Codebase list embree / HEAD
HEAD

Tree @HEAD (Download .tar.gz)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
% Embree: High Performance Ray Tracing Kernels 3.13.0-alpha.0
% Intel Corporation

Embree Overview
===============

Intel® Embree is a collection of high-performance ray tracing kernels,
developed at Intel. The target users of Intel® Embree are graphics application
engineers who want to improve the performance of their
photo-realistic rendering application by leveraging Embree's
performance-optimized ray tracing kernels. The kernels are optimized
for the latest Intel® processors with support for SSE, AVX, AVX2, and
AVX-512 instructions. Intel® Embree supports runtime code selection to choose
the traversal and build algorithms that best matches the instruction
set of your CPU. We recommend using Intel® Embree through its API to get the
highest benefit from future improvements. Intel® Embree is released as Open
Source under the
[Apache 2.0 license](http://www.apache.org/licenses/LICENSE-2.0).

Intel® Embree supports applications written with the Intel® SPMD Program
Compiler (ISPC, <https://ispc.github.io/>) by also providing an ISPC
interface to the core ray tracing algorithms. This makes it possible
to write a renderer in ISPC that automatically vectorizes and
leverages SSE, AVX, AVX2, and AVX-512 instructions. ISPC also supports
runtime code selection, thus ISPC will select the best code path for
your application.

Intel® Embree contains algorithms optimized for incoherent workloads (e.g.
Monte Carlo ray tracing algorithms) and coherent workloads
(e.g. primary visibility and hard shadow rays).

The single-ray traversal kernels of Intel® Embree provide high performance
for incoherent workloads and are very easy to integrate into existing
rendering applications. Using the stream kernels, even higher
performance for incoherent rays is possible, but integration might
require significant code changes to the application to use the stream
paradigm. In general for coherent workloads, the stream mode with
coherent flag set gives the best performance.

Intel® Embree also supports dynamic scenes by implementing high-performance
two-level spatial index structure construction algorithms.

In addition to the ray tracing kernels, Intel® Embree provides some
[Embree Tutorials] to demonstrate how to use the
[Embree API].

Supported Platforms
-------------------

Embree supports Windows (32-bit and 64-bit), Linux (64-bit), and macOS
(64-bit) both x86 and Apple M1 based. The code compiles with the Intel®
Compiler, GCC, Clang, and the Microsoft Compiler.

Using the Intel® Compiler improves performance by approximately
10%. Performance also varies across different operating
systems, with Linux typically performing best as it supports
transparently transitioning to 2MB pages.

Embree is optimized for Intel CPUs supporting SSE, AVX, AVX2, and
AVX-512 instructions. Embree requires at least an x86 CPU with support for
SSE2 or an Apple M1 CPU.
Embree Support and Contact
--------------------------

If you encounter bugs please report them via [Embree's GitHub Issue
Tracker](https://github.com/embree/embree/issues).

For questions and feature requests please write us at
<embree_support@intel.com>.

To receive notifications of updates and new features of Embree please
subscribe to the [Embree mailing
list](https://groups.google.com/d/forum/embree/).

Installation of Embree
======================

Windows MSI Installer
---------------------

You can install the Embree library using the Windows MSI installer
[embree-3.13.0-alpha.0-x64.vc14.msi](https://github.com/embree/embree/releases/download/v3.13.0-alpha.0/embree-3.13.0-alpha.0.x64.vc14.msi). This
will install the 64-bit Embree version by default in `Program
Files\Intel\Embree3`.

You have to set the path to the `bin` folders manually to your `PATH`
environment variable for applications to find Embree.

To compile applications with Embree using CMake, please have a look at
the `find_embree` tutorial. To compile this tutorial, you need to set
the `embree_DIR` CMake variable of this tutorial to `Program
Files\Intel\Embree3`.

To uninstall Embree, open `Programs and Features` by clicking the
`Start button`, clicking `Control Panel`, clicking `Programs`, and
then clicking `Programs and Features`. Select `Embree
3.13.0-alpha.0 x64` and uninstall it.

Windows ZIP File
-----------------

Embree linked against Visual Studio 2015 are provided as a ZIP file
[embree-3.13.0-alpha.0.x64.vc14.windows.zip](https://github.com/embree/embree/releases/download/v3.13.0-alpha.0/embree-3.13.0-alpha.0.x64.vc14.windows.zip). After
unpacking this ZIP file, you should set the path to the `lib` folder
manually to your `PATH` environment variable for applications to find
Embree. To compile applications with Embree, you also have to set the
`Include Directories` path in Visual Studio to the `include` folder of
the Embree installation.

If you plan to ship Embree with your application, best use the Embree
version from this ZIP file.

Linux tar.gz Files
------------------

The Linux version of Embree is also delivered as a `tar.gz` file:
[embree-3.13.0-alpha.0.x86_64.linux.tar.gz](https://github.com/embree/embree/releases/download/v3.13.0-alpha.0/embree-3.13.0-alpha.0.x86_64.linux.tar.gz). Unpack
this file using `tar` and source the provided `embree-vars.sh` (if you
are using the bash shell) or `embree-vars.csh` (if you are using the C
shell) to set up the environment properly:

    tar xzf embree-3.13.0-alpha.0.x86_64.linux.tar.gz
    source embree-3.13.0-alpha.0.x86_64.linux/embree-vars.sh

If you want to ship Embree with your application, best use the Embree
version provided in the `tar.gz` file.

We recommend adding a relative `RPATH` to your application that points
to the location where Embree (and TBB) can be found, e.g. `$ORIGIN/../lib`.

macOS PKG Installer
-------------------

To install the Embree library on your macOS system use the
provided package installer inside
[embree-3.13.0-alpha.0.x86_64.pkg](https://github.com/embree/embree/releases/download/v3.13.0-alpha.0/embree-3.13.0-alpha.0.x86_64.pkg). This
will install Embree by default into `/opt/local/lib` and
`/opt/local/include` directories. The Embree tutorials are installed
into the `/Applications/Embree3` directory.

You also have to install the Intel® Threading Building Blocks (TBB)
using [MacPorts](http://www.macports.org/):

    sudo port install tbb

Alternatively you can download the latest TBB version from
[https://www.threadingbuildingblocks.org/download](https://www.threadingbuildingblocks.org/download)
and set the `DYLD_LIBRARY_PATH` environment variable to point
to the TBB library.

To uninstall Embree, execute the uninstaller script
`/Applications/Embree3/uninstall.command`.

macOS ZIP file
-----------------

The macOS version of Embree is also delivered as a ZIP file:
[embree-3.13.0-alpha.0.x86_64.macosx.zip](https://github.com/embree/embree/releases/download/v3.13.0-alpha.0/embree-3.13.0-alpha.0.x86_64.macosx.zip). Unpack
this file using `tar` and source the provided `embree-vars.sh` (if you
are using the bash shell) or `embree-vars.csh` (if you are using the C
shell) to set up the environment properly:

    unzip embree-3.13.0-alpha.0.x64.macosx.zip
    source embree-3.13.0-alpha.0.x64.macosx/embree-vars.sh

If you want to ship Embree with your application, please use the Embree
library of the provided ZIP file. The library name of that Embree
library is of the form `@rpath/libembree.3.dylib`
(and similar also for the included TBB library). This ensures that you
can add a relative `RPATH` to your application that points to the location
where Embree (and TBB) can be found, e.g. `@loader_path/../lib`.

Compiling Embree
================

We recommend to use CMake to build Embree. Do not enable fast-math
optimizations; these might break Embree.

Linux and macOS
---------------

To compile Embree you need a modern C++ compiler that supports
C++11. Embree is tested with the following compilers:

Linux

  - Intel® Compiler 2020 Update 1
  - Intel® Compiler 2019 Update 4
  - Intel® Compiler 2017 Update 1
  - Intel® Compiler 2016 Update 3
  - Intel® Compiler 2015 Update 3
  - Clang 5.0.0
  - Clang 4.0.0
  - GCC 10.0.1 (Fedora 32) AVX512 support
  - GCC  8.3.1 (Fedora 28) AVX512 support
  - GCC  7.3.1 (Fedora 27) AVX2 support
  - GCC  7.3.1 (Fedora 26) AVX2 support
  - GCC  6.4.1 (Fedora 25) AVX2 support

macOS x86

  - Intel® Compiler 2020 Update 1
  - Intel® Compiler 2019 Update 4
  - Apple LLVM 10.0.1 (macOS 10.14.6)

macOS M1

  - Apple Clang 12.0.0

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend
to use Embree with the Intel® Threading Building Blocks (TBB) and best
also use TBB inside your application. Optionally you can disable TBB
in Embree through the `EMBREE_TASKING_SYSTEM` CMake variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straightforward parallelization of an entire renderer. If you do not
want to use ISPC then you can disable `EMBREE_ISPC_SUPPORT` in
CMake. Otherwise, download and install the ISPC binaries (we have
tested ISPC version 1.9.1) from
[ispc.github.io](https://ispc.github.io/downloads.html). After
installation, put the path to `ispc` permanently into your `PATH`
environment variable or you need to correctly set the
`ISPC_EXECUTABLE` variable during CMake configuration.

You additionally have to install CMake 3.1.0 or higher and the developer
version of GLUT.

Under macOS, all these dependencies can be installed
using [MacPorts](http://www.macports.org/):

    sudo port install cmake tbb-devel glfw-devel

Depending on your Linux distribution you can install these dependencies
using `yum` or `apt-get`.  Some of these packages might already be
installed or might have slightly different names.

Type the following to install the dependencies using `yum`:

    sudo yum install cmake
    sudo yum install tbb-devel
    sudo yum install glfw-devel

Type the following to install the dependencies using `apt-get`:

    sudo apt-get install cmake-curses-gui
    sudo apt-get install libtbb-dev
    sudo apt-get install libglfw3-dev

Finally you can compile Embree using CMake. Create a build directory
inside the Embree root directory and execute `ccmake ..` inside this
build directory.

    mkdir build
    cd build
    ccmake ..

Per default CMake will use the compilers specified with the `CC` and
`CXX` environment variables. Should you want to use a different
compiler, run `cmake` first and set the `CMAKE_CXX_COMPILER` and
`CMAKE_C_COMPILER` variables to the desired compiler. For example, to
use the Intel® Compiler instead of the default GCC on most Linux machines
(`g++` and `gcc`), execute

    cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc ..

Similarly, to use Clang set the variables to `clang++` and `clang`,
respectively. Note that the compiler variables cannot be changed anymore
after the first run of `cmake` or `ccmake`.

