Codebase list dash-el / HEAD
HEAD

Tree @HEAD (Download .tar.gz)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
[![CI](https://github.com/magnars/dash.el/actions/workflows/test.yml/badge.svg)](https://github.com/magnars/dash.el/actions/workflows/test.yml)
[![GNU ELPA](https://elpa.gnu.org/packages/dash.svg)](https://elpa.gnu.org/packages/dash.html)
[![GNU-devel ELPA](https://elpa.gnu.org/devel/dash.svg)](https://elpa.gnu.org/devel/dash.html)
[![MELPA Stable](https://stable.melpa.org/packages/dash-badge.svg)](https://stable.melpa.org/#/dash)
[![MELPA](https://melpa.org/packages/dash-badge.svg)](https://melpa.org/#/dash)

# <img align="right" src="rainbow-dash.png"> dash.el

A modern list API for Emacs.  No
[`'cl`](https://gnu.org/software/emacs/manual/html_node/cl/) required.

See the end of the file for license conditions.

## Contents

* [Change log](#change-log)
  * [Upcoming breaking change!](#upcoming-breaking-change)
* [Installation](#installation)
* [Functions](#functions)
* [Contribute](#contribute)
* [Contributors](#contributors)
* [License](#license)

## Change log

See the [`NEWS.md`](NEWS.md) file.

### Upcoming breaking change!

- For backward compatibility reasons, `-zip` when called with two
  lists returns a list of cons cells, rather than a list of proper
  lists.  This is a clunky API, and may be changed in a future release
  to always return a list of proper lists, as `-zip-lists` currently
  does.

  **N.B.:** Do not rely on the current behavior of `-zip` for two
  lists.  Instead, use `-zip-pair` for a list of cons cells, and
  `-zip-lists` for a list of proper lists.

## Installation

Dash is available on [GNU ELPA](https://elpa.gnu.org/), [GNU-devel
ELPA](https://elpa.gnu.org/devel/), and [MELPA](https://melpa.org/),
and can be installed with the standard command `package-install`:

    M-x package-install RET dash RET

See [`(info "(emacs) Package
Installation")`](https://gnu.org/software/emacs/manual/html_node/emacs/Package-Installation.html).

Alternatively, you can just dump `dash.el` in your `load-path`
somewhere.  See [`(info "(emacs) Lisp
Libraries")`](https://gnu.org/software/emacs/manual/html_node/emacs/Lisp-Libraries.html).

### Using in a package

Add something like this to the library's headers:

    ;; Package-Requires: ((dash "2.19.1"))

See [`(info "(elisp) Library
Headers")`](https://gnu.org/software/emacs/manual/html_node/elisp/Library-Headers.html).

### Fontification of special variables

Font lock of special Dash variables (`it`, `acc`, etc.) in Emacs Lisp
buffers can optionally be enabled with the autoloaded minor mode
`dash-fontify-mode`.  In older Emacs versions which do not dynamically
detect macros, the minor mode also fontifies Dash macro calls.

To automatically enable the minor mode in all Emacs Lisp buffers, just
call its autoloaded global counterpart `global-dash-fontify-mode`,
either interactively or from your `user-init-file`:

```el
(global-dash-fontify-mode)
```

### Info symbol lookup

While editing Elisp files, you can use `C-h S` (`info-lookup-symbol`)
to look up Elisp symbols in the relevant Info manuals (see [`(emacs)
Info
Lookup`](https://gnu.org/software/emacs/manual/html_node/emacs/Info-Lookup.html)).
To enable the same for Dash symbols, use the command
`dash-register-info-lookup`.  It can be called directly when needed,
or automatically from your `user-init-file`.  For example:

```el
(with-eval-after-load 'info-look
  (dash-register-info-lookup))
```

## Functions

All functions and constructs in the library use a dash (`-`) prefix.

The library also provides anaphoric macro versions of functions where
that makes sense.  The names of these macros are prefixed with two
dashes (`--`) instead of one.

While `-map` applies a function to each element of a list, its
anaphoric counterpart `--map` evaluates a form with the local variable
`it` temporarily bound to the current list element instead.  For
example:

```el
(-map (lambda (n) (* n n)) '(1 2 3 4)) ; Normal version.
(--map (* it it) '(1 2 3 4))           ; Anaphoric version.
```

The normal version can of course also be written as follows:

```el
(defun my-square (n)
  "Return N multiplied by itself."
  (* n n))

(-map #'my-square '(1 2 3 4))
```

This demonstrates the utility of both versions.

### Maps

Functions in this category take a transforming function, which
is then applied sequentially to each or selected elements of the
input list.  The results are collected in order and returned as a
new list.

* [`-map`](#-map-fn-list) `(fn list)`
* [`-map-when`](#-map-when-pred-rep-list) `(pred rep list)`
* [`-map-first`](#-map-first-pred-rep-list) `(pred rep list)`
* [`-map-last`](#-map-last-pred-rep-list) `(pred rep list)`
* [`-map-indexed`](#-map-indexed-fn-list) `(fn list)`
* [`-annotate`](#-annotate-fn-list) `(fn list)`
* [`-splice`](#-splice-pred-fun-list) `(pred fun list)`
* [`-splice-list`](#-splice-list-pred-new-list-list) `(pred new-list list)`
* [`-mapcat`](#-mapcat-fn-list) `(fn list)`
* [`-copy`](#-copy-list) `(list)`

### Sublist selection

Functions returning a sublist of the original list.

* [`-filter`](#-filter-pred-list) `(pred list)`
* [`-remove`](#-remove-pred-list) `(pred list)`
* [`-remove-first`](#-remove-first-pred-list) `(pred list)`
* [`-remove-last`](#-remove-last-pred-list) `(pred list)`
* [`-remove-item`](#-remove-item-item-list) `(item list)`
* [`-non-nil`](#-non-nil-list) `(list)`
* [`-slice`](#-slice-list-from-optional-to-step) `(list from &optional to step)`
* [`-take`](#-take-n-list) `(n list)`
* [`-take-last`](#-take-last-n-list) `(n list)`
* [`-drop`](#-drop-n-list) `(n list)`
* [`-drop-last`](#-drop-last-n-list) `(n list)`
* [`-take-while`](#-take-while-pred-list) `(pred list)`
* [`-drop-while`](#-drop-while-pred-list) `(pred list)`
* [`-select-by-indices`](#-select-by-indices-indices-list) `(indices list)`
* [`-select-columns`](#-select-columns-columns-table) `(columns table)`
* [`-select-column`](#-select-column-column-table) `(column table)`

### List to list

Functions returning a modified copy of the input list.

* [`-keep`](#-keep-fn-list) `(fn list)`
* [`-concat`](#-concat-rest-sequences) `(&rest sequences)`
* [`-flatten`](#-flatten-l) `(l)`
* [`-flatten-n`](#-flatten-n-num-list) `(num list)`
* [`-replace`](#-replace-old-new-list) `(old new list)`
* [`-replace-first`](#-replace-first-old-new-list) `(old new list)`
* [`-replace-last`](#-replace-last-old-new-list) `(old new list)`
* [`-insert-at`](#-insert-at-n-x-list) `(n x list)`
* [`-replace-at`](#-replace-at-n-x-list) `(n x list)`
* [`-update-at`](#-update-at-n-func-list) `(n func list)`
* [`-remove-at`](#-remove-at-n-list) `(n list)`
* [`-remove-at-indices`](#-remove-at-indices-indices-list) `(indices list)`

### Reductions

Functions reducing lists to a single value (which may also be a list).

* [`-reduce-from`](#-reduce-from-fn-init-list) `(fn init list)`
* [`-reduce-r-from`](#-reduce-r-from-fn-init-list) `(fn init list)`
* [`-reduce`](#-reduce-fn-list) `(fn list)`
* [`-reduce-r`](#-reduce-r-fn-list) `(fn list)`
* [`-reductions-from`](#-reductions-from-fn-init-list) `(fn init list)`
* [`-reductions-r-from`](#-reductions-r-from-fn-init-list) `(fn init list)`
* [`-reductions`](#-reductions-fn-list) `(fn list)`
* [`-reductions-r`](#-reductions-r-fn-list) `(fn list)`
* [`-count`](#-count-pred-list) `(pred list)`
* [`-sum`](#-sum-list) `(list)`
* [`-running-sum`](#-running-sum-list) `(list)`
* [`-product`](#-product-list) `(list)`
* [`-running-product`](#-running-product-list) `(list)`
* [`-inits`](#-inits-list) `(list)`
* [`-tails`](#-tails-list) `(list)`
* [`-common-prefix`](#-common-prefix-rest-lists) `(&rest lists)`
* [`-common-suffix`](#-common-suffix-rest-lists) `(&rest lists)`
* [`-min`](#-min-list) `(list)`
* [`-min-by`](#-min-by-comparator-list) `(comparator list)`
* [`-max`](#-max-list) `(list)`
* [`-max-by`](#-max-by-comparator-list) `(comparator list)`
* [`-frequencies`](#-frequencies-list) `(list)`

### Unfolding

Operations dual to reductions, building lists from a seed
value rather than consuming a list to produce a single value.

* [`-iterate`](#-iterate-fun-init-n) `(fun init n)`
* [`-unfold`](#-unfold-fun-seed) `(fun seed)`
* [`-repeat`](#-repeat-n-x) `(n x)`
* [`-cycle`](#-cycle-list) `(list)`

### Predicates

Reductions of one or more lists to a boolean value.

* [`-some`](#-some-pred-list) `(pred list)`
* [`-every`](#-every-pred-list) `(pred list)`
* [`-any?`](#-any-pred-list) `(pred list)`
* [`-all?`](#-all-pred-list) `(pred list)`
* [`-none?`](#-none-pred-list) `(pred list)`
* [`-only-some?`](#-only-some-pred-list) `(pred list)`
* [`-contains?`](#-contains-list-element) `(list element)`
* [`-is-prefix?`](#-is-prefix-prefix-list) `(prefix list)`
* [`-is-suffix?`](#-is-suffix-suffix-list) `(suffix list)`
* [`-is-infix?`](#-is-infix-infix-list) `(infix list)`
* [`-cons-pair?`](#-cons-pair-obj) `(obj)`

### Partitioning

Functions partitioning the input list into a list of lists.

* [`-split-at`](#-split-at-n-list) `(n list)`
* [`-split-with`](#-split-with-pred-list) `(pred list)`
* [`-split-on`](#-split-on-item-list) `(item list)`
* [`-split-when`](#-split-when-fn-list) `(fn list)`
* [`-separate`](#-separate-pred-list) `(pred list)`
* [`-partition`](#-partition-n-list) `(n list)`
* [`-partition-all`](#-partition-all-n-list) `(n list)`
* [`-partition-in-steps`](#-partition-in-steps-n-step-list) `(n step list)`
* [`-partition-all-in-steps`](#-partition-all-in-steps-n-step-list) `(n step list)`
* [`-partition-by`](#-partition-by-fn-list) `(fn list)`
* [`-partition-by-header`](#-partition-by-header-fn-list) `(fn list)`
* [`-partition-after-pred`](#-partition-after-pred-pred-list) `(pred list)`
* [`-partition-before-pred`](#-partition-before-pred-pred-list) `(pred list)`
* [`-partition-before-item`](#-partition-before-item-item-list) `(item list)`
* [`-partition-after-item`](#-partition-after-item-item-list) `(item list)`
* [`-group-by`](#-group-by-fn-list) `(fn list)`

### Indexing

Functions retrieving or sorting based on list indices and
related predicates.

* [`-elem-index`](#-elem-index-elem-list) `(elem list)`
* [`-elem-indices`](#-elem-indices-elem-list) `(elem list)`
* [`-find-index`](#-find-index-pred-list) `(pred list)`
* [`-find-last-index`](#-find-last-index-pred-list) `(pred list)`
* [`-find-indices`](#-find-indices-pred-list) `(pred list)`
* [`-grade-up`](#-grade-up-comparator-list) `(comparator list)`
* [`-grade-down`](#-grade-down-comparator-list) `(comparator list)`

### Set operations

Operations pretending lists are sets.

* [`-union`](#-union-list1-list2) `(list1 list2)`
* [`-difference`](#-difference-list1-list2) `(list1 list2)`
* [`-intersection`](#-intersection-list1-list2) `(list1 list2)`
* [`-powerset`](#-powerset-list) `(list)`
* [`-permutations`](#-permutations-list) `(list)`
* [`-distinct`](#-distinct-list) `(list)`
* [`-same-items?`](#-same-items-list1-list2) `(list1 list2)`

### Other list operations

Other list functions not fit to be classified elsewhere.

* [`-rotate`](#-rotate-n-list) `(n list)`
* [`-cons*`](#-cons-rest-args) `(&rest args)`
* [`-snoc`](#-snoc-list-elem-rest-elements) `(list elem &rest elements)`
* [`-interpose`](#-interpose-sep-list) `(sep list)`
* [`-interleave`](#-interleave-rest-lists) `(&rest lists)`
* [`-iota`](#-iota-count-optional-start-step) `(count &optional start step)`
* [`-zip-with`](#-zip-with-fn-list1-list2) `(fn list1 list2)`
* [`-zip`](#-zip-rest-lists) `(&rest lists)`
* [`-zip-lists`](#-zip-lists-rest-lists) `(&rest lists)`
* [`-zip-fill`](#-zip-fill-fill-value-rest-lists) `(fill-value &rest lists)`
* [`-unzip`](#-unzip-lists) `(lists)`
* [`-pad`](#-pad-fill-value-rest-lists) `(fill-value &rest lists)`
* [`-table`](#-table-fn-rest-lists) `(fn &rest lists)`
* [`-table-flat`](#-table-flat-fn-rest-lists) `(fn &rest lists)`
* [`-first`](#-first-pred-list) `(pred list)`
* [`-last`](#-last-pred-list) `(pred list)`
* [`-first-item`](#-first-item-list) `(list)`
* [`-second-item`](#-second-item-list) `(list)`
* [`-third-item`](#-third-item-list) `(list)`
* [`-fourth-item`](#-fourth-item-list) `(list)`
* [`-fifth-item`](#-fifth-item-list) `(list)`
* [`-last-item`](#-last-item-list) `(list)`
* [`-butlast`](#-butlast-list) `(list)`
* [`-sort`](#-sort-comparator-list) `(comparator list)`
* [`-list`](#-list-arg) `(arg)`
* [`-fix`](#-fix-fn-list) `(fn list)`

### Tree operations

Functions pretending lists are trees.

* [`-tree-seq`](#-tree-seq-branch-children-tree) `(branch children tree)`
* [`-tree-map`](#-tree-map-fn-tree) `(fn tree)`
* [`-tree-map-nodes`](#-tree-map-nodes-pred-fun-tree) `(pred fun tree)`
* [`-tree-reduce`](#-tree-reduce-fn-tree) `(fn tree)`
* [`-tree-reduce-from`](#-tree-reduce-from-fn-init-value-tree) `(fn init-value tree)`
* [`-tree-mapreduce`](#-tree-mapreduce-fn-folder-tree) `(fn folder tree)`
* [`-tree-mapreduce-from`](#-tree-mapreduce-from-fn-folder-init-value-tree) `(fn folder init-value tree)`
* [`-clone`](#-clone-list) `(list)`

### Threading macros

Macros that conditionally combine sequential forms for brevity
or readability.

* [`->`](#--x-optional-form-rest-more) `(x &optional form &rest more)`
* [`->>`](#--x-optional-form-rest-more) `(x &optional form &rest more)`
* [`-->`](#---x-rest-forms) `(x &rest forms)`
* [`-as->`](#-as--value-variable-rest-forms) `(value variable &rest forms)`
* [`-some->`](#-some--x-optional-form-rest-more) `(x &optional form &rest more)`
* [`-some->>`](#-some--x-optional-form-rest-more) `(x &optional form &rest more)`
* [`-some-->`](#-some---expr-rest-forms) `(expr &rest forms)`
* [`-doto`](#-doto-init-rest-forms) `(init &rest forms)`

### Binding

Macros that combine `let` and `let*` with destructuring and flow control.

