4) {
							cur = SW_BT_OALL_DIAG;
						} else if(select == 0) {
							cur = SW_BT_OALL_REF_OPEN;
						} else if(select == 1) {
							cur = SW_BT_OALL_READ_OPEN;
						} else if(select == 2) {
							cur = SW_BT_RFGAP_EXTEND;
						} else {
							assert_eq(3, select)
							cur = SW_BT_RDGAP_EXTEND;
						}
					} else {
						empty = true;
						// It's empty, so the only question left is whether we should be
						// allowed in terimnate in this cell.  If it's got a valid score
						// then we *shouldn't* be allowed to terminate here because that
						// means it's part of a larger alignment that was already reported.
						canMoveThru = (origMask == 0);
					}
				}
				assert(!empty || !canMoveThru || ct == SSEMatrix::H);
			}
		}
		d.mat_.setReportedThrough(row, col);
		assert_eq(gaps, Edit::numGaps(ned));
		assert_leq(gaps, rdgap_ + rfgap_);
		// Cell was involved in a previously-reported alignment?
		if(!canMoveThru) {
			if(!btnstack_.empty()) {
				// Remove all the cells from list back to and including the
				// cell where the branch occurred
				btcells_.resize(btnstack_.back().celsz);
				// Pop record off the top of the stack
				ned.resize(btnstack_.back().nedsz);
				//aed.resize(btnstack_.back().aedsz);
				row      = btnstack_.back().row;
				col      = btnstack_.back().col;
				gaps     = btnstack_.back().gaps;
				readGaps = btnstack_.back().readGaps;
				refGaps  = btnstack_.back().refGaps;
				score    = btnstack_.back().score;
				ct       = btnstack_.back().ct;
				btnstack_.pop_back();
				assert(!sc_->monotone || score.score() >= escore);
				NEW_ROW_COL(row, col);
				continue;
			} else {
				// No branch points to revisit; just give up
				res.reset();
				met.btfail++; // DP backtraces failed
				return false;
			}
		}
		assert(!reportedThru);
		assert(!sc_->monotone || score.score() >= minsc_);
		if(empty || row == 0) {
			assert_eq(SSEMatrix::H, ct);
			btcells_.expand();
			btcells_.back().first = row;
			btcells_.back().second = col;
			// This cell is at the end of a legitimate alignment
			trimBeg = row;
			assert_eq(btcells_.size(), dpRows() - trimBeg - trimEnd + readGaps);
			break;
		}
		if(branch) {
			// Add a frame to the backtrack stack
			btnstack_.expand();
			btnstack_.back().init(
				ned.size(),
				0,               // aed.size()
				btcells_.size(),
				row,
				col,
				gaps,
				readGaps,
				refGaps,
				score,
				(int)ct);
		}
		btcells_.expand();
		btcells_.back().first = row;
		btcells_.back().second = col;
		switch(cur) {
			// Move up and to the left.  If the reference nucleotide in the
			// source row mismatches the read nucleotide, penalize
			// it and add a nucleotide mismatch.
			case SW_BT_OALL_DIAG: {
				assert_gt(row, 0); assert_gt(col, 0);
				// Check for color mismatch
				int readC = (*rd_)[row];
				int refNmask = (int)rf_[rfi_+col];
				assert_gt(refNmask, 0);
				int m = matchesEx(readC, refNmask);
				ct = SSEMatrix::H;
				if(m != 1) {
					Edit e(
						(int)row,
						mask2dna[refNmask],
						"ACGTN"[readC],
						EDIT_TYPE_MM);
					assert(e.repOk());
					assert(ned.empty() || ned.back().pos >= row);
					ned.push_back(e);
					int pen = QUAL2(row, col);
					score.score_ -= pen;
					assert(!sc_->monotone || score.score() >= escore);
				} else {
					// Reward a match
					int64_t bonus = sc_->match(30);
					score.score_ += bonus;
					assert(!sc_->monotone || score.score() >= escore);
				}
				if(m == -1) {
					//score.ns_++;
				}
				row--; col--;
				MOVE_ALL_UPLEFT();
				assert(VALID_AL_SCORE(score));
				break;
			}
			// Move up.  Add an edit encoding the ref gap.