Running `ccmake` will open a dialog where you can perform various
configurations as described below in [CMake Configuration]. After having
configured Embree, press `c` (for configure) and `g` (for generate) to
generate a Makefile and leave the configuration. The code can be
compiled by executing make.

    make

The executables will be generated inside the build folder. We recommend
to finally install the Embree library and header files on your
system. Therefore set the `CMAKE_INSTALL_PREFIX` to `/usr` in cmake
and type:

    sudo make install

If you keep the default `CMAKE_INSTALL_PREFIX` of `/usr/local` then
you have to make sure the path `/usr/local/lib` is in your
`LD_LIBRARY_PATH`.

You can also uninstall Embree again by executing:

    sudo make uninstall

If you cannot install Embree on your system (e.g. when you don't have
administrator rights) you need to add embree_root_directory/build to
your `LD_LIBRARY_PATH`.


Windows
-------

Embree is tested using the following compilers under Windows:

  - Visual Studio 2019
  - Visual Studio 2017
  - Visual Studio 2015 (Update 1)
  - Intel® Compiler 2019 Update 6
  - Intel® Compiler 2017 Update 8
  - LLVM Clang 9.0.0

To compile Embree for AVX-512 you have to use the Intel® Compiler.

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend
to use Embree with the Intel® Threading Building Blocks (TBB) and best
also use TBB inside your application. Optionally you can disable TBB
in Embree through the `EMBREE_TASKING_SYSTEM` CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB)
installation that comes with the Intel® Compiler, or you can install the
binary distribution of TBB directly from
[www.threadingbuildingblocks.org](https://www.threadingbuildingblocks.org/download)
into a folder named `tbb` into your Embree root directory. You also have
to make sure that the libraries `tbb.dll` and `tbb_malloc.dll` can be
found when executing your Embree applications, e.g. by putting the path
to these libraries into your `PATH` environment variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straightforward parallelization of an entire renderer. When installing
ISPC, make sure to download an ISPC version from
[ispc.github.io](https://ispc.github.io/downloads.html) that is
compatible with your Visual Studio version. After installation, put
the path to `ispc.exe` permanently into your `PATH` environment
variable or you need to correctly set the `ISPC_EXECUTABLE` variable
during CMake configuration. If you do not want to use ISPC then you
can disable `EMBREE_ISPC_SUPPORT` in CMake.

We have tested Embree with the following ISPC versions:

  - ISPC 1.14.1
  - ISPC 1.13.0
  - ISPC 1.12.0
  - ISPC 1.9.2

You additionally have to install [CMake](http://www.cmake.org/download/)
(version 2.8.11 or higher). Note that you need a native Windows CMake
installation, because CMake under Cygwin cannot generate solution files
for Visual Studio.

### Using the IDE

Run `cmake-gui`, browse to the Embree sources, set the build directory
and click Configure. Now you can select the Generator, e.g. "Visual
Studio 12 2013" for a 32-bit build or "Visual Studio 12 2013 Win64"
for a 64-bit build.

To use a different compiler than the Microsoft Visual C++ compiler, you
additionally need to specify the proper compiler toolset through the
option "Optional toolset to use (-T parameter)". E.g. to use Clang for
compilation set the toolset to "LLVM_v142", to use the Intel®
Compiler 2017 for compilation set the toolset to "Intel C++
Compiler 17.0".

Do not change the toolset manually in a solution file (neither through
the project properties dialog, nor through the "Use Intel Compiler"
project context menu), because then some compiler specific command line
options cannot be set by CMake.

Most configuration parameters described in the [CMake Configuration]
can be set under Windows as well. Finally, click "Generate" to create
the Visual Studio solution files. 

The following CMake options are only available under Windows:

+ `CMAKE_CONFIGURATION_TYPE`:  List of generated
  configurations. Default value is Debug;Release;RelWithDebInfo.

+  `USE_STATIC_RUNTIME`: Use the static version of the C/C++ runtime
  library. This option is turned OFF by default.

Use the generated Visual Studio solution file `embree2.sln` to compile
the project. To build Embree with support for the AVX2 instruction set
you need at least Visual Studio 2013 (Update 4).

We recommend enabling syntax highlighting for the `.ispc` source and
`.isph` header files. To do so open Visual Studio, go to Tools ⇒
Options ⇒ Text Editor ⇒ File Extension and add the `isph` and `ispc`
extensions for the "Microsoft Visual C++" editor.

### Using the Command Line

Embree can also be configured and built without the IDE using the Visual
Studio command prompt:

    cd path\to\embree
    mkdir build
    cd build
    cmake -G "Visual Studio 12 2013 Win64" ..
    cmake --build . --config Release

To use the Intel® Compiler, set the proper toolset, e.g. for Intel
Compiler 17.0:

    cmake -G "Visual Studio 12 2013 Win64" -T "Intel C++ Compiler 17.0" ..
    cmake --build . --config Release

You can also build only some projects with the `--target` switch.
Additional parameters after "`--`" will be passed to `msbuild`. For
example, to build the Embree library in parallel use

    cmake --build . --config Release --target embree -- /m


CMake Configuration
-------------------

The default CMake configuration in the configuration dialog should be
appropriate for most usages. The following list describes all
parameters that can be configured in CMake:

+ `CMAKE_BUILD_TYPE`: Can be used to switch between Debug mode
  (Debug), Release mode (Release) (default), and Release mode with
  enabled assertions and debug symbols (RelWithDebInfo).

+ `EMBREE_STACK_PROTECTOR`: Enables protection of return address
  from buffer overwrites. This option is OFF by default.

+ `EMBREE_ISPC_SUPPORT`: Enables ISPC support of Embree. This option
  is ON by default.

+ `EMBREE_STATIC_LIB`: Builds Embree as a static library (OFF by
  default). Further multiple static libraries are generated for the
  different ISAs selected (e.g. `embree3.a`, `embree3_sse42.a`,
  `embree3_avx.a`, `embree3_avx2.a`, `embree3_avx512.a`). You have
  to link these libraries in exactly this order of increasing ISA.

+ `EMBREE_API_NAMESPACE`: Specifies a namespace name to put all Embree
  API symbols inside. By default no namespace is used and plain C symbols
  exported.

+ `EMBREE_LIBRARY_NAME`: Specifies the name of the Embree library file
  created. By default the name embree3 is used.

+ `EMBREE_IGNORE_CMAKE_CXX_FLAGS`: When enabled, Embree ignores
  default CMAKE_CXX_FLAGS. This option is turned ON by default.

+ `EMBREE_TUTORIALS`: Enables build of Embree tutorials (default ON).

+ `EMBREE_BACKFACE_CULLING`: Enables backface culling, i.e. only
  surfaces facing a ray can be hit. This option is turned OFF by
  default.

+ `EMBREE_COMPACT_POLYS`: Enables compact tris/quads, i.e. only
  geomIDs and primIDs are stored inside the leaf nodes.  

+ `EMBREE_FILTER_FUNCTION`: Enables the intersection filter function
  feature (ON by default).

+ `EMBREE_RAY_MASK`: Enables the ray masking feature (OFF by default).

+ `EMBREE_RAY_PACKETS`: Enables ray packet traversal kernels. This
  feature is turned ON by default. When turned on packet traversal is
  used internally and packets passed to rtcIntersect4/8/16 are kept
  intact in callbacks (when the ISA of appropiate width is enabled).

+ `EMBREE_IGNORE_INVALID_RAYS`: Makes code robust against the risk of
  full-tree traversals caused by invalid rays (e.g. rays containing
  INF/NaN as origins). This option is turned OFF by default.

+ `EMBREE_TASKING_SYSTEM`: Chooses between Intel® Threading TBB
  Building Blocks (TBB), Parallel Patterns Library (PPL) (Windows
  only), or an internal tasking system (INTERNAL). By default TBB is
  used.

+ `EMBREE_TBB_ROOT`: If Intel® Threading TBB Building Blocks (TBB)
  is used as a tasking system, search the library in this directory
  tree.

+ `EMBREE_TBB_POSTFIX`: If Intel® Threading TBB Building Blocks (TBB)
  is used as a tasking system, link to tbb<EMBREE_TBB_POSTFIX>.(so,dll,lib).
  Defaults to the empty string.

+ `EMBREE_TBB_DEBUG_ROOT`: If Intel® Threading TBB Building Blocks (TBB)
  is used as a tasking system, search the library in this directory
  tree in Debug mode. Defaults to `EMBREE_TBB_ROOT`.

+ `EMBREE_TBB_DEBUG_POSTFIX`: If Intel® Threading TBB Building Blocks (TBB)
  is used as a tasking system, link to tbb<EMBREE_TBB_DEBUG_POSTFIX>.(so,dll,lib)
  in Debug mode. Defaults to "_debug".

+ `EMBREE_MAX_ISA`: Select highest supported ISA (SSE2, SSE4.2, AVX,
  AVX2, AVX512, or NONE). When set to NONE the
  EMBREE_ISA_* variables can be used to enable ISAs individually. By
  default the option is set to AVX2.

+ `EMBREE_ISA_SSE2`: Enables SSE2 when EMBREE_MAX_ISA is set to
  NONE. By default this option is turned OFF.

+ `EMBREE_ISA_SSE42`: Enables SSE4.2 when EMBREE_MAX_ISA is set to
  NONE. By default this option is turned OFF.

+ `EMBREE_ISA_AVX`: Enables AVX when EMBREE_MAX_ISA is set to NONE. By
  default this option is turned OFF.

+ `EMBREE_ISA_AVX2`: Enables AVX2 when EMBREE_MAX_ISA is set to
  NONE. By default this option is turned OFF.

+ `EMBREE_ISA_AVX512`: Enables AVX-512 for Skylake when
  EMBREE_MAX_ISA is set to NONE. By default this option is turned OFF.

+ `EMBREE_GEOMETRY_TRIANGLE`: Enables support for trianglegeometries
  (ON by default).

+ `EMBREE_GEOMETRY_QUAD`: Enables support for quad geometries (ON by
  default).

+ `EMBREE_GEOMETRY_CURVE`: Enables support for curve geometries (ON by
  default).

+ `EMBREE_GEOMETRY_SUBDIVISION`: Enables support for subdivision
  geometries (ON by default).

+ `EMBREE_GEOMETRY_INSTANCE`: Enables support for instances (ON by
  default).

+ `EMBREE_GEOMETRY_USER`: Enables support for user defined geometries
  (ON by default).

+ `EMBREE_GEOMETRY_POINT`: Enables support for point geometries
  (ON by default).

+ `EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR`: Specifies a
  factor that controls the self intersection avoidance feature for flat
  curves. Flat curve intersections which are closer than
  curve_radius*`EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR` to
  the ray origin are ignored. A value of 0.0f disables self
  intersection avoidance while 2.0f is the default value.