* [`-when-let`](#-when-let-var-val-rest-body) `((var val) &rest body)`
* [`-when-let*`](#-when-let-vars-vals-rest-body) `(vars-vals &rest body)`
* [`-if-let`](#-if-let-var-val-then-rest-else) `((var val) then &rest else)`
* [`-if-let*`](#-if-let-vars-vals-then-rest-else) `(vars-vals then &rest else)`
* [`-let`](#-let-varlist-rest-body) `(varlist &rest body)`
* [`-let*`](#-let-varlist-rest-body) `(varlist &rest body)`
* [`-lambda`](#-lambda-match-form-rest-body) `(match-form &rest body)`
* [`-setq`](#-setq-match-form-val) `([match-form val] ...)`

### Side effects

Functions iterating over lists for side effect only.

* [`-each`](#-each-list-fn) `(list fn)`
* [`-each-while`](#-each-while-list-pred-fn) `(list pred fn)`
* [`-each-indexed`](#-each-indexed-list-fn) `(list fn)`
* [`-each-r`](#-each-r-list-fn) `(list fn)`
* [`-each-r-while`](#-each-r-while-list-pred-fn) `(list pred fn)`
* [`-dotimes`](#-dotimes-num-fn) `(num fn)`

### Destructive operations

Macros that modify variables holding lists.

* [`!cons`](#cons-car-cdr) `(car cdr)`
* [`!cdr`](#cdr-list) `(list)`

### Function combinators

Functions that manipulate and compose other functions.

* [`-partial`](#-partial-fun-rest-args) `(fun &rest args)`
* [`-rpartial`](#-rpartial-fn-rest-args) `(fn &rest args)`
* [`-juxt`](#-juxt-rest-fns) `(&rest fns)`
* [`-compose`](#-compose-rest-fns) `(&rest fns)`
* [`-applify`](#-applify-fn) `(fn)`
* [`-on`](#-on-op-trans) `(op trans)`
* [`-flip`](#-flip-fn) `(fn)`
* [`-rotate-args`](#-rotate-args-n-fn) `(n fn)`
* [`-const`](#-const-c) `(c)`
* [`-cut`](#-cut-rest-params) `(&rest params)`
* [`-not`](#-not-pred) `(pred)`
* [`-orfn`](#-orfn-rest-preds) `(&rest preds)`
* [`-andfn`](#-andfn-rest-preds) `(&rest preds)`
* [`-iteratefn`](#-iteratefn-fn-n) `(fn n)`
* [`-fixfn`](#-fixfn-fn-optional-equal-test-halt-test) `(fn &optional equal-test halt-test)`
* [`-prodfn`](#-prodfn-rest-fns) `(&rest fns)`

## Maps

Functions in this category take a transforming function, which
is then applied sequentially to each or selected elements of the
input list.  The results are collected in order and returned as a
new list.

#### -map `(fn list)`

Apply `fn` to each item in `list` and return the list of results.

This function's anaphoric counterpart is `--map`.

```el
(-map (lambda (num) (* num num)) '(1 2 3 4)) ;; => (1 4 9 16)
(-map #'1+ '(1 2 3 4)) ;; => (2 3 4 5)
(--map (* it it) '(1 2 3 4)) ;; => (1 4 9 16)
```

#### -map-when `(pred rep list)`

Use `pred` to conditionally apply `rep` to each item in `list`.
Return a copy of `list` where the items for which `pred` returns `nil`
are unchanged, and the rest are mapped through the `rep` function.

Alias: `-replace-where`

See also: [`-update-at`](#-update-at-n-func-list)

```el
(-map-when 'even? 'square '(1 2 3 4)) ;; => (1 4 3 16)
(--map-when (> it 2) (* it it) '(1 2 3 4)) ;; => (1 2 9 16)
(--map-when (= it 2) 17 '(1 2 3 4)) ;; => (1 17 3 4)
```

#### -map-first `(pred rep list)`

Use `pred` to determine the first item in `list` to call `rep` on.
Return a copy of `list` where the first item for which `pred` returns
non-`nil` is replaced with the result of calling `rep` on that item.

See also: [`-map-when`](#-map-when-pred-rep-list), [`-replace-first`](#-replace-first-old-new-list)

```el
(-map-first 'even? 'square '(1 2 3 4)) ;; => (1 4 3 4)
(--map-first (> it 2) (* it it) '(1 2 3 4)) ;; => (1 2 9 4)
(--map-first (= it 2) 17 '(1 2 3 2)) ;; => (1 17 3 2)
```

#### -map-last `(pred rep list)`

Use `pred` to determine the last item in `list` to call `rep` on.
Return a copy of `list` where the last item for which `pred` returns
non-`nil` is replaced with the result of calling `rep` on that item.

See also: [`-map-when`](#-map-when-pred-rep-list), [`-replace-last`](#-replace-last-old-new-list)

```el
(-map-last 'even? 'square '(1 2 3 4)) ;; => (1 2 3 16)
(--map-last (> it 2) (* it it) '(1 2 3 4)) ;; => (1 2 3 16)
(--map-last (= it 2) 17 '(1 2 3 2)) ;; => (1 2 3 17)
```

#### -map-indexed `(fn list)`

Apply `fn` to each index and item in `list` and return the list of results.
This is like [`-map`](#-map-fn-list), but `fn` takes two arguments: the index of the
current element within `list`, and the element itself.

This function's anaphoric counterpart is `--map-indexed`.

For a side-effecting variant, see also [`-each-indexed`](#-each-indexed-list-fn).

```el
(-map-indexed (lambda (index item) (- item index)) '(1 2 3 4)) ;; => (1 1 1 1)
(--map-indexed (- it it-index) '(1 2 3 4)) ;; => (1 1 1 1)
(-map-indexed #'* '(1 2 3 4)) ;; => (0 2 6 12)
```

#### -annotate `(fn list)`

Pair each item in `list` with the result of passing it to `fn`.

Return an alist of (`result` . `item`), where each `item` is the
corresponding element of `list`, and `result` is the value obtained
by calling `fn` on `item`.

This function's anaphoric counterpart is `--annotate`.

```el
(-annotate #'1+ '(1 2 3)) ;; => ((2 . 1) (3 . 2) (4 . 3))
(-annotate #'length '((f o o) (bar baz))) ;; => ((3 f o o) (2 bar baz))
(--annotate (> it 1) '(0 1 2 3)) ;; => ((nil . 0) (nil . 1) (t . 2) (t . 3))
```

#### -splice `(pred fun list)`

Splice lists generated by `fun` in place of items satisfying `pred` in `list`.

Call `pred` on each element of `list`.  Whenever the result of `pred`
is `nil`, leave that `it` as-is.  Otherwise, call `fun` on the same
`it` that satisfied `pred`.  The result should be a (possibly
empty) list of items to splice in place of `it` in `list`.

This can be useful as an alternative to the `,@` construct in a
``' structure, in case you need to splice several lists at
marked positions (for example with keywords).

This function's anaphoric counterpart is `--splice`.

See also: [`-splice-list`](#-splice-list-pred-new-list-list), [`-insert-at`](#-insert-at-n-x-list).

```el
(-splice #'numberp (lambda (n) (list n n)) '(a 1 b 2)) ;; => (a 1 1 b 2 2)
(--splice t (list it it) '(1 2 3 4)) ;; => (1 1 2 2 3 3 4 4)
(--splice (eq it :magic) '((magical) (code)) '((foo) :magic (bar))) ;; => ((foo) (magical) (code) (bar))
```

#### -splice-list `(pred new-list list)`

Splice `new-list` in place of elements matching `pred` in `list`.

See also: [`-splice`](#-splice-pred-fun-list), [`-insert-at`](#-insert-at-n-x-list)

```el
(-splice-list 'keywordp '(a b c) '(1 :foo 2)) ;; => (1 a b c 2)
(-splice-list 'keywordp nil '(1 :foo 2)) ;; => (1 2)
(--splice-list (keywordp it) '(a b c) '(1 :foo 2)) ;; => (1 a b c 2)
```

#### -mapcat `(fn list)`

Return the concatenation of the result of mapping `fn` over `list`.
Thus function `fn` should return a list.

```el
(-mapcat 'list '(1 2 3)) ;; => (1 2 3)
(-mapcat (lambda (item) (list 0 item)) '(1 2 3)) ;; => (0 1 0 2 0 3)
(--mapcat (list 0 it) '(1 2 3)) ;; => (0 1 0 2 0 3)
```

#### -copy `(list)`

Create a shallow copy of `list`.

```el
(-copy '(1 2 3)) ;; => (1 2 3)
(let ((a '(1 2 3))) (eq a (-copy a))) ;; => nil
```

## Sublist selection

Functions returning a sublist of the original list.

#### -filter `(pred list)`

Return a new list of the items in `list` for which `pred` returns non-`nil`.

Alias: `-select`.

This function's anaphoric counterpart is `--filter`.

For similar operations, see also [`-keep`](#-keep-fn-list) and [`-remove`](#-remove-pred-list).

```el
(-filter (lambda (num) (= 0 (% num 2))) '(1 2 3 4)) ;; => (2 4)
(-filter #'natnump '(-2 -1 0 1 2)) ;; => (0 1 2)
(--filter (= 0 (% it 2)) '(1 2 3 4)) ;; => (2 4)
```

#### -remove `(pred list)`

Return a new list of the items in `list` for which `pred` returns `nil`.

Alias: `-reject`.

This function's anaphoric counterpart is `--remove`.

For similar operations, see also [`-keep`](#-keep-fn-list) and [`-filter`](#-filter-pred-list).

```el
(-remove (lambda (num) (= 0 (% num 2))) '(1 2 3 4)) ;; => (1 3)
(-remove #'natnump '(-2 -1 0 1 2)) ;; => (-2 -1)
(--remove (= 0 (% it 2)) '(1 2 3 4)) ;; => (1 3)
```

#### -remove-first `(pred list)`

Remove the first item from `list` for which `pred` returns non-`nil`.
This is a non-destructive operation, but only the front of `list`
leading up to the removed item is a copy; the rest is `list`'s
original tail.  If no item is removed, then the result is a
complete copy.

Alias: `-reject-first`.

This function's anaphoric counterpart is `--remove-first`.

See also [`-map-first`](#-map-first-pred-rep-list), [`-remove-item`](#-remove-item-item-list), and [`-remove-last`](#-remove-last-pred-list).

```el
(-remove-first #'natnump '(-2 -1 0 1 2)) ;; => (-2 -1 1 2)
(-remove-first #'stringp '(1 2 "first" "second")) ;; => (1 2 "second")
(--remove-first (> it 3) '(1 2 3 4 5 6)) ;; => (1 2 3 5 6)
```

#### -remove-last `(pred list)`

Remove the last item from `list` for which `pred` returns non-`nil`.
The result is a copy of `list` regardless of whether an element is
removed.

Alias: `-reject-last`.

This function's anaphoric counterpart is `--remove-last`.

See also [`-map-last`](#-map-last-pred-rep-list), [`-remove-item`](#-remove-item-item-list), and [`-remove-first`](#-remove-first-pred-list).

```el
(-remove-last #'natnump '(1 3 5 4 7 8 10 -11)) ;; => (1 3 5 4 7 8 -11)
(-remove-last #'stringp '(1 2 "last" "second")) ;; => (1 2 "last")
(--remove-last (> it 3) '(1 2 3 4 5 6 7 8 9 10)) ;; => (1 2 3 4 5 6 7 8 9)
```

#### -remove-item `(item list)`

Return a copy of `list` with all occurrences of `item` removed.
The comparison is done with `equal`.

```el
(-remove-item 3 '(1 2 3 2 3 4 5 3)) ;; => (1 2 2 4 5)
(-remove-item 'foo '(foo bar baz foo)) ;; => (bar baz)
(-remove-item "bob" '("alice" "bob" "eve" "bob")) ;; => ("alice" "eve")
```

#### -non-nil `(list)`

Return a copy of `list` with all `nil` items removed.

```el
(-non-nil '(nil 1 nil 2 nil nil 3 4 nil 5 nil)) ;; => (1 2 3 4 5)
(-non-nil '((nil))) ;; => ((nil))
(-non-nil ()) ;; => ()
```

#### -slice `(list from &optional to step)`

Return copy of `list`, starting from index `from` to index `to`.

`from` or `to` may be negative.  These values are then interpreted
modulo the length of the list.

If `step` is a number, only each `step`th item in the resulting
section is returned.  Defaults to 1.

```el
(-slice '(1 2 3 4 5) 1) ;; => (2 3 4 5)
(-slice '(1 2 3 4 5) 0 3) ;; => (1 2 3)
(-slice '(1 2 3 4 5 6 7 8 9) 1 -1 2) ;; => (2 4 6 8)
```

#### -take `(n list)`

Return a copy of the first `n` items in `list`.
Return a copy of `list` if it contains `n` items or fewer.
Return `nil` if `n` is zero or less.

See also: [`-take-last`](#-take-last-n-list).

```el
(-take 3 '(1 2 3 4 5)) ;; => (1 2 3)
(-take 17 '(1 2 3 4 5)) ;; => (1 2 3 4 5)
(-take 0 '(1 2 3 4 5)) ;; => ()
```

#### -take-last `(n list)`

Return a copy of the last `n` items of `list` in order.
Return a copy of `list` if it contains `n` items or fewer.
Return `nil` if `n` is zero or less.

See also: [`-take`](#-take-n-list).

```el
(-take-last 3 '(1 2 3 4 5)) ;; => (3 4 5)
(-take-last 17 '(1 2 3 4 5)) ;; => (1 2 3 4 5)
(-take-last 1 '(1 2 3 4 5)) ;; => (5)
```

#### -drop `(n list)`

Return the tail (not a copy) of `list` without the first `n` items.
Return `nil` if `list` contains `n` items or fewer.
Return `list` if `n` is zero or less.

For another variant, see also [`-drop-last`](#-drop-last-n-list).

```el
(-drop 3 '(1 2 3 4 5)) ;; => (4 5)
(-drop 17 '(1 2 3 4 5)) ;; => ()
(-drop 0 '(1 2 3 4 5)) ;; => (1 2 3 4 5)
```

#### -drop-last `(n list)`

Return a copy of `list` without its last `n` items.
Return a copy of `list` if `n` is zero or less.
Return `nil` if `list` contains `n` items or fewer.

See also: [`-drop`](#-drop-n-list).

```el
(-drop-last 3 '(1 2 3 4 5)) ;; => (1 2)
(-drop-last 17 '(1 2 3 4 5)) ;; => ()
(-drop-last 0 '(1 2 3 4 5)) ;; => (1 2 3 4 5)
```

#### -take-while `(pred list)`

Take successive items from `list` for which `pred` returns non-`nil`.
`pred` is a function of one argument.  Return a new list of the
successive elements from the start of `list` for which `pred` returns
non-`nil`.

This function's anaphoric counterpart is `--take-while`.

For another variant, see also [`-drop-while`](#-drop-while-pred-list).

```el
(-take-while #'even? '(1 2 3 4)) ;; => ()
(-take-while #'even? '(2 4 5 6)) ;; => (2 4)
(--take-while (< it 4) '(1 2 3 4 3 2 1)) ;; => (1 2 3)
```

#### -drop-while `(pred list)`

Drop successive items from `list` for which `pred` returns non-`nil`.
`pred` is a function of one argument.  Return the tail (not a copy)
of `list` starting from its first element for which `pred` returns
`nil`.

This function's anaphoric counterpart is `--drop-while`.