			case SW_BT_OALL_REF_OPEN:
			{
				assert_gt(row, 0);
				Edit e(
					(int)row,
					'-',
					"ACGTN"[(int)(*rd_)[row]],
					EDIT_TYPE_REF_GAP);
				assert(e.repOk());
				assert(ned.empty() || ned.back().pos >= row);
				ned.push_back(e);
				assert_geq(row, (size_t)sc_->gapbar);
				assert_geq((int)(rdf_-rdi_-row-1), sc_->gapbar-1);
				row--;
				ct = SSEMatrix::H;
				int pen = sc_->refGapOpen();
				score.score_ -= pen;
				assert(!sc_->monotone || score.score() >= minsc_);
				gaps++; refGaps++;
				assert_eq(gaps, Edit::numGaps(ned));
				assert_leq(gaps, rdgap_ + rfgap_);
				MOVE_ALL_UP();
				break;
			}
			// Move up.  Add an edit encoding the ref gap.
			case SW_BT_RFGAP_EXTEND:
			{
				assert_gt(row, 1);
				Edit e(
					(int)row,
					'-',
					"ACGTN"[(int)(*rd_)[row]],
					EDIT_TYPE_REF_GAP);
				assert(e.repOk());
				assert(ned.empty() || ned.back().pos >= row);
				ned.push_back(e);
				assert_geq(row, (size_t)sc_->gapbar);
				assert_geq((int)(rdf_-rdi_-row-1), sc_->gapbar-1);
				row--;
				ct = SSEMatrix::F;
				int pen = sc_->refGapExtend();
				score.score_ -= pen;
				assert(!sc_->monotone || score.score() >= minsc_);
				gaps++; refGaps++;
				assert_eq(gaps, Edit::numGaps(ned));
				assert_leq(gaps, rdgap_ + rfgap_);
				MOVE_ALL_UP();
				break;
			}
			case SW_BT_OALL_READ_OPEN:
			{
				assert_gt(col, 0);
				Edit e(
					(int)row+1,
					mask2dna[(int)rf_[rfi_+col]],
					'-',
					EDIT_TYPE_READ_GAP);
				assert(e.repOk());
				assert(ned.empty() || ned.back().pos >= row);
				ned.push_back(e);
				assert_geq(row, (size_t)sc_->gapbar);
				assert_geq((int)(rdf_-rdi_-row-1), sc_->gapbar-1);
				col--;
				ct = SSEMatrix::H;
				int pen = sc_->readGapOpen();
				score.score_ -= pen;
				assert(!sc_->monotone || score.score() >= minsc_);
				gaps++; readGaps++;
				assert_eq(gaps, Edit::numGaps(ned));
				assert_leq(gaps, rdgap_ + rfgap_);
				MOVE_ALL_LEFT();
				break;
			}
			case SW_BT_RDGAP_EXTEND:
			{
				assert_gt(col, 1);
				Edit e(
					(int)row+1,
					mask2dna[(int)rf_[rfi_+col]],
					'-',
					EDIT_TYPE_READ_GAP);
				assert(e.repOk());
				assert(ned.empty() || ned.back().pos >= row);
				ned.push_back(e);
				assert_geq(row, (size_t)sc_->gapbar);
				assert_geq((int)(rdf_-rdi_-row-1), sc_->gapbar-1);
				col--;
				ct = SSEMatrix::E;
				int pen = sc_->readGapExtend();
				score.score_ -= pen;
				assert(!sc_->monotone || score.score() >= minsc_);
				gaps++; readGaps++;
				assert_eq(gaps, Edit::numGaps(ned));
				assert_leq(gaps, rdgap_ + rfgap_);
				MOVE_ALL_LEFT();
				break;
			}
			default: throw 1;
		}
	} // while((int)row > 0)
	assert_eq(0, trimBeg);
	assert_eq(0, trimEnd);
	assert_geq(col, 0);
	assert_eq(SSEMatrix::H, ct);
	// The number of cells in the backtracs should equal the number of read
	// bases after trimming plus the number of gaps
	assert_eq(btcells_.size(), dpRows() - trimBeg - trimEnd + readGaps);
	// Check whether we went through a core diagonal and set 'reported' flag on
	// each cell
	bool overlappedCoreDiag = false;
	for(size_t i = 0; i < btcells_.size(); i++) {
		size_t rw = btcells_[i].first;
		size_t cl = btcells_[i].second;
		// Calculate the diagonal within the *trimmed* rectangle, i.e. the
		// rectangle we dealt with in align, gather and backtrack.