+ `EMBREE_MIN_WIDTH`: Enabled the min-width feature, which allows
  increasing the radius of curves and points to match some amount of
  pixels. See [rtcSetGeometryMaxRadiusScale] for more details.

+ `EMBREE_MAX_INSTANCE_LEVEL_COUNT`: Specifies the maximum number of nested
  instance levels. Should be greater than 0; the default value is 1.
  Instances nested any deeper than this value will silently disappear in
  release mode, and cause assertions in debug mode.


Using Embree
=============

The most convenient way of using Embree is through CMake. Just let
CMake find Embree using the `FIND_PACKAGE` function inside your
`CMakeLists.txt` file:

     FIND_PACKAGE(embree 3.0 REQUIRED)

If you installed Embree using the Linux RPM or macOS PKG installer,
this will automatically find Embree. If you used the `zip` or `tar.gz`
files to extract Embree, you need to set the `embree_DIR` variable to
the folder you extracted Embree to. If you used the Windows MSI
installer, you need to set `embree_DIR` to point to the Embree install
location (e.g. `C:\Program Files\Intel\Embree3`).

The `FIND_PACKAGE` function will create an embree target that
you can add to your target link libraries:

    TARGET_LINK_LIBRARIES(application embree)

Now please have a look at the [Embree Tutorials] source code and the
[Embree API] section to get started.



Embree API
==========

The Embree API is a low-level C99 ray tracing API which can be used to
construct 3D scenes and perform ray queries of different types inside
these scenes. All API calls carry the prefix `rtc` (or `RTC` for types)
which stands for **r**ay **t**racing **c**ore.

The API also exists in an ISPC version, which is almost identical but
contains additional functions that operate on ray packets with a size
of the native SIMD width used by ISPC. For simplicity this document
refers to the C99 version of the API functions. For changes when
upgrading from the Embree 2 to the current Embree 3 API see Section
[Upgrading from Embree 2 to Embree 3].

The API supports scenes consisting of different geometry types such as
triangle meshes, quad meshes (triangle pairs), grid meshes, flat
curves, round curves, oriented curves, subdivision meshes, instances,
and user-defined geometries. See Section [Scene Object](#scene-object)
for more information.

Finding the closest hit of a ray segment with the scene
(`rtcIntersect`-type functions), and determining whether any hit
between a ray segment and the scene exists (`rtcOccluded`-type
functions) are both supported. The API supports queries for single
rays, ray packets, and ray streams. See Section [Ray
Queries](#ray-queries) for more information.

The API is designed in an object-oriented manner, e.g. it contains
device objects (`RTCDevice` type), scene objects (`RTCScene` type),
geometry objects (`RTCGeometry` type), buffer objects (`RTCBuffer`
type), and BVH objects (`RTCBVH` type). All objects are reference
counted, and handles can be released by calling the appropriate release
function (e.g. `rtcReleaseDevice`) or retained by incrementing the
reference count (e.g. `rtcRetainDevice`). In general, API calls that
access the same object are not thread-safe, unless specified
differently. However, attaching geometries to the same scene and
performing ray queries in a scene is thread-safe.

Device Object
-------------

Embree supports a device concept, which allows different components of
the application to use the Embree API without interfering with each
other. An application typically first creates a device using the
[rtcNewDevice] function. This device can then be used to construct
further objects, such as scenes and geometries. Before the application
exits, it should release all devices by invoking [rtcReleaseDevice].
An application typically creates only a single device. If required
differently, it should only use a small number of devices at any given
time.

Each user thread has its own error flag per device. If an error occurs
when invoking an API function, this flag is set to an error code (if it
isn't already set by a previous error). See Section
[rtcGetDeviceError] for information on how to read the error code and
Section [rtcSetDeviceErrorFunction] on how to register a callback
that is invoked for each error encountered. It is recommended to always
set a error callback function, to detect all errors.

Scene Object
------------

A scene is a container for a set of geometries, and contains a spatial
acceleration structure which can be used to perform different types of
ray queries.

A scene is created using the `rtcNewScene` function call, and released
using the `rtcReleaseScene` function call. To populate a scene with
geometries use the `rtcAttachGeometry` call, and to detach them use the
`rtcDetachGeometry` call. Once all scene geometries are attached, an
`rtcCommitScene` call (or `rtcJoinCommitScene` call) will finish the
scene description and trigger building of internal data structures.
After the scene got committed, it is safe to perform ray queries (see
Section [Ray Queries](#ray-queries)) or to query the scene bounding box
(see [rtcGetSceneBounds] and [rtcGetSceneLinearBounds]).

If scene geometries get modified or attached or detached, the
`rtcCommitScene` call must be invoked before performing any further ray
queries for the scene; otherwise the effect of the ray query is
undefined. The modification of a geometry, committing the scene, and
tracing of rays must always happen sequentially, and never at the same
time. Any API call that sets a property of the scene or geometries
contained in the scene count as scene modification, e.g. including
setting of intersection filter functions.

Scene flags can be used to configure a scene to use less memory
(`RTC_SCENE_FLAG_COMPACT`), use more robust traversal algorithms
(`RTC_SCENE_FLAG_ROBUST`), and to optimize for dynamic content. See
Section [rtcSetSceneFlags] for more details.

A build quality can be specified for a scene to balance between
acceleration structure build performance and ray query performance. See
Section [rtcSetSceneBuildQuality] for more details on build quality.

Geometry Object
---------------

A new geometry is created using the `rtcNewGeometry` function.
Depending on the geometry type, different buffers must be bound (e.g.
using `rtcSetSharedGeometryBuffer`) to set up the geometry data. In
most cases, binding of a vertex and index buffer is required. The
number of primitives and vertices of that geometry is typically
inferred from the size of these bound buffers.

Changes to the geometry always must be committed using the
`rtcCommitGeometry` call before using the geometry. After committing, a
geometry is not included in any scene. A geometry can be added to a
scene by using the `rtcAttachGeometry` function (to automatically
assign a geometry ID) or using the `rtcAttachGeometryById` function (to
specify the geometry ID manually). A geometry can get attached to
multiple scenes.

All geometry types support multi-segment motion blur with an arbitrary
number of equidistant time steps (in the range of 2 to 129) inside a
user specified time range. Each geometry can have a different number of
time steps and a different time range. The motion blur geometry is
defined by linearly interpolating the geometries of neighboring time
steps. To construct a motion blur geometry, first the number of time
steps of the geometry must be specified using the
`rtcSetGeometryTimeStepCount` function, and then a vertex buffer for
each time step must be bound, e.g. using the
`rtcSetSharedGeometryBuffer` function. Optionally, a time range
defining the start (and end time) of the first (and last) time step can
be set using the `rtcSetGeometryTimeRange` function. This feature will
also allow geometries to appear and disappear during the camera shutter
time if the time range is a sub range of [0,1].

The API supports per-geometry filter callback functions (see
`rtcSetGeometryIntersectFilterFunction` and
`rtcSetGeometryOccludedFilterFunction`) that are invoked for each
intersection found during the `rtcIntersect`-type or `rtcOccluded`-type
calls. The former ones are called geometry intersection filter
functions, the latter ones geometry occlusion filter functions. These
filter functions are designed to be used to ignore intersections
outside of a user-defined silhouette of a primitive, e.g. to model tree
leaves using transparency textures.

Ray Queries
-----------

The API supports finding the closest hit of a ray segment with the
scene (`rtcIntersect`-type functions), and determining whether any hit
between a ray segment and the scene exists (`rtcOccluded`-type
functions).

Supported are single ray queries (`rtcIntersect1` and `rtcOccluded1`)
as well as ray packet queries for ray packets of size 4
(`rtcIntersect4` and `rtcOccluded4`), ray packets of size 8
(`rtcIntersect8` and `rtcOccluded8`), and ray packets of size 16
(`rtcIntersect16` and `rtcOccluded16`).

Ray streams in a variety of layouts are supported as well, such as
streams of single rays (`rtcIntersect1M` and `rtcOccluded1M`), streams
of pointers to single rays (`rtcIntersect1p` and `rtcOccluded1p`),
streams of ray packets (`rtcIntersectNM` and `rtcOccludedNM`), and
large packet-like streams in structure of pointer layout
(`rtcIntersectNp` and `rtcOccludedNp`).

See Sections [rtcIntersect1] and [rtcOccluded1] for a detailed
description of how to set up and trace a ray.

See tutorial [Triangle Geometry] for a complete example of how to
trace single rays and ray packets. Also have a look at the tutorial
[Stream Viewer] for an example of how to trace ray streams.

Point Queries
-------------

The API supports traversal of the BVH using a point query object that
specifies a location and a query radius. For all primitives
intersecting the according domain, a user defined callback function is
called which allows queries such as finding the closest point on the
surface geometries of the scene (see Tutorial [Closest Point]) or
nearest neighbour queries (see Tutorial [Voronoi]).

See Section [rtcPointQuery] for a detailed description of how to set
up point queries.

Collision Detection
-------------------

The Embree API also supports collision detection queries between two
scenes consisting only of user geometries. Embree only performs
broadphase collision detection, the narrow phase detection can be
performed through a callback function.

See Section [rtcCollide] for a detailed description of how to set up
collision detection.

Seen tutorial [Collision Detection](#collision-detection) for a
complete example of collsion detection being used on a simple cloth
solver.

Miscellaneous
-------------

A context filter function, which can be set per ray query is supported
(see `rtcInitIntersectContext`). This filter function is designed to
change the semantics of the ray query, e.g. to accumulate opacity for
transparent shadows, count the number of surfaces along a ray, collect
all hits along a ray, etc.

The internal algorithms to build a BVH are exposed through the `RTCBVH`
object and `rtcBuildBVH` call. This call makes it possible to build a
BVH in a user-specified format over user-specified primitives. See the
documentation of the `rtcBuildBVH` call for more details.

For getting the most performance out of Embree, see the Section
[Performance Recommendations].

Upgrading from Embree 2 to Embree 3
===================================

We decided to introduce an improved API in Embree 3 that is not
backward compatible with the Embree 2 API. This step was required to
remove various deprecated API functions that accumulated over time,
improve extensibility of the API, fix suboptimal design decisions, fix
design mistakes (such as incompatible single ray and ray packet
layouts), clean up inconsistent naming, and increase flexibility.