For another variant, see also [`-take-while`](#-take-while-pred-list).

```el
(-drop-while #'even? '(1 2 3 4)) ;; => (1 2 3 4)
(-drop-while #'even? '(2 4 5 6)) ;; => (5 6)
(--drop-while (< it 4) '(1 2 3 4 3 2 1)) ;; => (4 3 2 1)
```

#### -select-by-indices `(indices list)`

Return a list whose elements are elements from `list` selected
as `(nth i list)` for all i from `indices`.

```el
(-select-by-indices '(4 10 2 3 6) '("v" "e" "l" "o" "c" "i" "r" "a" "p" "t" "o" "r")) ;; => ("c" "o" "l" "o" "r")
(-select-by-indices '(2 1 0) '("a" "b" "c")) ;; => ("c" "b" "a")
(-select-by-indices '(0 1 2 0 1 3 3 1) '("f" "a" "r" "l")) ;; => ("f" "a" "r" "f" "a" "l" "l" "a")
```

#### -select-columns `(columns table)`

Select `columns` from `table`.

`table` is a list of lists where each element represents one row.
It is assumed each row has the same length.

Each row is transformed such that only the specified `columns` are
selected.

See also: [`-select-column`](#-select-column-column-table), [`-select-by-indices`](#-select-by-indices-indices-list)

```el
(-select-columns '(0 2) '((1 2 3) (a b c) (:a :b :c))) ;; => ((1 3) (a c) (:a :c))
(-select-columns '(1) '((1 2 3) (a b c) (:a :b :c))) ;; => ((2) (b) (:b))
(-select-columns nil '((1 2 3) (a b c) (:a :b :c))) ;; => (nil nil nil)
```

#### -select-column `(column table)`

Select `column` from `table`.

`table` is a list of lists where each element represents one row.
It is assumed each row has the same length.

The single selected column is returned as a list.

See also: [`-select-columns`](#-select-columns-columns-table), [`-select-by-indices`](#-select-by-indices-indices-list)

```el
(-select-column 1 '((1 2 3) (a b c) (:a :b :c))) ;; => (2 b :b)
```

## List to list

Functions returning a modified copy of the input list.

#### -keep `(fn list)`

Return a new list of the non-`nil` results of applying `fn` to each item in `list`.
Like [`-filter`](#-filter-pred-list), but returns the non-`nil` results of `fn` instead of
the corresponding elements of `list`.

Its anaphoric counterpart is `--keep`.

```el
(-keep #'cdr '((1 2 3) (4 5) (6))) ;; => ((2 3) (5))
(-keep (lambda (n) (and (> n 3) (* 10 n))) '(1 2 3 4 5 6)) ;; => (40 50 60)
(--keep (and (> it 3) (* 10 it)) '(1 2 3 4 5 6)) ;; => (40 50 60)
```

#### -concat `(&rest sequences)`

Concatenate all the arguments and make the result a list.
The result is a list whose elements are the elements of all the arguments.
Each argument may be a list, vector or string.
The last argument is not copied, just used as the tail of the new list.

```el
(-concat '(1)) ;; => (1)
(-concat '(1) '(2)) ;; => (1 2)
(-concat '(1) '(2 3) '(4)) ;; => (1 2 3 4)
```

#### -flatten `(l)`

Take a nested list `l` and return its contents as a single, flat list.

Note that because `nil` represents a list of zero elements (an
empty list), any mention of `nil` in `l` will disappear after
flattening.  If you need to preserve nils, consider [`-flatten-n`](#-flatten-n-num-list)
or map them to some unique symbol and then map them back.

Conses of two atoms are considered "terminals", that is, they
aren't flattened further.

See also: [`-flatten-n`](#-flatten-n-num-list)

```el
(-flatten '((1))) ;; => (1)
(-flatten '((1 (2 3) (((4 (5))))))) ;; => (1 2 3 4 5)
(-flatten '(1 2 (3 . 4))) ;; => (1 2 (3 . 4))
```

#### -flatten-n `(num list)`

Flatten `num` levels of a nested `list`.

See also: [`-flatten`](#-flatten-l)

```el
(-flatten-n 1 '((1 2) ((3 4) ((5 6))))) ;; => (1 2 (3 4) ((5 6)))
(-flatten-n 2 '((1 2) ((3 4) ((5 6))))) ;; => (1 2 3 4 (5 6))
(-flatten-n 3 '((1 2) ((3 4) ((5 6))))) ;; => (1 2 3 4 5 6)
```

#### -replace `(old new list)`

Replace all `old` items in `list` with `new`.

Elements are compared using `equal`.

See also: [`-replace-at`](#-replace-at-n-x-list)

```el
(-replace 1 "1" '(1 2 3 4 3 2 1)) ;; => ("1" 2 3 4 3 2 "1")
(-replace "foo" "bar" '("a" "nice" "foo" "sentence" "about" "foo")) ;; => ("a" "nice" "bar" "sentence" "about" "bar")
(-replace 1 2 nil) ;; => nil
```

#### -replace-first `(old new list)`

Replace the first occurrence of `old` with `new` in `list`.

Elements are compared using `equal`.

See also: [`-map-first`](#-map-first-pred-rep-list)

```el
(-replace-first 1 "1" '(1 2 3 4 3 2 1)) ;; => ("1" 2 3 4 3 2 1)
(-replace-first "foo" "bar" '("a" "nice" "foo" "sentence" "about" "foo")) ;; => ("a" "nice" "bar" "sentence" "about" "foo")
(-replace-first 1 2 nil) ;; => nil
```

#### -replace-last `(old new list)`

Replace the last occurrence of `old` with `new` in `list`.

Elements are compared using `equal`.

See also: [`-map-last`](#-map-last-pred-rep-list)

```el
(-replace-last 1 "1" '(1 2 3 4 3 2 1)) ;; => (1 2 3 4 3 2 "1")
(-replace-last "foo" "bar" '("a" "nice" "foo" "sentence" "about" "foo")) ;; => ("a" "nice" "foo" "sentence" "about" "bar")
(-replace-last 1 2 nil) ;; => nil
```

#### -insert-at `(n x list)`

Return a list with `x` inserted into `list` at position `n`.

See also: [`-splice`](#-splice-pred-fun-list), [`-splice-list`](#-splice-list-pred-new-list-list)

```el
(-insert-at 1 'x '(a b c)) ;; => (a x b c)
(-insert-at 12 'x '(a b c)) ;; => (a b c x)
```

#### -replace-at `(n x list)`

Return a list with element at `n`th position in `list` replaced with `x`.

See also: [`-replace`](#-replace-old-new-list)

```el
(-replace-at 0 9 '(0 1 2 3 4 5)) ;; => (9 1 2 3 4 5)
(-replace-at 1 9 '(0 1 2 3 4 5)) ;; => (0 9 2 3 4 5)
(-replace-at 4 9 '(0 1 2 3 4 5)) ;; => (0 1 2 3 9 5)
```

#### -update-at `(n func list)`

Use `func` to update the `n`th element of `list`.
Return a copy of `list` where the `n`th element is replaced with the
result of calling `func` on it.

See also: [`-map-when`](#-map-when-pred-rep-list)

```el
(-update-at 0 (lambda (x) (+ x 9)) '(0 1 2 3 4 5)) ;; => (9 1 2 3 4 5)
(-update-at 1 (lambda (x) (+ x 8)) '(0 1 2 3 4 5)) ;; => (0 9 2 3 4 5)
(--update-at 2 (length it) '("foo" "bar" "baz" "quux")) ;; => ("foo" "bar" 3 "quux")
```

#### -remove-at `(n list)`

Return a list with element at `n`th position in `list` removed.

See also: [`-remove-at-indices`](#-remove-at-indices-indices-list), [`-remove`](#-remove-pred-list)

```el
(-remove-at 0 '("0" "1" "2" "3" "4" "5")) ;; => ("1" "2" "3" "4" "5")
(-remove-at 1 '("0" "1" "2" "3" "4" "5")) ;; => ("0" "2" "3" "4" "5")
(-remove-at 2 '("0" "1" "2" "3" "4" "5")) ;; => ("0" "1" "3" "4" "5")
```

#### -remove-at-indices `(indices list)`

Return a list whose elements are elements from `list` without
elements selected as `(nth i list)` for all i
from `indices`.

See also: [`-remove-at`](#-remove-at-n-list), [`-remove`](#-remove-pred-list)

```el
(-remove-at-indices '(0) '("0" "1" "2" "3" "4" "5")) ;; => ("1" "2" "3" "4" "5")
(-remove-at-indices '(0 2 4) '("0" "1" "2" "3" "4" "5")) ;; => ("1" "3" "5")
(-remove-at-indices '(0 5) '("0" "1" "2" "3" "4" "5")) ;; => ("1" "2" "3" "4")
```

## Reductions

Functions reducing lists to a single value (which may also be a list).

#### -reduce-from `(fn init list)`

Reduce the function `fn` across `list`, starting with `init`.
Return the result of applying `fn` to `init` and the first element of
`list`, then applying `fn` to that result and the second element,
etc.  If `list` is empty, return `init` without calling `fn`.

This function's anaphoric counterpart is `--reduce-from`.

For other folds, see also [`-reduce`](#-reduce-fn-list) and [`-reduce-r`](#-reduce-r-fn-list).

```el
(-reduce-from #'- 10 '(1 2 3)) ;; => 4
(-reduce-from #'list 10 '(1 2 3)) ;; => (((10 1) 2) 3)
(--reduce-from (concat acc " " it) "START" '("a" "b" "c")) ;; => "START a b c"
```

#### -reduce-r-from `(fn init list)`

Reduce the function `fn` across `list` in reverse, starting with `init`.
Return the result of applying `fn` to the last element of `list` and
`init`, then applying `fn` to the second-to-last element and the
previous result of `fn`, etc.  That is, the first argument of `fn` is
the current element, and its second argument the accumulated
value.  If `list` is empty, return `init` without calling `fn`.

This function is like [`-reduce-from`](#-reduce-from-fn-init-list) but the operation associates
from the right rather than left.  In other words, it starts from
the end of `list` and flips the arguments to `fn`.  Conceptually, it
is like replacing the conses in `list` with applications of `fn`, and
its last link with `init`, and evaluating the resulting expression.

This function's anaphoric counterpart is `--reduce-r-from`.

For other folds, see also [`-reduce-r`](#-reduce-r-fn-list) and [`-reduce`](#-reduce-fn-list).

```el
(-reduce-r-from #'- 10 '(1 2 3)) ;; => -8
(-reduce-r-from #'list 10 '(1 2 3)) ;; => (1 (2 (3 10)))
(--reduce-r-from (concat it " " acc) "END" '("a" "b" "c")) ;; => "a b c END"
```

#### -reduce `(fn list)`

Reduce the function `fn` across `list`.
Return the result of applying `fn` to the first two elements of
`list`, then applying `fn` to that result and the third element, etc.
If `list` contains a single element, return it without calling `fn`.
If `list` is empty, return the result of calling `fn` with no
arguments.

This function's anaphoric counterpart is `--reduce`.

For other folds, see also [`-reduce-from`](#-reduce-from-fn-init-list) and [`-reduce-r`](#-reduce-r-fn-list).

```el
(-reduce #'- '(1 2 3 4)) ;; => -8
(-reduce #'list '(1 2 3 4)) ;; => (((1 2) 3) 4)
(--reduce (format "%s-%d" acc it) '(1 2 3)) ;; => "1-2-3"
```

#### -reduce-r `(fn list)`

Reduce the function `fn` across `list` in reverse.
Return the result of applying `fn` to the last two elements of
`list`, then applying `fn` to the third-to-last element and the
previous result of `fn`, etc.  That is, the first argument of `fn` is
the current element, and its second argument the accumulated
value.  If `list` contains a single element, return it without
calling `fn`.  If `list` is empty, return the result of calling `fn`
with no arguments.

This function is like [`-reduce`](#-reduce-fn-list) but the operation associates from
the right rather than left.  In other words, it starts from the
end of `list` and flips the arguments to `fn`.  Conceptually, it is
like replacing the conses in `list` with applications of `fn`,
ignoring its last link, and evaluating the resulting expression.

This function's anaphoric counterpart is `--reduce-r`.

For other folds, see also [`-reduce-r-from`](#-reduce-r-from-fn-init-list) and [`-reduce`](#-reduce-fn-list).

```el
(-reduce-r #'- '(1 2 3 4)) ;; => -2
(-reduce-r #'list '(1 2 3 4)) ;; => (1 (2 (3 4)))
(--reduce-r (format "%s-%d" acc it) '(1 2 3)) ;; => "3-2-1"
```

#### -reductions-from `(fn init list)`

Return a list of `fn`'s intermediate reductions across `list`.
That is, a list of the intermediate values of the accumulator
when [`-reduce-from`](#-reduce-from-fn-init-list) (which see) is called with the same
arguments.

This function's anaphoric counterpart is `--reductions-from`.

For other folds, see also [`-reductions`](#-reductions-fn-list) and [`-reductions-r`](#-reductions-r-fn-list).

```el
(-reductions-from #'max 0 '(2 1 4 3)) ;; => (0 2 2 4 4)
(-reductions-from #'* 1 '(1 2 3 4)) ;; => (1 1 2 6 24)
(--reductions-from (format "(FN %s %d)" acc it) "INIT" '(1 2 3)) ;; => ("INIT" "(FN INIT 1)" "(FN (FN INIT 1) 2)" "(FN (FN (FN INIT 1) 2) 3)")
```

#### -reductions-r-from `(fn init list)`

Return a list of `fn`'s intermediate reductions across reversed `list`.
That is, a list of the intermediate values of the accumulator
when [`-reduce-r-from`](#-reduce-r-from-fn-init-list) (which see) is called with the same
arguments.

This function's anaphoric counterpart is `--reductions-r-from`.

For other folds, see also [`-reductions`](#-reductions-fn-list) and [`-reductions-r`](#-reductions-r-fn-list).

```el
(-reductions-r-from #'max 0 '(2 1 4 3)) ;; => (4 4 4 3 0)
(-reductions-r-from #'* 1 '(1 2 3 4)) ;; => (24 24 12 4 1)
(--reductions-r-from (format "(FN %d %s)" it acc) "INIT" '(1 2 3)) ;; => ("(FN 1 (FN 2 (FN 3 INIT)))" "(FN 2 (FN 3 INIT))" "(FN 3 INIT)" "INIT")
```

#### -reductions `(fn list)`

Return a list of `fn`'s intermediate reductions across `list`.
That is, a list of the intermediate values of the accumulator
when [`-reduce`](#-reduce-fn-list) (which see) is called with the same arguments.

This function's anaphoric counterpart is `--reductions`.

For other folds, see also [`-reductions`](#-reductions-fn-list) and [`-reductions-r`](#-reductions-r-fn-list).

```el
(-reductions #'+ '(1 2 3 4)) ;; => (1 3 6 10)
(-reductions #'* '(1 2 3 4)) ;; => (1 2 6 24)
(--reductions (format "(FN %s %d)" acc it) '(1 2 3)) ;; => (1 "(FN 1 2)" "(FN (FN 1 2) 3)")
```

#### -reductions-r `(fn list)`

Return a list of `fn`'s intermediate reductions across reversed `list`.
That is, a list of the intermediate values of the accumulator
when [`-reduce-r`](#-reduce-r-fn-list) (which see) is called with the same arguments.

This function's anaphoric counterpart is `--reductions-r`.