		int64_t diagi = cl - rw;
		// Now adjust to the diagonal within the *untrimmed* rectangle by
		// adding on the amount trimmed from the left.
		diagi += rect_->triml;
		if(diagi >= 0) {
			size_t diag = (size_t)diagi;
			if(diag >= rect_->corel && diag <= rect_->corer) {
				overlappedCoreDiag = true;
				break;
			}
		}
		assert(d.mat_.reportedThrough(rw, cl));
	}
	if(!overlappedCoreDiag) {
		// Must overlap a core diagonal.  Otherwise, we run the risk of
		// reporting an alignment that overlaps (and trumps) a higher-scoring
		// alignment that lies partially outside the dynamic programming
		// rectangle.
		res.reset();
		met.corerej++;
		return false;
	}
	int readC = (*rd_)[rdi_+row];      // get last char in read
	int refNmask = (int)rf_[rfi_+col]; // get last ref char ref involved in aln
	assert_gt(refNmask, 0);
	int m = matchesEx(readC, refNmask);
	if(m != 1) {
		Edit e((int)row, mask2dna[refNmask], "ACGTN"[readC], EDIT_TYPE_MM);
		assert(e.repOk());
		assert(ned.empty() || ned.back().pos >= row);
		ned.push_back(e);
		score.score_ -= QUAL2(row, col);
		assert_geq(score.score(), minsc_);
	} else {
		score.score_ += sc_->match(30);
	}
	if(m == -1) {
		//score.ns_++;
	}
#if 0
	if(score.ns_ > nceil_) {
		// Alignment has too many Ns in it!
		res.reset();
		met.nrej++;
		return false;
	}
#endif
	res.reverse();
	assert(Edit::repOk(ned, (*rd_)));
	assert_eq(score.score(), escore);
	assert_leq(gaps, rdgap_ + rfgap_);
	off = col;
	assert_lt(col + (size_t)rfi_, (size_t)rff_);
	// score.gaps_ = gaps;
	res.alres.setScore(score);
#if 0
	res.alres.setShape(
		refidx_,                  // ref id
		off + rfi_ + rect_->refl, // 0-based ref offset
		reflen_,                  // reference length
		fw_,                      // aligned to Watson?
		rdf_ - rdi_,              // read length
		true,                     // pretrim soft?
		0,                        // pretrim 5' end
		0,                        // pretrim 3' end
		true,                     // alignment trim soft?
		fw_ ? trimBeg : trimEnd,  // alignment trim 5' end
		fw_ ? trimEnd : trimBeg); // alignment trim 3' end
#endif
	size_t refns = 0;
	for(size_t i = col; i <= origCol; i++) {
		if((int)rf_[rfi_+i] > 15) {
			refns++;
		}
	}
	// res.alres.setRefNs(refns);
	assert(Edit::repOk(ned, (*rd_), true, trimBeg, trimEnd));
	assert(res.repOk());
#ifndef NDEBUG
	size_t gapsCheck = 0;
	for(size_t i = 0; i < ned.size(); i++) {
		if(ned[i].isGap()) gapsCheck++;
	}
	assert_eq(gaps, gapsCheck);
	BTDnaString refstr;
	for(size_t i = col; i <= origCol; i++) {
		refstr.append(firsts5[(int)rf_[rfi_+i]]);
	}
	BTDnaString editstr;
    // daehwan
	// Edit::toRef((*rd_), ned, editstr, true, trimBeg, trimEnd);
    Edit::toRef((*rd_), ned, editstr, true, trimBeg + rdi_, trimEnd + (rd_->length() - rdf_));
	if(refstr != editstr) {
		cerr << "Decoded nucleotides and edits don't match reference:" << endl;
		cerr << "           score: " << score.score()
		     << " (" << gaps << " gaps)" << endl;
		cerr << "           edits: ";
		Edit::print(cerr, ned);
		cerr << endl;
		cerr << "    decoded nucs: " << (*rd_) << endl;
		cerr << "     edited nucs: " << editstr << endl;
		cerr << "  reference nucs: " << refstr << endl;
		assert(0);
	}
#endif
	met.btsucc++; // DP backtraces succeeded
	return true;
}