To make porting to the new API easy, we provide a conversion script
that can do most of the work, and will annotate the code with remaining
changes required. The script can be invoked the following way for CPP
files:

    ./scripts/cpp-patch.py --patch embree2_to_embree3.patch
      --in infile.cpp --out outfile.cpp

When invoked for ISPC files, add the `--ispc` option:

    ./scripts/cpp-patch.py --ispc --patch embree2_to_embree3.patch
      --in infile.ispc --out outfile.ispc

Apply the script to each source file of your project that contains
Embree API calls or types. The input file and output file can also be
identical to perform the patch in-place. Please always backup your
original code before running the script, and inspect the code changes
done by the script using diff (e.g. `git diff`), to make sure no
undesired code locations got changed. Grep the code for comments
containing `EMBREE_FIXME` and perform the action described in the
comment.

The following changes need to be performed when switching from Embree 2
to Embree 3. Most of these changes are automatically done by the script
if not described differently.

We strongly recommend to set an error callback function (see
`rtcSetDeviceErrorFunction`) when porting to Embree 3 to detect all
runtime errors early.

Device
------

-   `rtcInit` and `rtcExit` got removed. Please use the device concept
    using the `rtcNewDevice` and `rtcReleaseDevice` functions instead.

-   Functions that conceptually should operate on a device but did not
    get a device argument got removed. The upgrade script replaces
    these functions by the proper functions that operate on a device,
    however, manually propagating the device handle to these function
    calls might still be required.

Scene
-----

-   The API no longer distinguishes between a static and a dynamic
    scene. Some users had issues as they wanted to do minor
    modifications to static scenes, but maintain high traversal
    performance.

    The new approach gives more flexibility, as each scene is
    changeable, and build quality settings can be changed on a commit
    basis to balance between build performance and render performance.

-   The `rtcCommitThread` function got removed; use
    `rtcJoinCommitScene` instead.

-   The scene now supports different build quality settings. Please use
    those instead of the previous way of `RTC_SCENE_STATIC`,
    `RTC_SCENE_DYNAMIC`, and `RTC_SCENE_HIGH_QUALITY` flags.

Geometry
--------

-   There is now only one `rtcNewGeometry` function to create
    geometries which gets passed an enum to specify the type of
    geometry to create. The number of vertices and primitives of the
    geometries is inferred from the size of data buffers.

-   We introduced an object type `RTCGeometry` for all geometries.
    Previously a geometry was not a standalone object and could only
    exist inside a scene. The new approach comes with more flexibility
    and more readable code.

    Operations like `rtcInterpolate` can now be performed on the
    geometry object directly without the need of a scene. Further, an
    application can choose to create its geometries independent of a
    scene, e.g. each time a geometry node is added to its scene graph.

    This modification changed many API functions to get passed one
    `RTCGeometry` object instead of a `RTCScene` and `geomID`. The
    script does all required changed automatically. However, in some
    cases the script may introduce `rtcGetGeometry(scene, geomID)`
    calls to retrieve the geometry handle. Best store the geometry
    handle inside your scene representation (and release it in the
    destructor) and access the handle directly instead of calling
    `rtcGetGeometry`.

-   Geometries are not included inside a scene anymore but can be
    attached to a multiple scenes using the `rtcAttachGeomety` or
    `rtcAttachGeometryByID` functions.

-   As geometries are separate objects, commit semantics got introduced
    for them too. Thus geometries must be committed through the
    `rtcCommitGeometry` call before getting used. This allows for
    earlier error checking and pre-calculating internal data per
    geometry object.

    Such commit points were previously not required in the Embree 2
    API. The upgrade script attempts to insert the commits
    automatically, but cannot do so properly under all circumstances.
    Thus please check if every `rtcCommitGeometry` call inserted by the
    script is properly placed, and if a `rtcCommitGeometry` call is
    placed after a sequence of changes to a geometry.

-   Only the latest version of the previous displacement function call
    (`RTCDisplacementFunc2`) is now supported, and the callback is
    passed as a structure containing all arguments.

-   The deprecated `RTCBoundaryMode` type and `rtcSetBoundaryMode`
    function got removed and replaced by `RTCSubdivisionMode` enum and
    the `rtcSetGeometrySubdivisionMode` function. The script does this
    replacement automatically.

-   Ribbon curves and lines now avoid self-intersections automatically
    The application can be simplified by removing special code paths
    that previously did the self-intersection handling.

-   The previous Embree 2 way of instancing was suboptimal as it
    required user geometries to update the `instID` field of the ray
    differently when used inside an instanced scene or inside a
    top-level scene. The user geometry intersection code now just has
    to copy the `context.instID` field into the `ray.instID` field to
    function properly under all circumstances.

-   The internal instancing code will update the `context.instID` field
    properly when entering or leaving an instance. When instancing is
    implemented manually through user geometries, the code must be
    modified to set the `context.instID` field properly and no longer
    pass `instID` through the ray. This change must done manually and
    cannot be performed by the script.

-   We flipped the direction of the geometry normal to the widely used
    convention that a shape with counter-clockwise layout of vertices
    has the normal pointing upwards (right-hand rule). Most modeling
    tools follow that convention.

    The conversion script does not perform this change, thus if
    required adjust your code to flip `Ng` for triangle, quad, and
    subdivision surfaces.

Buffers
-------

-   With Embree 3 we are introducing explicit `RTCBuffer` objects.
    However, you can still use the short way of sharing buffers with
    Embree through the `rtcSetSharedGeometryBuffer` call.

-   The `rtcMapBuffer` and `rtcUnmapBuffer` API calls were removed, and
    we added the `rtcGetBufferData` call instead.

    Previously the `rtcMapBuffer` call had the semantics of creating an
    internal buffer when no buffer was shared for the corresponding
    buffer slot. These invocations of `rtcMapBuffer` must be replaced
    by an explicit creation of an internally managed buffer using the
    `rtcNewGeometryBuffer` function.

    The upgrade script cannot always detect if the `rtcMapBuffer` call
    would create an internal buffer or just map the buffer pointer.
    Thus check whether the `rtcNewGeometryBuffer` and
    `rtcGetBufferData` calls are correct after the conversion.

-   The `rtcUpdateGeometryBuffer` function now must be called for every
    buffer that got modified by the application. Note that the
    conversion script cannot automatically detect each location where a
    buffer update is now required.

-   The buffer type no longer encodes the time step or user vertex
    buffer index. Now `RTC_VERTEX_BUFFER_TYPE` and additional `slot`
    specifies the vertex buffer for a specific time step, and
    `RTC_USER_VERTEX_BUFFER_TYPE` and additional `slot` specifies a
    vertex attribute.

Miscellaneous {#miscellaneous}
-------------

-   The header files for Embree 3 are now inside the `embree3` folder
    (instead of `embree2` folder) and `libembree.so` is now called
    `libembree3.so` to be able to install multiple Embree versions side
    by side. We made the headers C99 compliant.

-   All API objects are now reference counted with release functions to
    decrement and retain functions to increment the reference count (if
    required).

-   Most callback functions no longer get different arguments as input,
    but a pointer to a structure containing all arguments. This results
    in more readable code, faster callback invocation (as some
    arguments do not change between invocations) and is extensible, as
    new members to the structure can be later added in a backward
    compatible way (if required).

    The conversion script can convert the definition and declaration of
    the old callback functions in most cases. Before running the
    script, make sure that you never type-cast a callback function when
    assigning it (as this has the danger of assigning a callback
    function with a wrong type if the conversion did not detect some
    callbacks as such). If the script does not detect a callback
    function, make sure the argument types match exactly the types in
    the header (e.g. write `const int` instead of `int const` or
    convert the callback manually).

-   An intersection context is now required for each ray query
    invocation. The context should be initialized using the
    `rtcInitIntersectContext` function.

-   The `rtcIntersect`-type functions get as input an `RTCRayHit` type,
    which is similar to before, but has the ray and hit parts split
    into two sub-structures.

    The `rtcOccluded`-type functions get as input an `RTCRay` type,
    which does not contain hit data anymore. When an occlusion is
    found, the `tfar` element of the ray is set to `-inf`.

    Required code changes cannot be done by the upgrade script and need
    to be done manually.

-   The ray layout for single rays and packets of rays had certain
    incompatibilities (alignment of `org` and `dir` for single rays
    caused gaps in the single ray layout that were not in the ray
    packet layout). This issue never showed up because single rays and
    ray packets were separate in the system initially. This layout
    issue is now fixed, and a single ray has the same layout as a ray
    packet of size 1.

-   Previously Embree supported placing additional data at the end of
    the ray structure, and accessing that data inside user geometry
    callbacks and filter callback functions.

    With Embree 3 this is no longer supported, and the ray passed to a
    callback function may be copied to a different memory location. To
    attach additional data to your ray, simply extend the intersection
    context with a pointer to that data.

    This change cannot be done by the script. Further, code will still
    work if you extend the ray as the implementation did not change
    yet.

-   The ray structure now contains an additional `id` and `flags`
    field. The `id` can be used to store the index of the ray with
    respect to a ray packet or ray stream. The `flags` is reserved for
    future use, and currently must be set to 0.

-   All previous intersection filter callback variants have been
    removed, except for the `RTCFilterFuncN` which gets a varying size
    ray packet as input. The semantics of this filter function type
    have changed from copying the hit on acceptance to clearing the
    ray's valid argument in case of non-acceptance. This way, chaining
    multiple filters is more efficient.

    We kept the guarantee that for `rtcIntersect1/4/8/16` and
    `rtcOccluded1/4/8/16` calls the packet size and ray order will not
    change from the initial size and ordering when entering a filter
    callback.

-   We no longer export ISPC-specific symbols. This has the advantage
    that certain linking issues went away, e.g. it is now possible to
    link an ISPC application compiled for any combination of ISAs, and
    link this to an Embree library compiled with a different set of
    ISAs. Previously the ISAs of the application had to be a subset of
    the ISAs of Embree, and when the user enabled exactly one ISA, they
    had to do this in Embree and the application.

-   We no longer export the ISPC tasking system, which means that the
    application has the responsibility to implement the ISPC tasking
    system itself. ISPC comes with example code on how to do this. This
    change is not performed by the script and must be done manually.

-   Fixed many naming inconsistencies, and changed names of further API
    functions. All these renamings are properly done by the script and
    need no further attention.



Embree API Reference
====================

rtcNewDevice
------------

#### NAME

    rtcNewDevice - creates a new device

#### SYNOPSIS

    #include <embree3/rtcore.h>

    RTCDevice rtcNewDevice(const char* config);

#### DESCRIPTION

This function creates a new device and returns a handle to this device.
The device object is reference counted with an initial reference count
of 1. The handle can be released using the `rtcReleaseDevice` API call.

The device object acts as a class factory for all other object types.
All objects created from the device (like scenes, geometries, etc.)
hold a reference to the device, thus the device will not be destroyed
unless these objects are destroyed first.