For other folds, see also [`-reductions-r-from`](#-reductions-r-from-fn-init-list) and
[`-reductions`](#-reductions-fn-list).

```el
(-reductions-r #'+ '(1 2 3 4)) ;; => (10 9 7 4)
(-reductions-r #'* '(1 2 3 4)) ;; => (24 24 12 4)
(--reductions-r (format "(FN %d %s)" it acc) '(1 2 3)) ;; => ("(FN 1 (FN 2 3))" "(FN 2 3)" 3)
```

#### -count `(pred list)`

Counts the number of items in `list` where (`pred` item) is non-`nil`.

```el
(-count 'even? '(1 2 3 4 5)) ;; => 2
(--count (< it 4) '(1 2 3 4)) ;; => 3
```

#### -sum `(list)`

Return the sum of `list`.

```el
(-sum ()) ;; => 0
(-sum '(1)) ;; => 1
(-sum '(1 2 3 4)) ;; => 10
```

#### -running-sum `(list)`

Return a list with running sums of items in `list`.
`list` must be non-empty.

```el
(-running-sum '(1 2 3 4)) ;; => (1 3 6 10)
(-running-sum '(1)) ;; => (1)
(-running-sum ()) ;; Wrong type argument: consp, nil
```

#### -product `(list)`

Return the product of `list`.

```el
(-product ()) ;; => 1
(-product '(1)) ;; => 1
(-product '(1 2 3 4)) ;; => 24
```

#### -running-product `(list)`

Return a list with running products of items in `list`.
`list` must be non-empty.

```el
(-running-product '(1 2 3 4)) ;; => (1 2 6 24)
(-running-product '(1)) ;; => (1)
(-running-product ()) ;; Wrong type argument: consp, nil
```

#### -inits `(list)`

Return all prefixes of `list`.

```el
(-inits '(1 2 3 4)) ;; => (nil (1) (1 2) (1 2 3) (1 2 3 4))
(-inits nil) ;; => (nil)
(-inits '(1)) ;; => (nil (1))
```

#### -tails `(list)`

Return all suffixes of `list`

```el
(-tails '(1 2 3 4)) ;; => ((1 2 3 4) (2 3 4) (3 4) (4) nil)
(-tails nil) ;; => (nil)
(-tails '(1)) ;; => ((1) nil)
```

#### -common-prefix `(&rest lists)`

Return the longest common prefix of `lists`.

```el
(-common-prefix '(1)) ;; => (1)
(-common-prefix '(1 2) '(3 4) '(1 2)) ;; => ()
(-common-prefix '(1 2) '(1 2 3) '(1 2 3 4)) ;; => (1 2)
```

#### -common-suffix `(&rest lists)`

Return the longest common suffix of `lists`.

```el
(-common-suffix '(1)) ;; => (1)
(-common-suffix '(1 2) '(3 4) '(1 2)) ;; => ()
(-common-suffix '(1 2 3 4) '(2 3 4) '(3 4)) ;; => (3 4)
```

#### -min `(list)`

Return the smallest value from `list` of numbers or markers.

```el
(-min '(0)) ;; => 0
(-min '(3 2 1)) ;; => 1
(-min '(1 2 3)) ;; => 1
```

#### -min-by `(comparator list)`

Take a comparison function `comparator` and a `list` and return
the least element of the list by the comparison function.

See also combinator [`-on`](#-on-op-trans) which can transform the values before
comparing them.

```el
(-min-by '> '(4 3 6 1)) ;; => 1
(--min-by (> (car it) (car other)) '((1 2 3) (2) (3 2))) ;; => (1 2 3)
(--min-by (> (length it) (length other)) '((1 2 3) (2) (3 2))) ;; => (2)
```

#### -max `(list)`

Return the largest value from `list` of numbers or markers.

```el
(-max '(0)) ;; => 0
(-max '(3 2 1)) ;; => 3
(-max '(1 2 3)) ;; => 3
```

#### -max-by `(comparator list)`

Take a comparison function `comparator` and a `list` and return
the greatest element of the list by the comparison function.

See also combinator [`-on`](#-on-op-trans) which can transform the values before
comparing them.

```el
(-max-by '> '(4 3 6 1)) ;; => 6
(--max-by (> (car it) (car other)) '((1 2 3) (2) (3 2))) ;; => (3 2)
(--max-by (> (length it) (length other)) '((1 2 3) (2) (3 2))) ;; => (1 2 3)
```

#### -frequencies `(list)`

Count the occurrences of each distinct element of `list`.

Return an alist of (`element` . `n`), where each `element` occurs `n`
times in `list`.

The test for equality is done with `equal`, or with `-compare-fn`
if that is non-`nil`.

See also [`-count`](#-count-pred-list) and [`-group-by`](#-group-by-fn-list).

```el
(-frequencies ()) ;; => ()
(-frequencies '(1 2 3 1 2 1)) ;; => ((1 . 3) (2 . 2) (3 . 1))
(let ((-compare-fn #'string=)) (-frequencies '(a "a"))) ;; => ((a . 2))
```

## Unfolding

Operations dual to reductions, building lists from a seed
value rather than consuming a list to produce a single value.

#### -iterate `(fun init n)`

Return a list of iterated applications of `fun` to `init`.

This means a list of the form:

    (`init` (`fun` `init`) (`fun` (`fun` `init`)) ...)

`n` is the length of the returned list.

```el
(-iterate #'1+ 1 10) ;; => (1 2 3 4 5 6 7 8 9 10)
(-iterate (lambda (x) (+ x x)) 2 5) ;; => (2 4 8 16 32)
(--iterate (* it it) 2 5) ;; => (2 4 16 256 65536)
```

#### -unfold `(fun seed)`

Build a list from `seed` using `fun`.

This is "dual" operation to [`-reduce-r`](#-reduce-r-fn-list): while -reduce-r
consumes a list to produce a single value, [`-unfold`](#-unfold-fun-seed) takes a
seed value and builds a (potentially infinite!) list.

`fun` should return `nil` to stop the generating process, or a
cons (`a` . `b`), where `a` will be prepended to the result and `b` is
the new seed.

```el
(-unfold (lambda (x) (unless (= x 0) (cons x (1- x)))) 10) ;; => (10 9 8 7 6 5 4 3 2 1)
(--unfold (when it (cons it (cdr it))) '(1 2 3 4)) ;; => ((1 2 3 4) (2 3 4) (3 4) (4))
(--unfold (when it (cons it (butlast it))) '(1 2 3 4)) ;; => ((1 2 3 4) (1 2 3) (1 2) (1))
```

#### -repeat `(n x)`

Return a new list of length `n` with each element being `x`.
Return `nil` if `n` is less than 1.

```el
(-repeat 3 :a) ;; => (:a :a :a)
(-repeat 1 :a) ;; => (:a)
(-repeat 0 :a) ;; => ()
```

#### -cycle `(list)`

Return an infinite circular copy of `list`.
The returned list cycles through the elements of `list` and repeats
from the beginning.

```el
(-take 5 (-cycle '(1 2 3))) ;; => (1 2 3 1 2)
(-take 7 (-cycle '(1 "and" 3))) ;; => (1 "and" 3 1 "and" 3 1)
(-zip (-cycle '(1 2 3)) '(1 2)) ;; => ((1 . 1) (2 . 2))
```

## Predicates

Reductions of one or more lists to a boolean value.

#### -some `(pred list)`

Return (`pred` x) for the first `list` item where (`pred` x) is non-`nil`, else `nil`.

Alias: `-any`.

This function's anaphoric counterpart is `--some`.

```el
(-some #'stringp '(1 "2" 3)) ;; => t
(--some (string-match-p "x" it) '("foo" "axe" "xor")) ;; => 1
(--some (= it-index 3) '(0 1 2)) ;; => nil
```

#### -every `(pred list)`

Return non-`nil` if `pred` returns non-`nil` for all items in `list`.
If so, return the last such result of `pred`.  Otherwise, once an
item is reached for which `pred` returns `nil`, return `nil` without
calling `pred` on any further `list` elements.

This function is like `-every-p`, but on success returns the last
non-`nil` result of `pred` instead of just `t`.

This function's anaphoric counterpart is `--every`.

```el
(-every #'numberp '(1 2 3)) ;; => t
(--every (string-match-p "x" it) '("axe" "xor")) ;; => 0
(--every (= it it-index) '(0 1 3)) ;; => nil
```

#### -any? `(pred list)`

Return `t` if (`pred` `x`) is non-`nil` for any `x` in `list`, else `nil`.

Alias: `-any-p`, `-some?`, `-some-p`

```el
(-any? #'numberp '(nil 0 t)) ;; => t
(-any? #'numberp '(nil t t)) ;; => nil
(-any? #'null '(1 3 5)) ;; => nil
```

#### -all? `(pred list)`

Return `t` if (`pred` `x`) is non-`nil` for all `x` in `list`, else `nil`.
In the latter case, stop after the first `x` for which (`pred` `x`) is
`nil`, without calling `pred` on any subsequent elements of `list`.

The similar function [`-every`](#-every-pred-list) is more widely useful, since it
returns the last non-`nil` result of `pred` instead of just `t` on
success.

Alias: `-all-p`, `-every-p`, `-every?`.

This function's anaphoric counterpart is `--all?`.

```el
(-all? #'numberp '(1 2 3)) ;; => t
(-all? #'numberp '(2 t 6)) ;; => nil
(--all? (= 0 (% it 2)) '(2 4 6)) ;; => t
```

#### -none? `(pred list)`

Return `t` if (`pred` `x`) is `nil` for all `x` in `list`, else `nil`.

Alias: `-none-p`

```el
(-none? 'even? '(1 2 3)) ;; => nil
(-none? 'even? '(1 3 5)) ;; => t
(--none? (= 0 (% it 2)) '(1 2 3)) ;; => nil
```

#### -only-some? `(pred list)`

Return `t` if different `list` items both satisfy and do not satisfy `pred`.
That is, if `pred` returns both `nil` for at least one item, and
non-`nil` for at least one other item in `list`.  Return `nil` if all
items satisfy the predicate or none of them do.

Alias: `-only-some-p`

```el
(-only-some? 'even? '(1 2 3)) ;; => t
(-only-some? 'even? '(1 3 5)) ;; => nil
(-only-some? 'even? '(2 4 6)) ;; => nil
```

#### -contains? `(list element)`

Return non-`nil` if `list` contains `element`.

The test for equality is done with `equal`, or with `-compare-fn`
if that is non-`nil`.  As with `member`, the return value is
actually the tail of `list` whose car is `element`.

Alias: `-contains-p`.

```el
(-contains? '(1 2 3) 1) ;; => (1 2 3)
(-contains? '(1 2 3) 2) ;; => (2 3)
(-contains? '(1 2 3) 4) ;; => ()
```

#### -is-prefix? `(prefix list)`

Return non-`nil` if `prefix` is a prefix of `list`.

Alias: `-is-prefix-p`.

```el
(-is-prefix? '(1 2 3) '(1 2 3 4 5)) ;; => t
(-is-prefix? '(1 2 3 4 5) '(1 2 3)) ;; => nil
(-is-prefix? '(1 3) '(1 2 3 4 5)) ;; => nil
```

#### -is-suffix? `(suffix list)`

Return non-`nil` if `suffix` is a suffix of `list`.

Alias: `-is-suffix-p`.

```el
(-is-suffix? '(3 4 5) '(1 2 3 4 5)) ;; => t
(-is-suffix? '(1 2 3 4 5) '(3 4 5)) ;; => nil
(-is-suffix? '(3 5) '(1 2 3 4 5)) ;; => nil
```

#### -is-infix? `(infix list)`

Return non-`nil` if `infix` is infix of `list`.

This operation runs in O(n^2) time

Alias: `-is-infix-p`

```el
(-is-infix? '(1 2 3) '(1 2 3 4 5)) ;; => t
(-is-infix? '(2 3 4) '(1 2 3 4 5)) ;; => t
(-is-infix? '(3 4 5) '(1 2 3 4 5)) ;; => t
```

#### -cons-pair? `(obj)`

Return non-`nil` if `obj` is a true cons pair.
That is, a cons (`a` . `b`) where `b` is not a list.

Alias: `-cons-pair-p`.

```el
(-cons-pair? '(1 . 2)) ;; => t
(-cons-pair? '(1 2)) ;; => nil
(-cons-pair? '(1)) ;; => nil
```

## Partitioning

Functions partitioning the input list into a list of lists.

#### -split-at `(n list)`

Split `list` into two sublists after the `n`th element.
The result is a list of two elements (`take` `drop`) where `take` is a
new list of the first `n` elements of `list`, and `drop` is the
remaining elements of `list` (not a copy).  `take` and `drop` are like
the results of [`-take`](#-take-n-list) and [`-drop`](#-drop-n-list), respectively, but the split
is done in a single list traversal.

```el
(-split-at 3 '(1 2 3 4 5)) ;; => ((1 2 3) (4 5))
(-split-at 17 '(1 2 3 4 5)) ;; => ((1 2 3 4 5) nil)
(-split-at 0 '(1 2 3 4 5)) ;; => (nil (1 2 3 4 5))
```

#### -split-with `(pred list)`

Split `list` into a prefix satisfying `pred`, and the rest.
The first sublist is the prefix of `list` with successive elements
satisfying `pred`, and the second sublist is the remaining elements
that do not.  The result is like performing

    ((-take-while `pred` `list`) (-drop-while `pred` `list`))

but in no more than a single pass through `list`.

```el
(-split-with 'even? '(1 2 3 4)) ;; => (nil (1 2 3 4))
(-split-with 'even? '(2 4 5 6)) ;; => ((2 4) (5 6))
(--split-with (< it 4) '(1 2 3 4 3 2 1)) ;; => ((1 2 3) (4 3 2 1))
```

#### -split-on `(item list)`

Split the `list` each time `item` is found.

Unlike [`-partition-by`](#-partition-by-fn-list), the `item` is discarded from the results.
Empty lists are also removed from the result.

Comparison is done by `equal`.

See also [`-split-when`](#-split-when-fn-list)

```el
(-split-on '| '(Nil | Leaf a | Node [Tree a])) ;; => ((Nil) (Leaf a) (Node [Tree a]))
(-split-on :endgroup '("a" "b" :endgroup "c" :endgroup "d" "e")) ;; => (("a" "b") ("c") ("d" "e"))
(-split-on :endgroup '("a" "b" :endgroup :endgroup "d" "e")) ;; => (("a" "b") ("d" "e"))
```

#### -split-when `(fn list)`

Split the `list` on each element where `fn` returns non-`nil`.

Unlike [`-partition-by`](#-partition-by-fn-list), the "matched" element is discarded from
the results.  Empty lists are also removed from the result.