Objects are only compatible if they belong to the same device, e.g it
is not allowed to create a geometry in one device and attach it to a
scene created with a different device.

A configuration string (`config` argument) can be passed to the device
construction. This configuration string can be `NULL` to use the
default configuration.

The following configuration is supported:

-   `threads=[int]`: Specifies a number of build threads to use. A
    value of 0 enables all detected hardware threads. By default all
    hardware threads are used.

-   `user_threads=[int]`: Sets the number of user threads that can be
    used to join and participate in a scene commit using
    `rtcJoinCommitScene`. The tasking system will only use
    threads-user\_threads many worker threads, thus if the app wants to
    solely use its threads to commit scenes, just set threads equal to
    user\_threads. This option only has effect with the Intel(R)
    Threading Building Blocks (TBB) tasking system.

-   `set_affinity=[0/1]`: When enabled, build threads are affinitized
    to hardware threads. This option is disabled by default on standard
    CPUs, and enabled by default on Xeon Phi Processors.

-   `start_threads=[0/1]`: When enabled, the build threads are started
    upfront. This can be useful for benchmarking to exclude thread
    creation time. This option is disabled by default.

-   `isa=[sse2,sse4.2,avx,avx2,avx512]`: Use specified ISA. By default
    the ISA is selected automatically.

-   `max_isa=[sse2,sse4.2,avx,avx2,avx512]`: Configures the automated
    ISA selection to use maximally the specified ISA.

-   `hugepages=[0/1]`: Enables or disables usage of huge pages. Under
    Linux huge pages are used by default but under Windows and macOS
    they are disabled by default.

-   `enable_selockmemoryprivilege=[0/1]`: When set to 1, this enables
    the `SeLockMemoryPrivilege` privilege with is required to use huge
    pages on Windows. This option has an effect only under Windows and
    is ignored on other platforms. See Section [Huge Page Support]
    for more details.

-   `verbose=[0,1,2,3]`: Sets the verbosity of the output. When set to
    0, no output is printed by Embree, when set to a higher level more
    output is printed. By default Embree does not print anything on the
    console.

-   `frequency_level=[simd128,simd256,simd512]`: Specifies the
    frequency level the application want to run on, which can be
    either:
    a)  simd128 to run at highest frequency
    b)  simd256 to run at AVX2-heavy frequency level
    c)  simd512 to run at heavy AVX512 frequency level. When some
        frequency level is specified, Embree will avoid doing
        optimizations that may reduce the frequency level below the
        level specified. E.g. if your app does not use AVX instructions
        setting "frequency\_level=simd128" will cause some CPUs to run
        at highest frequency, which may result in higher application
        performance if you do much shading. If you application heavily
        uses AVX code, you should best set the frequency level to
        simd256. Per default Embree tries to avoid reducing the
        frequency of the CPU by setting the simd256 level only when the
        CPU has no significant down clocking.

Different configuration options should be separated by commas, e.g.:

    rtcNewDevice("threads=1,isa=avx");

#### EXIT STATUS

On success returns a handle of the created device. On failure returns
`NULL` as device and sets a per-thread error code that can be queried
using `rtcGetDeviceError(NULL)`.

#### SEE ALSO

[rtcRetainDevice], [rtcReleaseDevice]



rtcRetainDevice
---------------

#### NAME {#name}

    rtcRetainDevice - increments the device reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcRetainDevice(RTCDevice device);

#### DESCRIPTION {#description}

Device objects are reference counted. The `rtcRetainDevice` function
increments the reference count of the passed device object (`device`
argument). This function together with `rtcReleaseDevice` allows to use
the internal reference counting in a C++ wrapper class to manage the
ownership of the object.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewDevice], [rtcReleaseDevice]



rtcReleaseDevice
----------------

#### NAME {#name}

    rtcReleaseDevice - decrements the device reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcReleaseDevice(RTCDevice device);

#### DESCRIPTION {#description}

Device objects are reference counted. The `rtcReleaseDevice` function
decrements the reference count of the passed device object (`device`
argument). When the reference count falls to 0, the device gets
destroyed.

All objects created from the device (like scenes, geometries, etc.)
hold a reference to the device, thus the device will not get destroyed
unless these objects are destroyed first.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewDevice], [rtcRetainDevice]



rtcGetDeviceProperty
--------------------

#### NAME {#name}

    rtcGetDeviceProperty - queries properties of the device

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    ssize_t rtcGetDeviceProperty(
      RTCDevice device,
      enum RTCDeviceProperty prop
    );

#### DESCRIPTION {#description}

The `rtcGetDeviceProperty` function can be used to query properties
(`prop` argument) of a device object (`device` argument). The returned
property is an integer of type `ssize_t`.

Possible properties to query are:

-   `RTC_DEVICE_PROPERTY_VERSION`: Queries the combined version number
    (MAJOR.MINOR.PATCH) with two decimal digits per component. E.g. for
    Embree 2.8.3 the integer 208003 is returned.

-   `RTC_DEVICE_PROPERTY_VERSION_MAJOR`: Queries the major version
    number of Embree.

-   `RTC_DEVICE_PROPERTY_VERSION_MINOR`: Queries the minor version
    number of Embree.

-   `RTC_DEVICE_PROPERTY_VERSION_PATCH`: Queries the patch version
    number of Embree.

-   `RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED`: Queries whether the
    `rtcIntersect4` and `rtcOccluded4` functions preserve packet size
    and ray order when invoking callback functions. This is only the
    case if Embree is compiled with `EMBREE_RAY_PACKETS` and `SSE2` (or
    `SSE4.2`) enabled, and if the machine it is running on supports
    `SSE2` (or `SSE4.2`).

-   `RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED`: Queries whether the
    `rtcIntersect8` and `rtcOccluded8` functions preserve packet size
    and ray order when invoking callback functions. This is only the
    case if Embree is compiled with `EMBREE_RAY_PACKETS` and `AVX` (or
    `AVX2`) enabled, and if the machine it is running on supports `AVX`
    (or `AVX2`).

-   `RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED`: Queries whether the
    `rtcIntersect16` and `rtcOccluded16` functions preserve packet size
    and ray order when invoking callback functions. This is only the
    case if Embree is compiled with `EMBREE_RAY_PACKETS` and `AVX512`
    enabled, and if the machine it is running on supports `AVX512`.

-   `RTC_DEVICE_PROPERTY_RAY_STREAM_SUPPORTED`: Queries whether
    `rtcIntersect1M`, `rtcIntersect1Mp`, `rtcIntersectNM`,
    `rtcIntersectNp`, `rtcOccluded1M`, `rtcOccluded1Mp`,
    `rtcOccludedNM`, and `rtcOccludedNp` are supported. This is only
    the case if Embree is compiled with `EMBREE_RAY_PACKETS` enabled.

-   `RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED`: Queries whether ray masks
    are supported. This is only the case if Embree is compiled with
    `EMBREE_RAY_MASK` enabled.

-   `RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED`: Queries whether
    back face culling is enabled. This is only the case if Embree is
    compiled with `EMBREE_BACKFACE_CULLING` enabled.

-   `RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED`: Queries whether
    compact polys is enabled. This is only the case if Embree is
    compiled with `EMBREE_COMPACT_POLYS` enabled.

-   `RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED`: Queries whether
    filter functions are supported, which is the case if Embree is
    compiled with `EMBREE_FILTER_FUNCTION` enabled.

-   `RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED`: Queries whether
    invalid rays are ignored, which is the case if Embree is compiled
    with `EMBREE_IGNORE_INVALID_RAYS` enabled.

-   `RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED`: Queries whether
    triangles are supported, which is the case if Embree is compiled
    with `EMBREE_GEOMETRY_TRIANGLE` enabled.

-   `RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED`: Queries whether
    quads are supported, which is the case if Embree is compiled with
    `EMBREE_GEOMETRY_QUAD` enabled.

-   `RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED`: Queries
    whether subdivision meshes are supported, which is the case if
    Embree is compiled with `EMBREE_GEOMETRY_SUBDIVISION` enabled.

-   `RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED`: Queries whether
    curves are supported, which is the case if Embree is compiled with
    `EMBREE_GEOMETRY_CURVE` enabled.

-   `RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED`: Queries whether
    points are supported, which is the case if Embree is compiled with
    `EMBREE_GEOMETRY_POINT` enabled.

-   `RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED`: Queries whether user
    geometries are supported, which is the case if Embree is compiled
    with `EMBREE_GEOMETRY_USER` enabled.

-   `RTC_DEVICE_PROPERTY_TASKING_SYSTEM`: Queries the tasking system
    Embree is compiled with. Possible return values are:

    0.  internal tasking system
    1.  Intel Threading Building Blocks (TBB)
    2.  Parallel Patterns Library (PPL)

-   `RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED`: Queries whether
    `rtcJoinCommitScene` is supported. This is not the case when Embree
    is compiled with PPL or older versions of TBB.

-   `RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED`: Queries whether
    `rtcCommitScene` can get invoked from multiple TBB worker threads
    concurrently. This feature is only supported starting with TBB 2019
    Update 9.

#### EXIT STATUS {#exit-status}

On success returns the value of the queried property. For properties
returning a boolean value, the return value 0 denotes `false` and 1
denotes `true`.

On failure zero is returned and an error code is set that can be
queried using `rtcGetDeviceError`.



rtcGetDeviceError
-----------------

#### NAME {#name}

    rtcGetDeviceError - returns the error code of the device

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCError rtcGetDeviceError(RTCDevice device);

#### DESCRIPTION {#description}

Each thread has its own error code per device. If an error occurs when
calling an API function, this error code is set to the occurred error
if it stores no previous error. The `rtcGetDeviceError` function reads
and returns the currently stored error and clears the error code. This
assures that the returned error code is always the first error occurred
since the last invocation of `rtcGetDeviceError`.

Possible error codes returned by `rtcGetDeviceError` are:

-   `RTC_ERROR_NONE`: No error occurred.

-   `RTC_ERROR_UNKNOWN`: An unknown error has occurred.

-   `RTC_ERROR_INVALID_ARGUMENT`: An invalid argument was specified.

-   `RTC_ERROR_INVALID_OPERATION`: The operation is not allowed for the
    specified object.

-   `RTC_ERROR_OUT_OF_MEMORY`: There is not enough memory left to
    complete the operation.

-   `RTC_ERROR_UNSUPPORTED_CPU`: The CPU is not supported as it does
    not support the lowest ISA Embree is compiled for.

-   `RTC_ERROR_CANCELLED`: The operation got canceled by a memory
    monitor callback or progress monitor callback function.

When the device construction fails, `rtcNewDevice` returns `NULL` as
device. To detect the error code of a such a failed device
construction, pass `NULL` as device to the `rtcGetDeviceError`
function. For all other invocations of `rtcGetDeviceError`, a proper
device pointer must be specified.

#### EXIT STATUS {#exit-status}

Returns the error code for the device.

#### SEE ALSO {#see-also}

[rtcSetDeviceErrorFunction]



rtcSetDeviceErrorFunction
-------------------------

#### NAME {#name}

    rtcSetDeviceErrorFunction - sets an error callback function for the device

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    typedef void (*RTCErrorFunction)(
      void* userPtr,
      RTCError code,
      const char* str
    );

    void rtcSetDeviceErrorFunction(
      RTCDevice device,
      RTCErrorFunction error,
      void* userPtr
    );

#### DESCRIPTION {#description}

Using the `rtcSetDeviceErrorFunction` call, it is possible to set a
callback function (`error` argument) with payload (`userPtr` argument),
which is called whenever an error occurs for the specified device
(`device` argument).

Only a single callback function can be registered per device, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

When the registered callback function is invoked, it gets passed the
user-defined payload (`userPtr` argument as specified at registration
time), the error code (`code` argument) of the occurred error, as well
as a string (`str` argument) that further describes the error.

The error code is also set if an error callback function is registered.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetDeviceError]



rtcSetDeviceMemoryMonitorFunction
---------------------------------

#### NAME {#name}

    rtcSetDeviceMemoryMonitorFunction - registers a callback function
      to track memory consumption

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    typedef bool (*RTCMemoryMonitorFunction)(
      void* userPtr,
      ssize_t bytes,
      bool post
    );

    void rtcSetDeviceMemoryMonitorFunction(
      RTCDevice device,
      RTCMemoryMonitorFunction memoryMonitor,
      void* userPtr
    );

#### DESCRIPTION {#description}

Using the `rtcSetDeviceMemoryMonitorFunction` call, it is possible to
register a callback function (`memoryMonitor` argument) with payload
(`userPtr` argument) for a device (`device` argument), which is called
whenever internal memory is allocated or deallocated by objects of that
device. Using this memory monitor callback mechanism, the application
can track the memory consumption of an Embree device, and optionally
terminate API calls that consume too much memory.

Only a single callback function can be registered per device, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

Once registered, the Embree device will invoke the memory monitor
callback function before or after it allocates or frees important
memory blocks. The callback function gets passed the payload as
specified at registration time (`userPtr` argument), the number of
bytes allocated or deallocated (`bytes` argument), and whether the
callback is invoked after the allocation or deallocation took place
(`post` argument). The callback function might get called from multiple
threads concurrently.

The application can track the current memory usage of the Embree device
by atomically accumulating the `bytes` input parameter provided to the
callback function. This parameter will be \>0 for allocations and \<0
for deallocations.

Embree will continue its operation normally when returning `true` from
the callback function. If `false` is returned, Embree will cancel the
current operation with the `RTC_ERROR_OUT_OF_MEMORY` error code.
Issuing multiple cancel requests from different threads is allowed.
Canceling will only happen when the callback was called for allocations
(bytes \> 0), otherwise the cancel request will be ignored.

If a callback to cancel was invoked before the allocation happens
(`post == false`), then the `bytes` parameter should not be
accumulated, as the allocation will never happen. If the callback to
cancel was invoked after the allocation happened (`post == true`), then
the `bytes` parameter should be accumulated, as the allocation properly
happened and a deallocation will later free that data block.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewDevice]



rtcNewScene
-----------

#### NAME {#name}

    rtcNewScene - creates a new scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCScene rtcNewScene(RTCDevice device);

#### DESCRIPTION {#description}

This function creates a new scene bound to the specified device
(`device` argument), and returns a handle to this scene. The scene
object is reference counted with an initial reference count of 1. The
scene handle can be released using the `rtcReleaseScene` API call.

#### EXIT STATUS {#exit-status}

On success a scene handle is returned. On failure `NULL` is returned
and an error code is set that can be queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcRetainScene], [rtcReleaseScene]



rtcGetSceneDevice
-----------------

#### NAME {#name}

    rtcGetSceneDevice - returns the device the scene got created in

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCDevice rtcGetSceneDevice(RTCScene scene);

#### DESCRIPTION {#description}

This function returns the device object the scene got created in. The
returned handle own one additional reference to the device object, thus
you should need to call `rtcReleaseDevice` when the returned handle is
no longer required.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcReleaseDevice]



rtcRetainScene
--------------

#### NAME {#name}

    rtcRetainScene - increments the scene reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcRetainScene(RTCScene scene);

#### DESCRIPTION {#description}

Scene objects are reference counted. The `rtcRetainScene` function
increments the reference count of the passed scene object (`scene`
argument). This function together with `rtcReleaseScene` allows to use
the internal reference counting in a C++ wrapper class to handle the
ownership of the object.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewScene], [rtcReleaseScene]



rtcReleaseScene
---------------

#### NAME {#name}

    rtcReleaseScene - decrements the scene reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcReleaseScene(RTCScene scene);

#### DESCRIPTION {#description}

Scene objects are reference counted. The `rtcReleaseScene` function
decrements the reference count of the passed scene object (`scene`
argument). When the reference count falls to 0, the scene gets
destroyed.

The scene holds a reference to all attached geometries, thus if the
scene gets destroyed, all geometries get detached and their reference
count decremented.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewScene], [rtcRetainScene]



rtcAttachGeometry
-----------------

#### NAME {#name}

    rtcAttachGeometry - attaches a geometry to the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    unsigned int rtcAttachGeometry(
      RTCScene scene,
      RTCGeometry geometry
    );

#### DESCRIPTION {#description}

The `rtcAttachGeometry` function attaches a geometry (`geometry`
argument) to a scene (`scene` argument) and assigns a geometry ID to
that geometry. All geometries attached to a scene are defined to be
included inside the scene. A geometry can get attached to multiplee
scene. The geometry ID is unique for the scene, and is used to identify
the geometry when hit by a ray during ray queries.

This function is thread-safe, thus multiple threads can attach
geometries to a scene in parallel.

The geometry IDs are assigned sequentially, starting from 0, as long as
no geometry got detached. If geometries got detached, the
implementation will reuse IDs in an implementation dependent way.
Consequently sequential assignment is no longer guaranteed, but a
compact range of IDs.

These rules allow the application to manage a dynamic array to
efficiently map from geometry IDs to its own geometry representation.
Alternatively, the application can also use per-geometry user data to
map to its geometry representation. See `rtcSetGeometryUserData` and
`rtcGetGeometryUserData` for more information.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryUserData], [rtcGetGeometryUserData]



rtcAttachGeometryByID
---------------------

#### NAME {#name}

    rtcAttachGeometryByID - attaches a geometry to the scene
      using a specified geometry ID

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcAttachGeometryByID(
      RTCScene scene,
      RTCGeometry geometry,
      unsigned int geomID
    );

#### DESCRIPTION {#description}

The `rtcAttachGeometryByID` function attaches a geometry (`geometry`
argument) to a scene (`scene` argument) and assigns a user provided
geometry ID (`geomID` argument) to that geometry. All geometries
attached to a scene are defined to be included inside the scene. A
geometry can get attached to multiple scenes. The passed user-defined
geometry ID is used to identify the geometry when hit by a ray during
ray queries. Using this function, it is possible to share the same IDs
to refer to geometries inside the application and Embree.

This function is thread-safe, thus multiple threads can attach
geometries to a scene in parallel.

The user-provided geometry ID must be unused in the scene, otherwise
the creation of the geometry will fail. Further, the user-provided
geometry IDs should be compact, as Embree internally creates a vector
which size is equal to the largest geometry ID used. Creating very
large geometry IDs for small scenes would thus cause a memory
consumption and performance overhead.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcAttachGeometry]



rtcDetachGeometry
-----------------

#### NAME {#name}

    rtcDetachGeometry - detaches a geometry from the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcDetachGeometry(RTCScene scene, unsigned int geomID);

#### DESCRIPTION {#description}

This function detaches a geometry identified by its geometry ID
(`geomID` argument) from a scene (`scene` argument). When detached, the
geometry is no longer contained in the scene.

This function is thread-safe, thus multiple threads can detach
geometries from a scene at the same time.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcAttachGeometry], [rtcAttachGeometryByID]



rtcGetGeometry
--------------

#### NAME {#name}

    rtcGetGeometry - returns the geometry bound to
      the specified geometry ID

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry rtcGetGeometry(RTCScene scene, unsigned int geomID);

#### DESCRIPTION {#description}

The `rtcGetGeometry` function returns the geometry that is bound to the
specified geometry ID (`geomID` argument) for the specified scene
(`scene` argument). This function just looks up the handle and does
*not* increment the reference count. If you want to get ownership of
the handle, you need to additionally call `rtcRetainGeometry`. For this
reason, this function is fast and can be used during rendering.
However, it is generally recommended to store the geometry handle
inside the application's geometry representation and look up the
geometry handle from that representation directly.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcAttachGeometry], [rtcAttachGeometryByID]



rtcCommitScene
--------------

#### NAME {#name}

    rtcCommitScene - commits scene changes

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcCommitScene(RTCScene scene);

#### DESCRIPTION {#description}

The `rtcCommitScene` function commits all changes for the specified
scene (`scene` argument). This internally triggers building of a
spatial acceleration structure for the scene using all available worker
threads. Ray queries can be performed only after committing all scene
changes.

If the application uses TBB 2019 Update 9 or later for parallelization
of rendering, lazy scene construction during rendering is supported by
`rtcCommitScene`. Therefore `rtcCommitScene` can get called from
multiple TBB worker threads concurrently for the same scene. The
`rtcCommitScene` function will then internally isolate the scene
construction using a tbb::isolated\_task\_group. The alternative
approach of using `rtcJoinCommitScene` which uses an tbb:task\_arena
internally, is not recommended due to it's high runtime overhead.

If scene geometries get modified or attached or detached, the
`rtcCommitScene` call must be invoked before performing any further ray
queries for the scene; otherwise the effect of the ray query is
undefined. The modification of a geometry, committing the scene, and
tracing of rays must always happen sequentially, and never at the same
time. Any API call that sets a property of the scene or geometries
contained in the scene count as scene modification, e.g. including
setting of intersection filter functions.

The kind of acceleration structure built can be influenced using scene
flags (see `rtcSetSceneFlags`), and the quality can be specified using
the `rtcSetSceneBuildQuality` function.