This function can be thought of as a generalization of
`split-string`.

```el
(-split-when 'even? '(1 2 3 4 5 6)) ;; => ((1) (3) (5))
(-split-when 'even? '(1 2 3 4 6 8 9)) ;; => ((1) (3) (9))
(--split-when (memq it '(&optional &rest)) '(a b &optional c d &rest args)) ;; => ((a b) (c d) (args))
```

#### -separate `(pred list)`

Split `list` into two sublists based on whether items satisfy `pred`.
The result is like performing

    ((-filter `pred` `list`) (-remove `pred` `list`))

but in a single pass through `list`.

```el
(-separate (lambda (num) (= 0 (% num 2))) '(1 2 3 4 5 6 7)) ;; => ((2 4 6) (1 3 5 7))
(--separate (< it 5) '(3 7 5 9 3 2 1 4 6)) ;; => ((3 3 2 1 4) (7 5 9 6))
(-separate 'cdr '((1 2) (1) (1 2 3) (4))) ;; => (((1 2) (1 2 3)) ((1) (4)))
```

#### -partition `(n list)`

Return a new list with the items in `list` grouped into `n`-sized sublists.
If there are not enough items to make the last group `n`-sized,
those items are discarded.

```el
(-partition 2 '(1 2 3 4 5 6)) ;; => ((1 2) (3 4) (5 6))
(-partition 2 '(1 2 3 4 5 6 7)) ;; => ((1 2) (3 4) (5 6))
(-partition 3 '(1 2 3 4 5 6 7)) ;; => ((1 2 3) (4 5 6))
```

#### -partition-all `(n list)`

Return a new list with the items in `list` grouped into `n`-sized sublists.
The last group may contain less than `n` items.

```el
(-partition-all 2 '(1 2 3 4 5 6)) ;; => ((1 2) (3 4) (5 6))
(-partition-all 2 '(1 2 3 4 5 6 7)) ;; => ((1 2) (3 4) (5 6) (7))
(-partition-all 3 '(1 2 3 4 5 6 7)) ;; => ((1 2 3) (4 5 6) (7))
```

#### -partition-in-steps `(n step list)`

Partition `list` into sublists of length `n` that are `step` items apart.
Like [`-partition-all-in-steps`](#-partition-all-in-steps-n-step-list), but if there are not enough items
to make the last group `n`-sized, those items are discarded.

```el
(-partition-in-steps 2 1 '(1 2 3 4)) ;; => ((1 2) (2 3) (3 4))
(-partition-in-steps 3 2 '(1 2 3 4)) ;; => ((1 2 3))
(-partition-in-steps 3 2 '(1 2 3 4 5)) ;; => ((1 2 3) (3 4 5))
```

#### -partition-all-in-steps `(n step list)`

Partition `list` into sublists of length `n` that are `step` items apart.
Adjacent groups may overlap if `n` exceeds the `step` stride.
Trailing groups may contain less than `n` items.

```el
(-partition-all-in-steps 2 1 '(1 2 3 4)) ;; => ((1 2) (2 3) (3 4) (4))
(-partition-all-in-steps 3 2 '(1 2 3 4)) ;; => ((1 2 3) (3 4))
(-partition-all-in-steps 3 2 '(1 2 3 4 5)) ;; => ((1 2 3) (3 4 5) (5))
```

#### -partition-by `(fn list)`

Apply `fn` to each item in `list`, splitting it each time `fn` returns a new value.

```el
(-partition-by 'even? ()) ;; => ()
(-partition-by 'even? '(1 1 2 2 2 3 4 6 8)) ;; => ((1 1) (2 2 2) (3) (4 6 8))
(--partition-by (< it 3) '(1 2 3 4 3 2 1)) ;; => ((1 2) (3 4 3) (2 1))
```

#### -partition-by-header `(fn list)`

Apply `fn` to the first item in `list`. That is the header
value. Apply `fn` to each item in `list`, splitting it each time `fn`
returns the header value, but only after seeing at least one
other value (the body).

```el
(--partition-by-header (= it 1) '(1 2 3 1 2 1 2 3 4)) ;; => ((1 2 3) (1 2) (1 2 3 4))
(--partition-by-header (> it 0) '(1 2 0 1 0 1 2 3 0)) ;; => ((1 2 0) (1 0) (1 2 3 0))
(-partition-by-header 'even? '(2 1 1 1 4 1 3 5 6 6 1)) ;; => ((2 1 1 1) (4 1 3 5) (6 6 1))
```

#### -partition-after-pred `(pred list)`

Partition `list` after each element for which `pred` returns non-`nil`.

This function's anaphoric counterpart is `--partition-after-pred`.

```el
(-partition-after-pred #'booleanp ()) ;; => ()
(-partition-after-pred #'booleanp '(t t)) ;; => ((t) (t))
(-partition-after-pred #'booleanp '(0 0 t t 0 t)) ;; => ((0 0 t) (t) (0 t))
```

#### -partition-before-pred `(pred list)`

Partition directly before each time `pred` is true on an element of `list`.

```el
(-partition-before-pred #'booleanp ()) ;; => ()
(-partition-before-pred #'booleanp '(0 t)) ;; => ((0) (t))
(-partition-before-pred #'booleanp '(0 0 t 0 t t)) ;; => ((0 0) (t 0) (t) (t))
```

#### -partition-before-item `(item list)`

Partition directly before each time `item` appears in `list`.

```el
(-partition-before-item 3 ()) ;; => ()
(-partition-before-item 3 '(1)) ;; => ((1))
(-partition-before-item 3 '(3)) ;; => ((3))
```

#### -partition-after-item `(item list)`

Partition directly after each time `item` appears in `list`.

```el
(-partition-after-item 3 ()) ;; => ()
(-partition-after-item 3 '(1)) ;; => ((1))
(-partition-after-item 3 '(3)) ;; => ((3))
```

#### -group-by `(fn list)`

Separate `list` into an alist whose keys are `fn` applied to the
elements of `list`.  Keys are compared by `equal`.

```el
(-group-by 'even? ()) ;; => ()
(-group-by 'even? '(1 1 2 2 2 3 4 6 8)) ;; => ((nil 1 1 3) (t 2 2 2 4 6 8))
(--group-by (car (split-string it "/")) '("a/b" "c/d" "a/e")) ;; => (("a" "a/b" "a/e") ("c" "c/d"))
```

## Indexing

Functions retrieving or sorting based on list indices and
related predicates.

#### -elem-index `(elem list)`

Return the first index of `elem` in `list`.
That is, the index within `list` of the first element that is
`equal` to `elem`.  Return `nil` if there is no such element.

See also: [`-find-index`](#-find-index-pred-list).

```el
(-elem-index 2 '(6 7 8 3 4)) ;; => nil
(-elem-index "bar" '("foo" "bar" "baz")) ;; => 1
(-elem-index '(1 2) '((3) (5 6) (1 2) nil)) ;; => 2
```

#### -elem-indices `(elem list)`

Return the list of indices at which `elem` appears in `list`.
That is, the indices of all elements of `list` `equal` to `elem`, in
the same ascending order as they appear in `list`.

```el
(-elem-indices 2 '(6 7 8 3 4 1)) ;; => ()
(-elem-indices "bar" '("foo" "bar" "baz")) ;; => (1)
(-elem-indices '(1 2) '((3) (1 2) (5 6) (1 2) nil)) ;; => (1 3)
```

#### -find-index `(pred list)`

Return the index of the first item satisfying `pred` in `list`.
Return `nil` if no such item is found.

`pred` is called with one argument, the current list element, until
it returns non-`nil`, at which point the search terminates.

This function's anaphoric counterpart is `--find-index`.

See also: [`-first`](#-first-pred-list), [`-find-last-index`](#-find-last-index-pred-list).

```el
(-find-index #'numberp '(a b c)) ;; => nil
(-find-index #'natnump '(1 0 -1)) ;; => 0
(--find-index (> it 5) '(2 4 1 6 3 3 5 8)) ;; => 3
```

#### -find-last-index `(pred list)`

Return the index of the last item satisfying `pred` in `list`.
Return `nil` if no such item is found.

Predicate `pred` is called with one argument each time, namely the
current list element.

This function's anaphoric counterpart is `--find-last-index`.

See also: [`-last`](#-last-pred-list), [`-find-index`](#-find-index-pred-list).

```el
(-find-last-index #'numberp '(a b c)) ;; => nil
(--find-last-index (> it 5) '(2 7 1 6 3 8 5 2)) ;; => 5
(-find-last-index (-partial #'string< 'a) '(c b a)) ;; => 1
```

#### -find-indices `(pred list)`

Return the list of indices in `list` satisfying `pred`.

Each element of `list` in turn is passed to `pred`.  If the result is
non-`nil`, the index of that element in `list` is included in the
result.  The returned indices are in ascending order, i.e., in
the same order as they appear in `list`.

This function's anaphoric counterpart is `--find-indices`.

See also: [`-find-index`](#-find-index-pred-list), [`-elem-indices`](#-elem-indices-elem-list).

```el
(-find-indices #'numberp '(a b c)) ;; => ()
(-find-indices #'numberp '(8 1 d 2 b c a 3)) ;; => (0 1 3 7)
(--find-indices (> it 5) '(2 4 1 6 3 3 5 8)) ;; => (3 7)
```

#### -grade-up `(comparator list)`

Grade elements of `list` using `comparator` relation.
This yields a permutation vector such that applying this
permutation to `list` sorts it in ascending order.

```el
(-grade-up #'< '(3 1 4 2 1 3 3)) ;; => (1 4 3 0 5 6 2)
(let ((l '(3 1 4 2 1 3 3))) (-select-by-indices (-grade-up #'< l) l)) ;; => (1 1 2 3 3 3 4)
```

#### -grade-down `(comparator list)`

Grade elements of `list` using `comparator` relation.
This yields a permutation vector such that applying this
permutation to `list` sorts it in descending order.

```el
(-grade-down #'< '(3 1 4 2 1 3 3)) ;; => (2 0 5 6 3 1 4)
(let ((l '(3 1 4 2 1 3 3))) (-select-by-indices (-grade-down #'< l) l)) ;; => (4 3 3 3 2 1 1)
```

## Set operations

Operations pretending lists are sets.

#### -union `(list1 list2)`

Return a new list of distinct elements appearing in either `list1` or `list2`.

The test for equality is done with `equal`, or with `-compare-fn`
if that is non-`nil`.

```el
(-union '(1 2 3) '(3 4 5)) ;; => (1 2 3 4 5)
(-union '(1 2 2 4) ()) ;; => (1 2 4)
(-union '(1 1 2 2) '(4 4 3 2 1)) ;; => (1 2 4 3)
```

#### -difference `(list1 list2)`

Return a new list with the distinct members of `list1` that are not in `list2`.

The test for equality is done with `equal`, or with `-compare-fn`
if that is non-`nil`.

```el
(-difference () ()) ;; => ()
(-difference '(1 2 3) '(4 5 6)) ;; => (1 2 3)
(-difference '(1 2 3 4) '(3 4 5 6)) ;; => (1 2)
```

#### -intersection `(list1 list2)`

Return a new list of distinct elements appearing in both `list1` and `list2`.

The test for equality is done with `equal`, or with `-compare-fn`
if that is non-`nil`.

```el
(-intersection () ()) ;; => ()
(-intersection '(1 2 3) '(4 5 6)) ;; => ()
(-intersection '(1 2 2 3) '(4 3 3 2)) ;; => (2 3)
```

#### -powerset `(list)`

Return the power set of `list`.

```el
(-powerset ()) ;; => (nil)
(-powerset '(x y)) ;; => ((x y) (x) (y) nil)
(-powerset '(x y z)) ;; => ((x y z) (x y) (x z) (x) (y z) (y) (z) nil)
```

#### -permutations `(list)`

Return the distinct permutations of `list`.

Duplicate elements of `list` are determined by `equal`, or by
`-compare-fn` if that is non-`nil`.

```el
(-permutations ()) ;; => (nil)
(-permutations '(a a b)) ;; => ((a a b) (a b a) (b a a))
(-permutations '(a b c)) ;; => ((a b c) (a c b) (b a c) (b c a) (c a b) (c b a))
```

#### -distinct `(list)`

Return a copy of `list` with all duplicate elements removed.

The test for equality is done with `equal`, or with `-compare-fn`
if that is non-`nil`.

Alias: `-uniq`.

```el
(-distinct ()) ;; => ()
(-distinct '(1 1 2 3 3)) ;; => (1 2 3)
(-distinct '(t t t)) ;; => (t)
```

#### -same-items? `(list1 list2)`

Return non-`nil` if `list1` and `list2` have the same distinct elements.

The order of the elements in the lists does not matter.  The
lists may be of different lengths, i.e., contain duplicate
elements.  The test for equality is done with `equal`, or with
`-compare-fn` if that is non-`nil`.

Alias: `-same-items-p`.

```el
(-same-items? '(1 2 3) '(1 2 3)) ;; => t
(-same-items? '(1 1 2 3) '(3 3 2 1)) ;; => t
(-same-items? '(1 2 3) '(1 2 3 4)) ;; => nil
```

## Other list operations

Other list functions not fit to be classified elsewhere.

#### -rotate `(n list)`

Rotate `list` `n` places to the right (left if `n` is negative).
The time complexity is O(n).

```el
(-rotate 3 '(1 2 3 4 5 6 7)) ;; => (5 6 7 1 2 3 4)
(-rotate -3 '(1 2 3 4 5 6 7)) ;; => (4 5 6 7 1 2 3)
(-rotate 16 '(1 2 3 4 5 6 7)) ;; => (6 7 1 2 3 4 5)
```

#### -cons* `(&rest args)`

Make a new list from the elements of `args`.
The last 2 elements of `args` are used as the final cons of the
result, so if the final element of `args` is not a list, the result
is a dotted list.  With no `args`, return `nil`.

```el
(-cons* 1 2) ;; => (1 . 2)
(-cons* 1 2 3) ;; => (1 2 . 3)
(-cons* 1) ;; => 1
```

#### -snoc `(list elem &rest elements)`

Append `elem` to the end of the list.

This is like `cons`, but operates on the end of list.

If any `elements` are given, append them to the list as well.

```el
(-snoc '(1 2 3) 4) ;; => (1 2 3 4)
(-snoc '(1 2 3) 4 5 6) ;; => (1 2 3 4 5 6)
(-snoc '(1 2 3) '(4 5 6)) ;; => (1 2 3 (4 5 6))
```

#### -interpose `(sep list)`

Return a new list of all elements in `list` separated by `sep`.

```el
(-interpose "-" ()) ;; => ()
(-interpose "-" '("a")) ;; => ("a")
(-interpose "-" '("a" "b" "c")) ;; => ("a" "-" "b" "-" "c")
```

#### -interleave `(&rest lists)`

Return a new list of the first item in each list, then the second etc.

```el
(-interleave '(1 2) '("a" "b")) ;; => (1 "a" 2 "b")
(-interleave '(1 2) '("a" "b") '("A" "B")) ;; => (1 "a" "A" 2 "b" "B")
(-interleave '(1 2 3) '("a" "b")) ;; => (1 "a" 2 "b")
```

#### -iota `(count &optional start step)`

Return a list containing `count` numbers.
Starts from `start` and adds `step` each time.  The default `start` is
zero, the default `step` is 1.
This function takes its name from the corresponding primitive in
the `apl` language.

```el
(-iota 6) ;; => (0 1 2 3 4 5)
(-iota 4 2.5 -2) ;; => (2.5 0.5 -1.5 -3.5)
(-iota -1) ;; Wrong type argument: natnump, -1
```

#### -zip-with `(fn list1 list2)`

Zip the two lists `list1` and `list2` using a function `fn`.  This
function is applied pairwise taking as first argument element of
`list1` and as second argument element of `list2` at corresponding
position.

The anaphoric form `--zip-with` binds the elements from `list1` as symbol `it`,
and the elements from `list2` as symbol `other`.

```el
(-zip-with '+ '(1 2 3) '(4 5 6)) ;; => (5 7 9)
(-zip-with 'cons '(1 2 3) '(4 5 6)) ;; => ((1 . 4) (2 . 5) (3 . 6))
(--zip-with (concat it " and " other) '("Batman" "Jekyll") '("Robin" "Hyde")) ;; => ("Batman and Robin" "Jekyll and Hyde")
```

#### -zip `(&rest lists)`

Zip `lists` together.  Group the head of each list, followed by the
second elements of each list, and so on. The lengths of the returned
groupings are equal to the length of the shortest input list.

If two lists are provided as arguments, return the groupings as a list
of cons cells. Otherwise, return the groupings as a list of lists.

Use [`-zip-lists`](#-zip-lists-rest-lists) if you need the return value to always be a list
of lists.

Alias: `-zip-pair`

See also: [`-zip-lists`](#-zip-lists-rest-lists)

```el
(-zip '(1 2 3) '(4 5 6)) ;; => ((1 . 4) (2 . 5) (3 . 6))
(-zip '(1 2 3) '(4 5 6 7)) ;; => ((1 . 4) (2 . 5) (3 . 6))
(-zip '(1 2) '(3 4 5) '(6)) ;; => ((1 3 6))
```

#### -zip-lists `(&rest lists)`

Zip `lists` together.  Group the head of each list, followed by the
second elements of each list, and so on. The lengths of the returned
groupings are equal to the length of the shortest input list.

The return value is always list of lists, which is a difference
from `-zip-pair` which returns a cons-cell in case two input
lists are provided.

See also: [`-zip`](#-zip-rest-lists)

```el
(-zip-lists '(1 2 3) '(4 5 6)) ;; => ((1 4) (2 5) (3 6))
(-zip-lists '(1 2 3) '(4 5 6 7)) ;; => ((1 4) (2 5) (3 6))
(-zip-lists '(1 2) '(3 4 5) '(6)) ;; => ((1 3 6))
```

#### -zip-fill `(fill-value &rest lists)`

Zip `lists`, with `fill-value` padded onto the shorter lists. The
lengths of the returned groupings are equal to the length of the
longest input list.

```el
(-zip-fill 0 '(1 2 3 4 5) '(6 7 8 9)) ;; => ((1 . 6) (2 . 7) (3 . 8) (4 . 9) (5 . 0))
```

#### -unzip `(lists)`

Unzip `lists`.