Embree silently ignores primitives during spatial acceleration
structure construction that would cause numerical issues,
e.g. primitives containing NaNs, INFs, or values greater than 1.844E18f
(as no reasonable calculations can be performed with such values
without causing overflows).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcJoinCommitScene]



rtcJoinCommitScene
------------------

#### NAME {#name}

    rtcJoinCommitScene - commits the scene from multiple threads

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcJoinCommitScene(RTCScene scene);

#### DESCRIPTION {#description}

The `rtcJoinCommitScene` function commits all changes for the specified
scene (`scene` argument). The scene commit internally triggers building
of a spatial acceleration structure for the scene. Ray queries can be
performed after scene changes got properly committed.

The `rtcJoinCommitScene` function can get called from multiple user
threads which will all cooperate in the build operation. All threads
calling into this function will return from `rtcJoinCommitScene` after
the scene commit is finished. All threads must consistently call
`rtcJoinCommitScene` and not `rtcCommitScene`.

In contrast to the `rtcCommitScene` function, the `rtcJoinCommitScene`
function can be called from multiple user threads, while the
`rtcCommitScene` can only get called from multiple TBB worker threads
when used concurrently. For optimal performance we strongly recommend
using TBB inside the application together with the `rtcCommitScene`
function and to avoid using the `rtcJoinCommitScene` function.

The `rtcJoinCommitScene` feature allows a flexible way to lazily create
hierarchies during rendering. A thread reaching a not-yet-constructed
sub-scene of a two-level scene can generate the sub-scene geometry and
call `rtcJoinCommitScene` on that just generated scene. During
construction, further threads reaching the not-yet-built scene can join
the build operation by also invoking `rtcJoinCommitScene`. A thread
that calls `rtcJoinCommitScene` after the build finishes will directly
return from the `rtcJoinCommitScene` call.

Multiple scene commit operations on different scenes can be running at
the same time, hence it is possible to commit many small scenes in
parallel, distributing the commits to many threads.

When using Embree with the Intel® Threading Building Blocks (which is
the default), threads that call `rtcJoinCommitScene` will join the
build operation, but other TBB worker threads might also participate in
the build. To avoid thread oversubscription, we recommend using TBB
also inside the application. Further, the join mode only works properly
starting with TBB v4.4 Update 1. For earlier TBB versions, threads that
call `rtcJoinCommitScene` to join a running build will just trigger the
build and wait for the build to finish. Further, old TBB versions with
`TBB_INTERFACE_VERSION_MAJOR < 8` do not support `rtcJoinCommitScene`,
and invoking this function will result in an error.

When using Embree with the internal tasking system, only threads that
call `rtcJoinCommitScene` will perform the build operation, and no
additional worker threads will be scheduled.

When using Embree with the Parallel Patterns Library (PPL),
`rtcJoinCommitScene` is not supported and calling that function will
result in an error.

To detect whether `rtcJoinCommitScene` is supported, use the
`rtcGetDeviceProperty` function.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcCommitScene], [rtcGetDeviceProperty]



rtcSetSceneProgressMonitorFunction
----------------------------------

#### NAME {#name}

    rtcSetSceneProgressMonitorFunction - registers a callback
      to track build progress

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    typedef bool (*RTCProgressMonitorFunction)(
      void* ptr,
      double n
    );

    void rtcSetSceneProgressMonitorFunction(
      RTCScene scene,
      RTCProgressMonitorFunction progress,
      void* userPtr
    );

#### DESCRIPTION {#description}

Embree supports a progress monitor callback mechanism that can be used
to report progress of hierarchy build operations and to cancel build
operations.

The `rtcSetSceneProgressMonitorFunction` registers a progress monitor
callback function (`progress` argument) with payload (`userPtr`
argument) for the specified scene (`scene` argument).

Only a single callback function can be registered per scene, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

Once registered, Embree will invoke the callback function multiple
times during hierarchy build operations of the scene, by passing the
payload as set at registration time (`userPtr` argument), and a double
in the range $[0, 1]$ which estimates the progress of the operation
(`n` argument). The callback function might be called from multiple
threads concurrently.

When returning `true` from the callback function, Embree will continue
the build operation normally. When returning `false`, Embree will
cancel the build operation with the `RTC_ERROR_CANCELLED` error code.
Issuing multiple cancel requests for the same build operation is
allowed.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewScene]



rtcSetSceneBuildQuality
-----------------------

#### NAME {#name}

    rtcSetSceneBuildQuality - sets the build quality for
      the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetSceneBuildQuality(
      RTCScene scene,
      enum RTCBuildQuality quality
    );

#### DESCRIPTION {#description}

The `rtcSetSceneBuildQuality` function sets the build quality
(`quality` argument) for the specified scene (`scene` argument).
Possible values for the build quality are:

-   `RTC_BUILD_QUALITY_LOW`: Create lower quality data structures,
    e.g. for dynamic scenes. A two-level spatial index structure is
    built when enabling this mode, which supports fast partial scene
    updates, and allows for setting a per-geometry build quality
    through the `rtcSetGeometryBuildQuality` function.

-   `RTC_BUILD_QUALITY_MEDIUM`: Default build quality for most usages.
    Gives a good compromise between build and render performance.

-   `RTC_BUILD_QUALITY_HIGH`: Create higher quality data structures for
    final-frame rendering. For certain geometry types this enables a
    spatial split BVH.

Selecting a higher build quality results in better rendering
performance but slower scene commit times. The default build quality
for a scene is `RTC_BUILD_QUALITY_MEDIUM`.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryBuildQuality]



rtcSetSceneFlags
----------------

#### NAME {#name}

    rtcSetSceneFlags - sets the flags for the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetSceneFlags(RTCScene scene, enum RTCSceneFlags flags);

#### DESCRIPTION {#description}

The `rtcSetSceneFlags` function sets the scene flags (`flags` argument)
for the specified scene (`scene` argument). Possible scene flags are:

-   `RTC_SCENE_FLAG_NONE`: No flags set.

-   `RTC_SCENE_FLAG_DYNAMIC`: Provides better build performance for
    dynamic scenes (but also higher memory consumption).

-   `RTC_SCENE_FLAG_COMPACT`: Uses compact acceleration structures and
    avoids algorithms that consume much memory.

-   `RTC_SCENE_FLAG_ROBUST`: Uses acceleration structures that allow
    for robust traversal, and avoids optimizations that reduce
    arithmetic accuracy. This mode is typically used for avoiding
    artifacts caused by rays shooting through edges of neighboring
    primitives.

-   `RTC_SCENE_FLAG_CONTEXT_FILTER_FUNCTION`: Enables support for a
    filter function inside the intersection context for this scene. See
    Section [rtcInitIntersectContext] for more details.

Multiple flags can be enabled using an `or` operation,
e.g. `RTC_SCENE_FLAG_COMPACT | RTC_SCENE_FLAG_ROBUST`.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetSceneFlags]



rtcGetSceneFlags
----------------

#### NAME {#name}

    rtcGetSceneFlags - returns the flags of the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    enum RTCSceneFlags rtcGetSceneFlags(RTCScene scene);

#### DESCRIPTION {#description}

Queries the flags of a scene. This function can be useful when setting
individual flags, e.g. to just set the robust mode without changing
other flags the following way:

    RTCSceneFlags flags = rtcGetSceneFlags(scene);
    rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST | flags);

#### EXIT STATUS {#exit-status}

On failure `RTC_SCENE_FLAG_NONE` is returned and an error code is set
that can be queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetSceneFlags]



rtcGetSceneBounds
-----------------

#### NAME {#name}

    rtcGetSceneBounds - returns the axis-aligned bounding box of the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCORE_ALIGN(16) RTCBounds
    {
      float lower_x, lower_y, lower_z, align0;
      float upper_x, upper_y, upper_z, align1;
    };

    void rtcGetSceneBounds(
      RTCScene scene,
      struct RTCBounds* bounds_o
    );

#### DESCRIPTION {#description}

The `rtcGetSceneBounds` function queries the axis-aligned bounding box
of the specified scene (`scene` argument) and stores that bounding box
to the provided destination pointer (`bounds_o` argument). The stored
bounding box consists of lower and upper bounds for the x, y, and z
dimensions as specified by the `RTCBounds` structure.

The provided destination pointer must be aligned to 16 bytes. The
function may be invoked only after committing the scene; otherwise the
result is undefined.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetSceneLinearBounds], [rtcCommitScene], [rtcJoinCommitScene]



rtcGetSceneLinearBounds
-----------------------

#### NAME {#name}

    rtcGetSceneLinearBounds - returns the linear bounds of the scene

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCORE_ALIGN(16) RTCLinearBounds
    {
      RTCBounds bounds0;
      RTCBounds bounds1;
    };

    void rtcGetSceneLinearBounds(
      RTCScene scene,
      struct RTCLinearBounds* bounds_o
    );

#### DESCRIPTION {#description}

The `rtcGetSceneLinearBounds` function queries the linear bounds of the
specified scene (`scene` argument) and stores them to the provided
destination pointer (`bounds_o` argument). The stored linear bounds
consist of bounding boxes for time 0 (`bounds0` member) and time 1
(`bounds1` member) as specified by the `RTCLinearBounds` structure.
Linearly interpolating these bounds to a specific time `t` yields
bounds for the geometry at that time.

The provided destination pointer must be aligned to 16 bytes. The
function may be called only after committing the scene, otherwise the
result is undefined.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetSceneBounds], [rtcCommitScene], [rtcJoinCommitScene]



rtcNewGeometry
--------------

#### NAME {#name}

    rtcNewGeometry - creates a new geometry object

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    enum RTCGeometryType
    {
     RTC_GEOMETRY_TYPE_TRIANGLE,
     RTC_GEOMETRY_TYPE_QUAD,
     RTC_GEOMETRY_TYPE_SUBDIVISION,
     RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
     RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
     RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
     RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
     RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
     RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
     RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
     RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE,
     RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE,
     RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
     RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
     RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
     RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
     RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE,
     RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE,
     RTC_GEOMETRY_TYPE_GRID,
     RTC_GEOMETRY_TYPE_SPHERE_POINT,
     RTC_GEOMETRY_TYPE_DISC_POINT,
     RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT,
     RTC_GEOMETRY_TYPE_USER,
     RTC_GEOMETRY_TYPE_INSTANCE
    };

    RTCGeometry rtcNewGeometry(
      RTCDevice device,
      enum RTCGeometryType type
    );

#### DESCRIPTION {#description}

Geometries are objects that represent an array of primitives of the
same type. The `rtcNewGeometry` function creates a new geometry of
specified type (`type` argument) bound to the specified device
(`device` argument) and returns a handle to this geometry. The geometry
object is reference counted with an initial reference count of 1. The
geometry handle can be released using the `rtcReleaseGeometry` API
call.