This works just like [`-zip`](#-zip-rest-lists) but takes a list of lists instead of
a variable number of arguments, such that

    (-unzip (-zip `l1` `l2` `l3` ...))

is identity (given that the lists are the same length).

Note in particular that calling this on a list of two lists will
return a list of cons-cells such that the above identity works.

See also: [`-zip`](#-zip-rest-lists)

```el
(-unzip (-zip '(1 2 3) '(a b c) '("e" "f" "g"))) ;; => ((1 2 3) (a b c) ("e" "f" "g"))
(-unzip '((1 2) (3 4) (5 6) (7 8) (9 10))) ;; => ((1 3 5 7 9) (2 4 6 8 10))
(-unzip '((1 2) (3 4))) ;; => ((1 . 3) (2 . 4))
```

#### -pad `(fill-value &rest lists)`

Pad each of `lists` with `fill-value` until they all have equal lengths.

Ensure all `lists` are as long as the longest one by repeatedly
appending `fill-value` to the shorter lists, and return the
resulting `lists`.

```el
(-pad 0 ()) ;; => (nil)
(-pad 0 '(1 2) '(3 4)) ;; => ((1 2) (3 4))
(-pad 0 '(1 2) '(3 4 5 6) '(7 8 9)) ;; => ((1 2 0 0) (3 4 5 6) (7 8 9 0))
```

#### -table `(fn &rest lists)`

Compute outer product of `lists` using function `fn`.

The function `fn` should have the same arity as the number of
supplied lists.

The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The dimension of the result is (length lists).

See also: [`-table-flat`](#-table-flat-fn-rest-lists)

```el
(-table '* '(1 2 3) '(1 2 3)) ;; => ((1 2 3) (2 4 6) (3 6 9))
(-table (lambda (a b) (-sum (-zip-with '* a b))) '((1 2) (3 4)) '((1 3) (2 4))) ;; => ((7 15) (10 22))
(apply '-table 'list (-repeat 3 '(1 2))) ;; => ((((1 1 1) (2 1 1)) ((1 2 1) (2 2 1))) (((1 1 2) (2 1 2)) ((1 2 2) (2 2 2))))
```

#### -table-flat `(fn &rest lists)`

Compute flat outer product of `lists` using function `fn`.

The function `fn` should have the same arity as the number of
supplied lists.

The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The results are flattened, ignoring the tensor structure
of the result.  This is equivalent to calling:

    (-flatten-n (1- (length lists)) (apply '-table fn lists))

but the implementation here is much more efficient.

See also: [`-flatten-n`](#-flatten-n-num-list), [`-table`](#-table-fn-rest-lists)

```el
(-table-flat 'list '(1 2 3) '(a b c)) ;; => ((1 a) (2 a) (3 a) (1 b) (2 b) (3 b) (1 c) (2 c) (3 c))
(-table-flat '* '(1 2 3) '(1 2 3)) ;; => (1 2 3 2 4 6 3 6 9)
(apply '-table-flat 'list (-repeat 3 '(1 2))) ;; => ((1 1 1) (2 1 1) (1 2 1) (2 2 1) (1 1 2) (2 1 2) (1 2 2) (2 2 2))
```

#### -first `(pred list)`

Return the first item in `list` for which `pred` returns non-`nil`.
Return `nil` if no such element is found.

To get the first item in the list no questions asked,
use [`-first-item`](#-first-item-list).

Alias: `-find`.

This function's anaphoric counterpart is `--first`.

```el
(-first #'natnump '(-1 0 1)) ;; => 0
(-first #'null '(1 2 3)) ;; => nil
(--first (> it 2) '(1 2 3)) ;; => 3
```

#### -last `(pred list)`

Return the last x in `list` where (`pred` x) is non-`nil`, else `nil`.

```el
(-last 'even? '(1 2 3 4 5 6 3 3 3)) ;; => 6
(-last 'even? '(1 3 7 5 9)) ;; => nil
(--last (> (length it) 3) '("a" "looong" "word" "and" "short" "one")) ;; => "short"
```

#### -first-item `(list)`

Return the first item of `list`, or `nil` on an empty list.

See also: [`-second-item`](#-second-item-list), [`-last-item`](#-last-item-list), etc.

```el
(-first-item ()) ;; => ()
(-first-item '(1 2 3 4 5)) ;; => 1
(let ((list (list 1 2 3))) (setf (-first-item list) 5) list) ;; => (5 2 3)
```

#### -second-item `(list)`

Return the second item of `list`, or `nil` if `list` is too short.

See also: [`-first-item`](#-first-item-list), [`-third-item`](#-third-item-list), etc.

```el
(-second-item ()) ;; => ()
(-second-item '(1 2 3 4 5)) ;; => 2
(let ((list (list 1 2))) (setf (-second-item list) 5) list) ;; => (1 5)
```

#### -third-item `(list)`

Return the third item of `list`, or `nil` if `list` is too short.

See also: [`-second-item`](#-second-item-list), [`-fourth-item`](#-fourth-item-list), etc.

```el
(-third-item ()) ;; => ()
(-third-item '(1 2)) ;; => ()
(-third-item '(1 2 3 4 5)) ;; => 3
```

#### -fourth-item `(list)`

Return the fourth item of `list`, or `nil` if `list` is too short.

See also: [`-third-item`](#-third-item-list), [`-fifth-item`](#-fifth-item-list), etc.

```el
(-fourth-item ()) ;; => ()
(-fourth-item '(1 2 3)) ;; => ()
(-fourth-item '(1 2 3 4 5)) ;; => 4
```

#### -fifth-item `(list)`

Return the fifth item of `list`, or `nil` if `list` is too short.

See also: [`-fourth-item`](#-fourth-item-list), [`-last-item`](#-last-item-list), etc.

```el
(-fifth-item ()) ;; => ()
(-fifth-item '(1 2 3 4)) ;; => ()
(-fifth-item '(1 2 3 4 5)) ;; => 5
```

#### -last-item `(list)`

Return the last item of `list`, or `nil` on an empty list.

See also: [`-first-item`](#-first-item-list), etc.

```el
(-last-item ()) ;; => ()
(-last-item '(1 2 3 4 5)) ;; => 5
(let ((list (list 1 2 3))) (setf (-last-item list) 5) list) ;; => (1 2 5)
```

#### -butlast `(list)`

Return a list of all items in list except for the last.

```el
(-butlast '(1 2 3)) ;; => (1 2)
(-butlast '(1 2)) ;; => (1)
(-butlast '(1)) ;; => nil
```

#### -sort `(comparator list)`

Sort `list`, stably, comparing elements using `comparator`.
Return the sorted list.  `list` is `not` modified by side effects.
`comparator` is called with two elements of `list`, and should return non-`nil`
if the first element should sort before the second.

```el
(-sort '< '(3 1 2)) ;; => (1 2 3)
(-sort '> '(3 1 2)) ;; => (3 2 1)
(--sort (< it other) '(3 1 2)) ;; => (1 2 3)
```

#### -list `(arg)`

Ensure `arg` is a list.
If `arg` is already a list, return it as is (not a copy).
Otherwise, return a new list with `arg` as its only element.

Another supported calling convention is (-list &rest `args`).
In this case, if `arg` is not a list, a new list with all of
`args` as elements is returned.  This use is supported for
backward compatibility and is otherwise deprecated.

```el
(-list 1) ;; => (1)
(-list ()) ;; => ()
(-list '(1 2 3)) ;; => (1 2 3)
```

#### -fix `(fn list)`

Compute the (least) fixpoint of `fn` with initial input `list`.

`fn` is called at least once, results are compared with `equal`.

```el
(-fix (lambda (l) (-non-nil (--mapcat (-split-at (/ (length it) 2) it) l))) '((1 2 3))) ;; => ((1) (2) (3))
(let ((l '((starwars scifi) (jedi starwars warrior)))) (--fix (-uniq (--mapcat (cons it (cdr (assq it l))) it)) '(jedi book))) ;; => (jedi starwars warrior scifi book)
```

## Tree operations

Functions pretending lists are trees.

#### -tree-seq `(branch children tree)`

Return a sequence of the nodes in `tree`, in depth-first search order.

`branch` is a predicate of one argument that returns non-`nil` if the
passed argument is a branch, that is, a node that can have children.

`children` is a function of one argument that returns the children
of the passed branch node.

Non-branch nodes are simply copied.

```el
(-tree-seq 'listp 'identity '(1 (2 3) 4 (5 (6 7)))) ;; => ((1 (2 3) 4 (5 (6 7))) 1 (2 3) 2 3 4 (5 (6 7)) 5 (6 7) 6 7)
(-tree-seq 'listp 'reverse '(1 (2 3) 4 (5 (6 7)))) ;; => ((1 (2 3) 4 (5 (6 7))) (5 (6 7)) (6 7) 7 6 5 4 (2 3) 3 2 1)
(--tree-seq (vectorp it) (append it nil) [1 [2 3] 4 [5 [6 7]]]) ;; => ([1 [2 3] 4 [5 [6 7]]] 1 [2 3] 2 3 4 [5 [6 7]] 5 [6 7] 6 7)
```

#### -tree-map `(fn tree)`

Apply `fn` to each element of `tree` while preserving the tree structure.

```el
(-tree-map '1+ '(1 (2 3) (4 (5 6) 7))) ;; => (2 (3 4) (5 (6 7) 8))
(-tree-map '(lambda (x) (cons x (expt 2 x))) '(1 (2 3) 4)) ;; => ((1 . 2) ((2 . 4) (3 . 8)) (4 . 16))
(--tree-map (length it) '("<body>" ("<p>" "text" "</p>") "</body>")) ;; => (6 (3 4 4) 7)
```

#### -tree-map-nodes `(pred fun tree)`

Call `fun` on each node of `tree` that satisfies `pred`.

If `pred` returns `nil`, continue descending down this node.  If `pred`
returns non-`nil`, apply `fun` to this node and do not descend
further.

```el
(-tree-map-nodes 'vectorp (lambda (x) (-sum (append x nil))) '(1 [2 3] 4 (5 [6 7] 8))) ;; => (1 5 4 (5 13 8))
(-tree-map-nodes 'keywordp (lambda (x) (symbol-name x)) '(1 :foo 4 ((5 6 :bar) :baz 8))) ;; => (1 ":foo" 4 ((5 6 ":bar") ":baz" 8))
(--tree-map-nodes (eq (car-safe it) 'add-mode) (-concat it (list :mode 'emacs-lisp-mode)) '(with-mode emacs-lisp-mode (foo bar) (add-mode a b) (baz (add-mode c d)))) ;; => (with-mode emacs-lisp-mode (foo bar) (add-mode a b :mode emacs-lisp-mode) (baz (add-mode c d :mode emacs-lisp-mode)))
```

#### -tree-reduce `(fn tree)`

Use `fn` to reduce elements of list `tree`.
If elements of `tree` are lists themselves, apply the reduction recursively.

`fn` is first applied to first element of the list and second
element, then on this result and third element from the list etc.

See [`-reduce-r`](#-reduce-r-fn-list) for how exactly are lists of zero or one element handled.

```el
(-tree-reduce '+ '(1 (2 3) (4 5))) ;; => 15
(-tree-reduce 'concat '("strings" (" on" " various") ((" levels")))) ;; => "strings on various levels"
(--tree-reduce (cond ((stringp it) (concat it " " acc)) (t (let ((sn (symbol-name it))) (concat "<" sn ">" acc "</" sn ">")))) '(body (p "some words") (div "more" (b "bold") "words"))) ;; => "<body><p>some words</p> <div>more <b>bold</b> words</div></body>"
```

#### -tree-reduce-from `(fn init-value tree)`

Use `fn` to reduce elements of list `tree`.
If elements of `tree` are lists themselves, apply the reduction recursively.

`fn` is first applied to `init-value` and first element of the list,
then on this result and second element from the list etc.

The initial value is ignored on cons pairs as they always contain
two elements.

```el
(-tree-reduce-from '+ 1 '(1 (1 1) ((1)))) ;; => 8
(--tree-reduce-from (-concat acc (list it)) nil '(1 (2 3 (4 5)) (6 7))) ;; => ((7 6) ((5 4) 3 2) 1)
```

#### -tree-mapreduce `(fn folder tree)`

Apply `fn` to each element of `tree`, and make a list of the results.
If elements of `tree` are lists themselves, apply `fn` recursively to
elements of these nested lists.

Then reduce the resulting lists using `folder` and initial value
`init-value`. See [`-reduce-r-from`](#-reduce-r-from-fn-init-list).

This is the same as calling [`-tree-reduce`](#-tree-reduce-fn-tree) after [`-tree-map`](#-tree-map-fn-tree)
but is twice as fast as it only traverse the structure once.

```el
(-tree-mapreduce 'list 'append '(1 (2 (3 4) (5 6)) (7 (8 9)))) ;; => (1 2 3 4 5 6 7 8 9)
(--tree-mapreduce 1 (+ it acc) '(1 (2 (4 9) (2 1)) (7 (4 3)))) ;; => 9
(--tree-mapreduce 0 (max acc (1+ it)) '(1 (2 (4 9) (2 1)) (7 (4 3)))) ;; => 3
```

#### -tree-mapreduce-from `(fn folder init-value tree)`

Apply `fn` to each element of `tree`, and make a list of the results.
If elements of `tree` are lists themselves, apply `fn` recursively to
elements of these nested lists.

Then reduce the resulting lists using `folder` and initial value
`init-value`. See [`-reduce-r-from`](#-reduce-r-from-fn-init-list).

This is the same as calling [`-tree-reduce-from`](#-tree-reduce-from-fn-init-value-tree) after [`-tree-map`](#-tree-map-fn-tree)
but is twice as fast as it only traverse the structure once.

```el
(-tree-mapreduce-from 'identity '* 1 '(1 (2 (3 4) (5 6)) (7 (8 9)))) ;; => 362880
(--tree-mapreduce-from (+ it it) (cons it acc) nil '(1 (2 (4 9) (2 1)) (7 (4 3)))) ;; => (2 (4 (8 18) (4 2)) (14 (8 6)))
(concat "{" (--tree-mapreduce-from (cond ((-cons-pair? it) (concat (symbol-name (car it)) " -> " (symbol-name (cdr it)))) (t (concat (symbol-name it) " : {"))) (concat it (unless (or (equal acc "}") (equal (substring it (1- (length it))) "{")) ", ") acc) "}" '((elisp-mode (foo (bar . booze)) (baz . qux)) (c-mode (foo . bla) (bum . bam))))) ;; => "{elisp-mode : {foo : {bar -> booze}, baz -> qux}, c-mode : {foo -> bla, bum -> bam}}"
```

#### -clone `(list)`

Create a deep copy of `list`.
The new list has the same elements and structure but all cons are
replaced with new ones.  This is useful when you need to clone a
structure such as plist or alist.

```el
(let* ((a '(1 2 3)) (b (-clone a))) (nreverse a) b) ;; => (1 2 3)
```

## Threading macros

Macros that conditionally combine sequential forms for brevity
or readability.

#### -> `(x &optional form &rest more)`

Thread the expr through the forms. Insert `x` as the second item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
second item in second form, etc.

```el
(-> '(2 3 5)) ;; => (2 3 5)
(-> '(2 3 5) (append '(8 13))) ;; => (2 3 5 8 13)
(-> '(2 3 5) (append '(8 13)) (-slice 1 -1)) ;; => (3 5 8)
```

#### ->> `(x &optional form &rest more)`

Thread the expr through the forms. Insert `x` as the last item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
last item in second form, etc.

```el
(->> '(1 2 3) (-map 'square)) ;; => (1 4 9)
(->> '(1 2 3) (-map 'square) (-remove 'even?)) ;; => (1 9)
(->> '(1 2 3) (-map 'square) (-reduce '+)) ;; => 14
```

#### --> `(x &rest forms)`

Starting with the value of `x`, thread each expression through `forms`.

Insert `x` at the position signified by the symbol `it` in the first
form.  If there are more forms, insert the first form at the position
signified by `it` in in second form, etc.

```el
(--> "def" (concat "abc" it "ghi")) ;; => "abcdefghi"
(--> "def" (concat "abc" it "ghi") (upcase it)) ;; => "ABCDEFGHI"
(--> "def" (concat "abc" it "ghi") upcase) ;; => "ABCDEFGHI"
```

#### -as-> `(value variable &rest forms)`

Starting with `value`, thread `variable` through `forms`.

In the first form, bind `variable` to `value`.  In the second form, bind
`variable` to the result of the first form, and so forth.

```el
(-as-> 3 my-var (1+ my-var) (list my-var) (mapcar (lambda (ele) (* 2 ele)) my-var)) ;; => (8)
(-as-> 3 my-var 1+) ;; => 4
(-as-> 3 my-var) ;; => 3
```

#### -some-> `(x &optional form &rest more)`

When expr is non-`nil`, thread it through the first form (via [`->`](#--x-optional-form-rest-more)),
and when that result is non-`nil`, through the next form, etc.

```el
(-some-> '(2 3 5)) ;; => (2 3 5)
(-some-> 5 square) ;; => 25
(-some-> 5 even? square) ;; => nil
```

#### -some->> `(x &optional form &rest more)`

When expr is non-`nil`, thread it through the first form (via [`->>`](#--x-optional-form-rest-more)),
and when that result is non-`nil`, through the next form, etc.

```el
(-some->> '(1 2 3) (-map 'square)) ;; => (1 4 9)
(-some->> '(1 3 5) (-last 'even?) (+ 100)) ;; => nil
(-some->> '(2 4 6) (-last 'even?) (+ 100)) ;; => 106
```

#### -some--> `(expr &rest forms)`

Thread `expr` through `forms` via [`-->`](#---x-rest-forms), while the result is non-`nil`.
When `expr` evaluates to non-`nil`, thread the result through the
first of `forms`, and when that result is non-`nil`, thread it
through the next form, etc.

```el
(-some--> "def" (concat "abc" it "ghi")) ;; => "abcdefghi"
(-some--> nil (concat "abc" it "ghi")) ;; => nil
(-some--> '(0 1) (-remove #'natnump it) (append it it) (-map #'1+ it)) ;; => ()
```

#### -doto `(init &rest forms)`

Evaluate `init` and pass it as argument to `forms` with [`->`](#--x-optional-form-rest-more).
The `result` of evaluating `init` is threaded through each of `forms`
individually using [`->`](#--x-optional-form-rest-more), which see.  The return value is `result`,
which `forms` may have modified by side effect.

```el
(-doto (list 1 2 3) pop pop) ;; => (3)
(-doto (cons 1 2) (setcar 3) (setcdr 4)) ;; => (3 . 4)
(gethash 'k (--doto (make-hash-table) (puthash 'k 'v it))) ;; => v
```

## Binding

Macros that combine `let` and `let*` with destructuring and flow control.

#### -when-let `((var val) &rest body)`

If `val` evaluates to non-`nil`, bind it to `var` and execute body.

Note: binding is done according to [`-let`](#-let-varlist-rest-body).

```el
(-when-let (match-index (string-match "d" "abcd")) (+ match-index 2)) ;; => 5
(-when-let ((&plist :foo foo) (list :foo "foo")) foo) ;; => "foo"
(-when-let ((&plist :foo foo) (list :bar "bar")) foo) ;; => nil
```

#### -when-let* `(vars-vals &rest body)`

If all `vals` evaluate to true, bind them to their corresponding
`vars` and execute body. `vars-vals` should be a list of (`var` `val`)
pairs.

Note: binding is done according to [`-let*`](#-let-varlist-rest-body).  `vals` are evaluated
sequentially, and evaluation stops after the first `nil` `val` is
encountered.

```el
(-when-let* ((x 5) (y 3) (z (+ y 4))) (+ x y z)) ;; => 15
(-when-let* ((x 5) (y nil) (z 7)) (+ x y z)) ;; => nil
```

#### -if-let `((var val) then &rest else)`

If `val` evaluates to non-`nil`, bind it to `var` and do `then`,
otherwise do `else`.

Note: binding is done according to [`-let`](#-let-varlist-rest-body).

```el
(-if-let (match-index (string-match "d" "abc")) (+ match-index 3) 7) ;; => 7
(--if-let (even? 4) it nil) ;; => t
```

#### -if-let* `(vars-vals then &rest else)`

If all `vals` evaluate to true, bind them to their corresponding
`vars` and do `then`, otherwise do `else`. `vars-vals` should be a list
of (`var` `val`) pairs.

Note: binding is done according to [`-let*`](#-let-varlist-rest-body).  `vals` are evaluated
sequentially, and evaluation stops after the first `nil` `val` is
encountered.

```el
(-if-let* ((x 5) (y 3) (z 7)) (+ x y z) "foo") ;; => 15
(-if-let* ((x 5) (y nil) (z 7)) (+ x y z) "foo") ;; => "foo"
(-if-let* (((_ _ x) '(nil nil 7))) x) ;; => 7
```

#### -let `(varlist &rest body)`

Bind variables according to `varlist` then eval `body`.

`varlist` is a list of lists of the form (`pattern` `source`).  Each
`pattern` is matched against the `source` "structurally".  `source`
is only evaluated once for each `pattern`.  Each `pattern` is matched
recursively, and can therefore contain sub-patterns which are
matched against corresponding sub-expressions of `source`.

All the SOURCEs are evalled before any symbols are
bound (i.e. "in parallel").

If `varlist` only contains one (`pattern` `source`) element, you can
optionally specify it using a vector and discarding the
outer-most parens.  Thus

    (-let ((`pattern` `source`)) ...)

becomes

    (-let [`pattern` `source`] ...).

[`-let`](#-let-varlist-rest-body) uses a convention of not binding places (symbols) starting
with _ whenever it's possible.  You can use this to skip over
entries you don't care about.  However, this is not *always*
possible (as a result of implementation) and these symbols might
get bound to undefined values.

Following is the overview of supported patterns.  Remember that
patterns can be matched recursively, so every a, b, aK in the
following can be a matching construct and not necessarily a
symbol/variable.

Symbol:

    a - bind the `source` to `a`.  This is just like regular `let`.

Conses and lists:

    (a) - bind `car` of cons/list to `a`

    (a . b) - bind car of cons to `a` and `cdr` to `b`

    (a b) - bind car of list to `a` and `cadr` to `b`

    (a1 a2 a3 ...) - bind 0th car of list to `a1`, 1st to `a2`, 2nd to `a3`...

    (a1 a2 a3 ... aN . rest) - as above, but bind the `n`th cdr to `rest`.

Vectors:

    [a] - bind 0th element of a non-list sequence to `a` (works with
          vectors, strings, bit arrays...)

    [a1 a2 a3 ...] - bind 0th element of non-list sequence to `a0`, 1st to
                     `a1`, 2nd to `a2`, ...
                     If the `pattern` is shorter than `source`, the values at
                     places not in `pattern` are ignored.
                     If the `pattern` is longer than `source`, an `error` is
                     thrown.

    [a1 a2 a3 ... &rest rest] - as above, but bind the rest of
                                the sequence to `rest`.  This is
                                conceptually the same as improper list
                                matching (a1 a2 ... aN . rest)

Key/value stores:

    (&plist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                   `source` plist to aK.  If the
                                   value is not found, aK is `nil`.
                                   Uses `plist-get` to fetch values.

    (&alist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                   `source` alist to aK.  If the
                                   value is not found, aK is `nil`.
                                   Uses `assoc` to fetch values.

    (&hash key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                  `source` hash table to aK.  If the
                                  value is not found, aK is `nil`.
                                  Uses `gethash` to fetch values.

Further, special keyword &keys supports "inline" matching of
plist-like key-value pairs, similarly to &keys keyword of
`cl-defun`.

    (a1 a2 ... aN &keys key1 b1 ... keyN bK)

This binds `n` values from the list to a1 ... aN, then interprets
the cdr as a plist (see key/value matching above).

`a` shorthand notation for kv-destructuring exists which allows the
patterns be optionally left out and derived from the key name in
the following fashion:

- a key :foo is converted into `foo` pattern,
- a key 'bar is converted into `bar` pattern,
- a key "baz" is converted into `baz` pattern.

That is, the entire value under the key is bound to the derived
variable without any further destructuring.

This is possible only when the form following the key is not a
valid pattern (i.e. not a symbol, a cons cell or a vector).
Otherwise the matching proceeds as usual and in case of an
invalid spec fails with an error.

Thus the patterns are normalized as follows:

     ;; derive all the missing patterns
     (&plist :foo 'bar "baz") => (&plist :foo foo 'bar bar "baz" baz)

     ;; we can specify some but not others
     (&plist :foo 'bar explicit-bar) => (&plist :foo foo 'bar explicit-bar)

     ;; nothing happens, we store :foo in x
     (&plist :foo x) => (&plist :foo x)

     ;; nothing happens, we match recursively
     (&plist :foo (a b c)) => (&plist :foo (a b c))

You can name the source using the syntax `symbol` &as `pattern`.
This syntax works with lists (proper or improper), vectors and
all types of maps.

    (list &as a b c) (list 1 2 3)

binds `a` to 1, `b` to 2, `c` to 3 and `list` to (1 2 3).

Similarly:

    (bounds &as beg . end) (cons 1 2)

binds `beg` to 1, `end` to 2 and `bounds` to (1 . 2).

    (items &as first . rest) (list 1 2 3)

binds `first` to 1, `rest` to (2 3) and `items` to (1 2 3)

    [vect &as _ b c] [1 2 3]

binds `b` to 2, `c` to 3 and `vect` to [1 2 3] (_ avoids binding as usual).

    (plist &as &plist :b b) (list :a 1 :b 2 :c 3)

binds `b` to 2 and `plist` to (:a 1 :b 2 :c 3).  Same for &alist and &hash.

This is especially useful when we want to capture the result of a
computation and destructure at the same time.  Consider the
form (function-returning-complex-structure) returning a list of
two vectors with two items each.  We want to capture this entire
result and pass it to another computation, but at the same time
we want to get the second item from each vector.  We can achieve
it with pattern

    (result &as [_ a] [_ b]) (function-returning-complex-structure)

Note: Clojure programmers may know this feature as the ":as
binding".  The difference is that we put the &as at the front
because we need to support improper list binding.

```el
(-let (([a (b c) d] [1 (2 3) 4])) (list a b c d)) ;; => (1 2 3 4)
(-let [(a b c . d) (list 1 2 3 4 5 6)] (list a b c d)) ;; => (1 2 3 (4 5 6))
(-let [(&plist :foo foo :bar bar) (list :baz 3 :foo 1 :qux 4 :bar 2)] (list foo bar)) ;; => (1 2)
```

#### -let* `(varlist &rest body)`

Bind variables according to `varlist` then eval `body`.

`varlist` is a list of lists of the form (`pattern` `source`).  Each
`pattern` is matched against the `source` structurally.  `source` is
only evaluated once for each `pattern`.

Each `source` can refer to the symbols already bound by this
`varlist`.  This is useful if you want to destructure `source`
recursively but also want to name the intermediate structures.

See [`-let`](#-let-varlist-rest-body) for the list of all possible patterns.

```el
(-let* (((a . b) (cons 1 2)) ((c . d) (cons 3 4))) (list a b c d)) ;; => (1 2 3 4)
(-let* (((a . b) (cons 1 (cons 2 3))) ((c . d) b)) (list a b c d)) ;; => (1 (2 . 3) 2 3)
(-let* (((&alist "foo" foo "bar" bar) (list (cons "foo" 1) (cons "bar" (list 'a 'b 'c)))) ((a b c) bar)) (list foo a b c bar)) ;; => (1 a b c (a b c))
```

#### -lambda `(match-form &rest body)`

Return a lambda which destructures its input as `match-form` and executes `body`.

Note that you have to enclose the `match-form` in a pair of parens,
such that:

    (-lambda (x) body)
    (-lambda (x y ...) body)

has the usual semantics of `lambda`.  Furthermore, these get
translated into normal `lambda`, so there is no performance
penalty.

See [`-let`](#-let-varlist-rest-body) for a description of the destructuring mechanism.

```el
(-map (-lambda ((x y)) (+ x y)) '((1 2) (3 4) (5 6))) ;; => (3 7 11)
(-map (-lambda ([x y]) (+ x y)) '([1 2] [3 4] [5 6])) ;; => (3 7 11)
(funcall (-lambda ((_ . a) (_ . b)) (-concat a b)) '(1 2 3) '(4 5 6)) ;; => (2 3 5 6)
```

#### -setq `([match-form val] ...)`

Bind each `match-form` to the value of its `val`.

`match-form` destructuring is done according to the rules of [`-let`](#-let-varlist-rest-body).

This macro allows you to bind multiple variables by destructuring
the value, so for example:

    (-setq (a b) x
           (&plist :c c) plist)

expands roughly speaking to the following code

    (setq a (car x)
          b (cadr x)
          c (plist-get plist :c))

Care is taken to only evaluate each `val` once so that in case of
multiple assignments it does not cause unexpected side effects.

```el
(let (a) (-setq a 1) a) ;; => 1
(let (a b) (-setq (a b) (list 1 2)) (list a b)) ;; => (1 2)
(let (c) (-setq (&plist :c c) (list :c "c")) c) ;; => "c"
```

## Side effects

Functions iterating over lists for side effect only.

#### -each `(list fn)`

Call `fn` on each element of `list`.
Return `nil`; this function is intended for side effects.

Its anaphoric counterpart is `--each`.

For access to the current element's index in `list`, see
[`-each-indexed`](#-each-indexed-list-fn).

```el
(let (l) (-each '(1 2 3) (lambda (x) (push x l))) l) ;; => (3 2 1)
(let (l) (--each '(1 2 3) (push it l)) l) ;; => (3 2 1)
(-each '(1 2 3) #'identity) ;; => nil
```

#### -each-while `(list pred fn)`

Call `fn` on each `item` in `list`, while (`pred` `item`) is non-`nil`.
Once an `item` is reached for which `pred` returns `nil`, `fn` is no
longer called.  Return `nil`; this function is intended for side
effects.

Its anaphoric counterpart is `--each-while`.

```el
(let (l) (-each-while '(2 4 5 6) #'even? (lambda (x) (push x l))) l) ;; => (4 2)
(let (l) (--each-while '(1 2 3 4) (< it 3) (push it l)) l) ;; => (2 1)
(let ((s 0)) (--each-while '(1 3 4 5) (< it 5) (setq s (+ s it))) s) ;; => 8
```

#### -each-indexed `(list fn)`

Call `fn` on each index and element of `list`.
For each `item` at `index` in `list`, call (funcall `fn` `index` `item`).
Return `nil`; this function is intended for side effects.

See also: [`-map-indexed`](#-map-indexed-fn-list).

```el
(let (l) (-each-indexed '(a b c) (lambda (i x) (push (list x i) l))) l) ;; => ((c 2) (b 1) (a 0))
(let (l) (--each-indexed '(a b c) (push (list it it-index) l)) l) ;; => ((c 2) (b 1) (a 0))
(let (l) (--each-indexed () (push it l)) l) ;; => ()
```

#### -each-r `(list fn)`

Call `fn` on each element of `list` in reversed order.
Return `nil`; this function is intended for side effects.

Its anaphoric counterpart is `--each-r`.

```el
(let (l) (-each-r '(1 2 3) (lambda (x) (push x l))) l) ;; => (1 2 3)
(let (l) (--each-r '(1 2 3) (push it l)) l) ;; => (1 2 3)
(-each-r '(1 2 3) #'identity) ;; => nil
```

#### -each-r-while `(list pred fn)`

Call `fn` on each `item` in reversed `list`, while (`pred` `item`) is non-`nil`.
Once an `item` is reached for which `pred` returns `nil`, `fn` is no
longer called.  Return `nil`; this function is intended for side
effects.

Its anaphoric counterpart is `--each-r-while`.

```el
(let (l) (-each-r-while '(2 4 5 6) #'even? (lambda (x) (push x l))) l) ;; => (6)
(let (l) (--each-r-while '(1 2 3 4) (>= it 3) (push it l)) l) ;; => (3 4)
(let ((s 0)) (--each-r-while '(1 2 3 5) (> it 1) (setq s (+ s it))) s) ;; => 10
```

#### -dotimes `(num fn)`

Call `fn` `num` times, presumably for side effects.
`fn` is called with a single argument on successive integers
running from 0, inclusive, to `num`, exclusive.  `fn` is not called
if `num` is less than 1.

This function's anaphoric counterpart is `--dotimes`.

```el
(let (s) (-dotimes 3 (lambda (n) (push n s))) s) ;; => (2 1 0)
(let (s) (-dotimes 0 (lambda (n) (push n s))) s) ;; => ()
(let (s) (--dotimes 5 (push it s)) s) ;; => (4 3 2 1 0)
```

## Destructive operations

Macros that modify variables holding lists.

#### !cons `(car cdr)`

Destructive: Set `cdr` to the cons of `car` and `cdr`.

```el
(let (l) (!cons 5 l) l) ;; => (5)
(let ((l '(3))) (!cons 5 l) l) ;; => (5 3)
```

#### !cdr `(list)`

Destructive: Set `list` to the cdr of `list`.

```el
(let ((l '(3))) (!cdr l) l) ;; => ()
(let ((l '(3 5))) (!cdr l) l) ;; => (5)
```

## Function combinators

Functions that manipulate and compose other functions.

#### -partial `(fun &rest args)`

Return a function that is a partial application of `fun` to `args`.
`args` is a list of the first `n` arguments to pass to `fun`.
The result is a new function which does the same as `fun`, except that
the first `n` arguments are fixed at the values with which this function
was called.

```el
(funcall (-partial #'+ 5)) ;; => 5
(funcall (-partial #'- 5) 3) ;; => 2
(funcall (-partial #'+ 5 2) 3) ;; => 10
```

#### -rpartial `(fn &rest args)`

Return a function that is a partial application of `fn` to `args`.
`args` is a list of the last `n` arguments to pass to `fn`.  The result
is a new function which does the same as `fn`, except that the last
`n` arguments are fixed at the values with which this function was
called.  This is like [`-partial`](#-partial-fun-rest-args), except the arguments are fixed
starting from the right rather than the left.

```el
(funcall (-rpartial #'- 5)) ;; => -5
(funcall (-rpartial #'- 5) 8) ;; => 3
(funcall (-rpartial #'- 5 2) 10) ;; => 3
```

#### -juxt `(&rest fns)`

Return a function that is the juxtaposition of `fns`.
The returned function takes a variable number of `args`, applies
each of `fns` in turn to `args`, and returns the list of results.

```el
(funcall (-juxt) 1 2) ;; => ()
(funcall (-juxt #'+ #'- #'* #'/) 7 5) ;; => (12 2 35 1)
(mapcar (-juxt #'number-to-string #'1+) '(1 2)) ;; => (("1" 2) ("2" 3))
```

#### -compose `(&rest fns)`

Compose `fns` into a single composite function.
Return a function that takes a variable number of `args`, applies
the last function in `fns` to `args`, and returns the result of
calling each remaining function on the result of the previous
function, right-to-left.  If no `fns` are given, return a variadic
`identity` function.

```el
(funcall (-compose #'- #'1+ #'+) 1 2 3) ;; => -7
(funcall (-compose #'identity #'1+) 3) ;; => 4
(mapcar (-compose #'not #'stringp) '(nil "")) ;; => (t nil)
```

#### -applify `(fn)`

Return a function that applies `fn` to a single list of args.
This changes the arity of `fn` from taking `n` distinct arguments to
taking 1 argument which is a list of `n` arguments.

```el
(funcall (-applify #'+) nil) ;; => 0
(mapcar (-applify #'+) '((1 1 1) (1 2 3) (5 5 5))) ;; => (3 6 15)
(funcall (-applify #'<) '(3 6)) ;; => t
```

#### -on `(op trans)`

Return a function that calls `trans` on each arg and `op` on the results.
The returned function takes a variable number of arguments, calls
the function `trans` on each one in turn, and then passes those
results as the list of arguments to `op`, in the same order.

For example, the following pairs of expressions are morally
equivalent:

    (funcall (-on #'+ #'1+) 1 2 3) = (+ (1+ 1) (1+ 2) (1+ 3))
    (funcall (-on #'+ #'1+))       = (+)

```el
(-sort (-on #'< #'length) '((1 2 3) (1) (1 2))) ;; => ((1) (1 2) (1 2 3))
(funcall (-on #'min #'string-to-number) "22" "2" "1" "12") ;; => 1
(-min-by (-on #'> #'length) '((1 2 3) (4) (1 2))) ;; => (4)
```

#### -flip `(fn)`

Return a function that calls `fn` with its arguments reversed.
The returned function takes the same number of arguments as `fn`.

For example, the following two expressions are morally
equivalent:

    (funcall (-flip #'-) 1 2) = (- 2 1)

See also: [`-rotate-args`](#-rotate-args-n-fn).

```el
(-sort (-flip #'<) '(4 3 6 1)) ;; => (6 4 3 1)
(funcall (-flip #'-) 3 2 1 10) ;; => 4
(funcall (-flip #'1+) 1) ;; => 2
```

#### -rotate-args `(n fn)`

Return a function that calls `fn` with args rotated `n` places to the right.
The returned function takes the same number of arguments as `fn`,
rotates the list of arguments `n` places to the right (left if `n` is
negative) just like [`-rotate`](#-rotate-n-list), and applies `fn` to the result.

See also: [`-flip`](#-flip-fn).

```el
(funcall (-rotate-args -1 #'list) 1 2 3 4) ;; => (2 3 4 1)
(funcall (-rotate-args 1 #'-) 1 10 100) ;; => 89
(funcall (-rotate-args 2 #'list) 3 4 5 1 2) ;; => (1 2 3 4 5)
```

#### -const `(c)`

Return a function that returns `c` ignoring any additional arguments.

In types: a -> b -> a

```el
(funcall (-const 2) 1 3 "foo") ;; => 2
(mapcar (-const 1) '("a" "b" "c" "d")) ;; => (1 1 1 1)
(-sum (mapcar (-const 1) '("a" "b" "c" "d"))) ;; => 4
```

#### -cut `(&rest params)`

Take n-ary function and n arguments and specialize some of them.
Arguments denoted by <> will be left unspecialized.

See `srfi-26` for detailed description.

```el
(funcall (-cut list 1 <> 3 <> 5) 2 4) ;; => (1 2 3 4 5)
(-map (-cut funcall <> 5) `(1+ 1- ,(lambda (x) (/ 1.0 x)))) ;; => (6 4 0.2)
(-map (-cut <> 1 2 3) '(list vector string)) ;; => ((1 2 3) [1 2 3] "\1\2\3")
```

#### -not `(pred)`

Return a predicate that negates the result of `pred`.
The returned predicate passes its arguments to `pred`.  If `pred`
returns `nil`, the result is non-`nil`; otherwise the result is `nil`.

See also: [`-andfn`](#-andfn-rest-preds) and [`-orfn`](#-orfn-rest-preds).

```el
(funcall (-not #'numberp) "5") ;; => t
(-sort (-not #'<) '(5 2 1 0 6)) ;; => (6 5 2 1 0)
(-filter (-not (-partial #'< 4)) '(1 2 3 4 5 6 7 8)) ;; => (1 2 3 4)
```

#### -orfn `(&rest preds)`

Return a predicate that returns the first non-`nil` result of `preds`.
The returned predicate takes a variable number of arguments,
passes them to each predicate in `preds` in turn until one of them
returns non-`nil`, and returns that non-`nil` result without calling
the remaining `preds`.  If all `preds` return `nil`, or if no `preds` are
given, the returned predicate returns `nil`.

See also: [`-andfn`](#-andfn-rest-preds) and [`-not`](#-not-pred).

```el
(-filter (-orfn #'natnump #'booleanp) '(1 nil "a" -4 b c t)) ;; => (1 nil t)
(funcall (-orfn #'symbolp (-cut string-match-p "x" <>)) "axe") ;; => 1
(funcall (-orfn #'= #'+) 1 1) ;; => t
```

#### -andfn `(&rest preds)`

Return a predicate that returns non-`nil` if all `preds` do so.
The returned predicate `p` takes a variable number of arguments and
passes them to each predicate in `preds` in turn.  If any one of
`preds` returns `nil`, `p` also returns `nil` without calling the
remaining `preds`.  If all `preds` return non-`nil`, `p` returns the last
such value.  If no `preds` are given, `p` always returns non-`nil`.

See also: [`-orfn`](#-orfn-rest-preds) and [`-not`](#-not-pred).

```el
(-filter (-andfn #'numberp (-cut < <> 5)) '(a 1 b 6 c 2)) ;; => (1 2)
(mapcar (-andfn #'numberp #'1+) '(a 1 b 6)) ;; => (nil 2 nil 7)
(funcall (-andfn #'= #'+) 1 1) ;; => 2
```

#### -iteratefn `(fn n)`

Return a function `fn` composed `n` times with itself.

`fn` is a unary function.  If you need to use a function of higher
arity, use [`-applify`](#-applify-fn) first to turn it into a unary function.

With n = 0, this acts as identity function.

In types: (a -> a) -> Int -> a -> a.

This function satisfies the following law:

    (funcall (-iteratefn fn n) init) = (-last-item (-iterate fn init (1+ n))).

```el
(funcall (-iteratefn (lambda (x) (* x x)) 3) 2) ;; => 256
(funcall (-iteratefn '1+ 3) 1) ;; => 4
(funcall (-iteratefn 'cdr 3) '(1 2 3 4 5)) ;; => (4 5)
```

#### -fixfn `(fn &optional equal-test halt-test)`

Return a function that computes the (least) fixpoint of `fn`.

`fn` must be a unary function. The returned lambda takes a single
argument, `x`, the initial value for the fixpoint iteration. The
iteration halts when either of the following conditions is satisfied:

 1. Iteration converges to the fixpoint, with equality being
      tested using `equal-test`. If `equal-test` is not specified,
      `equal` is used. For functions over the floating point
      numbers, it may be necessary to provide an appropriate
      approximate comparison test.

 2. `halt-test` returns a non-`nil` value. `halt-test` defaults to a
      simple counter that returns `t` after `-fixfn-max-iterations`,
      to guard against infinite iteration. Otherwise, `halt-test`
      must be a function that accepts a single argument, the
      current value of `x`, and returns non-`nil` as long as iteration
      should continue. In this way, a more sophisticated
      convergence test may be supplied by the caller.

The return value of the lambda is either the fixpoint or, if
iteration halted before converging, a cons with car `halted` and
cdr the final output from `halt-test`.

In types: (a -> a) -> a -> a.

```el
(funcall (-fixfn #'cos #'approx=) 0.7) ;; ~> 0.7390851332151607
(funcall (-fixfn (lambda (x) (expt (+ x 10) 0.25))) 2.0) ;; => 1.8555845286409378
(funcall (-fixfn #'sin #'approx=) 0.1) ;; => (halted . t)
```

#### -prodfn `(&rest fns)`

Return a function that applies each of `fns` to each of a list of arguments.

Takes a list of `n` functions and returns a function that takes a
list of length `n`, applying `i`th function to `i`th element of the
input list.  Returns a list of length `n`.

In types (for `n`=2): ((a -> b), (c -> d)) -> (a, c) -> (b, d)

This function satisfies the following laws:

      (-compose (-prodfn f g ...)
                (-prodfn f' g' ...))
    = (-prodfn (-compose f f')
               (-compose g g')
               ...)

      (-prodfn f g ...)
    = (-juxt (-compose f (-partial #'nth 0))
             (-compose g (-partial #'nth 1))
             ...)

      (-compose (-prodfn f g ...)
                (-juxt f' g' ...))
    = (-juxt (-compose f f')
             (-compose g g')
             ...)

      (-compose (-partial #'nth n)
                (-prod f1 f2 ...))
    = (-compose fn (-partial #'nth n))

```el
(funcall (-prodfn '1+ '1- 'number-to-string) '(1 2 3)) ;; => (2 1 "3")
(-map (-prodfn '1+ '1-) '((1 2) (3 4) (5 6) (7 8))) ;; => ((2 1) (4 3) (6 5) (8 7))
(apply '+ (funcall (-prodfn 'length 'string-to-number) '((1 2 3) "15"))) ;; => 18
```

## Contribute

Yes, please do.  Pure functions in the list manipulation realm only,
please.  There's a suite of examples/tests in `dev/examples.el`, so
remember to add tests for your additions, or I might break them later.

You'll find the repo at:

    https://github.com/magnars/dash.el

Run the tests with:

    make check

Regenerate the docs with:

    make docs

I highly recommend that you install these as a pre-commit hook, so
that the tests are always running and the docs are always in sync:

    cp dev/pre-commit.sh .git/hooks/pre-commit

Oh, and don't edit `README.md` or `dash.texi` directly; they are
auto-generated.  Change `readme-template.md` or `dash-template.texi`
instead, respectively.

To ensure that `dash.el` can be distributed with GNU ELPA or Emacs, we
require that all contributors assign copyright to the Free Software
Foundation.  For more on this, see [`(info "(emacs) Copyright
Assignment")`](https://gnu.org/software/emacs/manual/html_node/emacs/Copyright-Assignment.html).

## Contributors

- [Matus Goljer](https://github.com/Fuco1) contributed lots of features and
  functions.
- [Takafumi Arakaki](https://github.com/tkf) contributed `-group-by`.
- [tali713](https://github.com/tali713) is the author of `-applify`.
- [Víctor M. Valenzuela](https://github.com/vemv) contributed `-repeat`.
- [Nic Ferrier](https://github.com/nicferrier) contributed `-cons*`.
- [Wilfred Hughes](https://github.com/Wilfred) contributed `-slice`,
  `-first-item`, and `-last-item`.
- [Emanuel Evans](https://github.com/shosti) contributed `-if-let`, `-when-let`,
  and `-insert-at`.
- [Johan Andersson](https://github.com/rejeep) contributed `-sum`, `-product`,
  and `-same-items?`.
- [Christina Whyte](https://github.com/kurisuwhyte) contributed `-compose`.
- [Steve Lamb](https://github.com/steventlamb) contributed `-cycle`, `-pad`,
  `-annotate`, `-zip-fill`, and a variadic version of `-zip`.
- [Fredrik Bergroth](https://github.com/fbergroth) made the `-if-let` family use
  `-let` destructuring and improved the script for generating documentation.
- [Mark Oteiza](https://github.com/holomorph) contributed `-iota` and
  the script to create an Info manual.
- [Vasilij Schneidermann](https://github.com/wasamasa) contributed `-some`.
- [William West](https://github.com/occidens) made `-fixfn` more robust at
  handling floats.
- [Cam Saul](https://github.com/camsaul) contributed `-some->`, `-some->>`, and
  `-some-->`.
- [Basil L. Contovounesios](https://github.com/basil-conto) contributed
  `-common-prefix`, `-common-suffix`, and various other improvements.
- [Paul Pogonyshev](https://github.com/doublep) contributed `-each-r` and
  `-each-r-while`.

Thanks!

New contributors are very welcome.  See the
[`Contribute`](#contribute) section above.

## License

Copyright (C) 2012-2021 Free Software Foundation, Inc.

Author: Magnar Sveen <magnars@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.