Supported geometry types are triangle meshes
(`RTC_GEOMETRY_TYPE_TRIANGLE` type), quad meshes (triangle pairs)
(`RTC_GEOMETRY_TYPE_QUAD` type), Catmull-Clark subdivision surfaces
(`RTC_GEOMETRY_TYPE_SUBDIVISION` type), curve geometries with different
bases (`RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE`,\
`RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE`,\
`RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE`,
`RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE` types) grid meshes
(`RTC_GEOMETRY_TYPE_GRID`), point geometries
(`RTC_GEOMETRY_TYPE_SPHERE_POINT`, `RTC_GEOMETRY_TYPE_DISC_POINT`,
`RTC_TYPE_ORIENTED_DISC_POINT`), user-defined geometries
(`RTC_GEOMETRY_TYPE_USER`), and instances
(`RTC_GEOMETRY_TYPE_INSTANCE`).

The types `RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE`, and
`RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE` will treat the curve as a
sweep surface of a varying-radius circle swept tangentially along the
curve. The types `RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE`, and
`RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE` use ray-facing ribbons as a
faster-to-intersect approximation.

After construction, geometries are enabled by default and not attached
to any scene. Geometries can be disabled (`rtcDisableGeometry` call),
and enabled again (`rtcEnableGeometry` call). A geometry can be
attached to multiple scenes using the `rtcAttachGeometry` call (or
`rtcAttachGeometryByID` call), and detached using the
`rtcDetachGeometry` call. During attachment, a geometry ID is assigned
to the geometry (or assigned by the user when using the
`rtcAttachGeometryByID` call), which uniquely identifies the geometry
inside that scene. This identifier is returned when primitives of the
geometry are hit in later ray queries for the scene.

Geometries can also be modified, including their vertex and index
buffers. After modifying a buffer, `rtcUpdateGeometryBuffer` must be
called to notify that the buffer got modified.

The application can use the `rtcSetGeometryUserData` function to set a
user data pointer to its own geometry representation, and later read
out this pointer using the `rtcGetGeometryUserData` function.

After setting up the geometry or modifying it, `rtcCommitGeometry` must
be called to finish the geometry setup. After committing the geometry,
vertex data interpolation can be performed using the `rtcInterpolate`
and `rtcInterpolateN` functions.

A build quality can be specified for a geometry using the
`rtcSetGeometryBuildQuality` function, to balance between acceleration
structure build performance and ray query performance. The build
quality per geometry will be used if a two-level acceleration structure
is built internally, which is the case if the `RTC_BUILD_QUALITY_LOW`
is set as the scene build quality. See Section
[rtcSetSceneBuildQuality] for more details.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcEnableGeometry], [rtcDisableGeometry], [rtcAttachGeometry],
[rtcAttachGeometryByID], [rtcUpdateGeometryBuffer],
[rtcSetGeometryUserData], [rtcGetGeometryUserData],
[rtcCommitGeometry], [rtcInterpolate], [rtcInterpolateN],
[rtcSetGeometryBuildQuality], [rtcSetSceneBuildQuality],
[RTC\_GEOMETRY\_TYPE\_TRIANGLE], [RTC\_GEOMETRY\_TYPE\_QUAD],
[RTC\_GEOMETRY\_TYPE\_SUBDIVISION], [RTC\_GEOMETRY\_TYPE\_CURVE],
[RTC\_GEOMETRY\_TYPE\_GRID], [RTC\_GEOMETRY\_TYPE\_POINT],
[RTC\_GEOMETRY\_TYPE\_USER], [RTC\_GEOMETRY\_TYPE\_INSTANCE]



RTC\_GEOMETRY\_TYPE\_TRIANGLE
-----------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_TRIANGLE - triangle geometry type

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry geometry =
      rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

#### DESCRIPTION {#description}

Triangle meshes are created by passing `RTC_GEOMETRY_TYPE_TRIANGLE` to
the `rtcNewGeometry` function call. The triangle indices can be
specified by setting an index buffer (`RTC_BUFFER_TYPE_INDEX` type) and
the triangle vertices by setting a vertex buffer
(`RTC_BUFFER_TYPE_VERTEX` type). See `rtcSetGeometryBuffer` and
`rtcSetSharedGeometryBuffer` for more details on how to set buffers.
The index buffer must contain an array of three 32-bit indices per
triangle (`RTC_FORMAT_UINT3` format) and the number of primitives is
inferred from the size of that buffer. The vertex buffer must contain
an array of single precision `x`, `y`, `z` floating point coordinates
(`RTC_FORMAT_FLOAT3` format), and the number of vertices are inferred
from the size of that buffer. The vertex buffer can be at most 16 GB
large.

The parametrization of a triangle uses the first vertex `p0` as base
point, the vector `p1 - p0` as u-direction and the vector `p2 - p0` as
v-direction. Thus vertex attributes `t0,t1,t2` can be linearly
interpolated over the triangle the following way:

    t_uv = (1-u-v)*t0 + u*t1 + v*t2
         = t0 + u*(t1-t0) + v*(t2-t0)

A triangle whose vertices are laid out counter-clockwise has its
geometry normal pointing upwards outside the front face, like
illustrated in the following picture:

![][imgTriangleUV]

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers have to have the same stride and size.

Also see tutorial [Triangle Geometry] for an example of how to create
triangle meshes.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that be get
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry]



RTC\_GEOMETRY\_TYPE\_QUAD
-------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_QUAD - quad geometry type

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry geometry =
      rtcNewGeometry(device, RTC_GEOMETRY_TYPE_QUAD);

#### DESCRIPTION {#description}

Quad meshes are created by passing `RTC_GEOMETRY_TYPE_QUAD` to the
`rtcNewGeometry` function call. The quad indices can be specified by
setting an index buffer (`RTC_BUFFER_TYPE_INDEX` type) and the quad
vertices by setting a vertex buffer (`RTC_BUFFER_TYPE_VERTEX` type).
See `rtcSetGeometryBuffer` and `rtcSetSharedGeometryBuffer` for more
details on how to set buffers. The index buffer contains an array of
four 32-bit indices per quad (`RTC_FORMAT_UINT4` format), and the
number of primitives is inferred from the size of that buffer. The
vertex buffer contains an array of single precision `x`, `y`, `z`
floating point coordinates (`RTC_FORMAT_FLOAT3` format), and the number
of vertices is inferred from the size of that buffer. The vertex buffer
can be at most 16 GB large.

A quad is internally handled as a pair of two triangles `v0,v1,v3` and
`v2,v3,v1`, with the `u'`/`v'` coordinates of the second triangle
corrected by `u = 1-u'` and `v = 1-v'` to produce a quad
parametrization where `u` and `v` are in the range 0 to 1. Thus the
parametrization of a quad uses the first vertex `p0` as base point, and
the vector `p1 - p0` as `u`-direction, and `p3 - p0` as v-direction.
Thus vertex attributes `t0,t1,t2,t3` can be bilinearly interpolated
over the quadrilateral the following way:

    t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

Mixed triangle/quad meshes are supported by encoding a triangle as a
quad, which can be achieved by replicating the last triangle vertex
(`v0,v1,v2` -\> `v0,v1,v2,v2`). This way the second triangle is a line
(which can never get hit), and the parametrization of the first
triangle is compatible with the standard triangle parametrization.

A quad whose vertices are laid out counter-clockwise has its geometry
normal pointing upwards outside the front face, like illustrated in the
following picture.

![][imgQuadUV]

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry]



RTC\_GEOMETRY\_TYPE\_GRID
-------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_GRID - grid geometry type

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry geometry =
      rtcNewGeometry(device, RTC_GEOMETRY_TYPE_GRID);

#### DESCRIPTION {#description}

Grid meshes are created by passing `RTC_GEOMETRY_TYPE_GRID` to the
`rtcNewGeometry` function call, and contain an array of grid
primitives. This array of grids can be specified by setting up a grid
buffer (with `RTC_BUFFER_TYPE_GRID` type and `RTC_FORMAT_GRID` format)
and the grid mesh vertices by setting a vertex buffer
(`RTC_BUFFER_TYPE_VERTEX` type). See `rtcSetGeometryBuffer` and
`rtcSetSharedGeometryBuffer` for more details on how to set buffers.
The number of grid primitives in the grid mesh is inferred from the
size of the grid buffer.

The vertex buffer contains an array of single precision `x`, `y`, `z`
floating point coordinates (`RTC_FORMAT_FLOAT3` format), and the number
of vertices is inferred from the size of that buffer.

Each grid in the grid buffer is of the type `RTCGrid`:

    struct RTCGrid
    {
      unsigned int startVertexID;
      unsigned int stride;
      unsigned short width,height; 
    };

The `RTCGrid` structure describes a 2D grid of vertices (with respect
to the vertex buffer of the grid mesh). The `width` and `height`
members specify the number of vertices in u and v direction,
e.g. setting both `width` and `height` to 3 sets up a 3×3 vertex grid.
The maximum allowed `width` and `height` is 32767. The `startVertexID`
specifies the ID of the top-left vertex in the vertex grid, while the
`stride` parameter specifies a stride (in number of vertices) used to
step to the next row.

A vertex grid of dimensions `width` and `height` is treated as a
`(width-1)` x `(height-1)` grid of `quads` (triangle-pairs), with the
same shared edge handling as for regular quad meshes. However, the
`u`/`v` coordinates have the uniform range `[0..1]` for an entire
vertex grid. The `u` direction follows the `width` of the grid while
the `v` direction the `height`.

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry]



RTC\_GEOMETRY\_TYPE\_SUBDIVISION
--------------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_SUBDIVISION - subdivision geometry type

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry geometry =
      rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SUBDIVISION);

#### DESCRIPTION {#description}

Catmull-Clark subdivision meshes are supported, including support for
edge creases, vertex creases, holes, non-manifold geometry, and
face-varying interpolation. The number of vertices per face can be in
the range of 3 to 15 vertices (triangles, quadrilateral, pentagons,
etc).

Subdivision meshes are created by passing
`RTC_GEOMETRY_TYPE_SUBDIVISION` to the `rtcNewGeometry` function.
Various buffers need to be set by the application to set up the
subdivision mesh. See `rtcSetGeometryBuffer` and
`rtcSetSharedGeometryBuffer` for more details on how to set buffers.
The face buffer (`RTC_BUFFER_TYPE_FACE` type and `RTC_FORMAT_UINT`
format) contains the number of edges/indices of each face (3 to 15),
and the number of faces is inferred from the size of this buffer. The
index buffer (`RTC_BUFFER_TYPE_INDEX` type) contains multiple (3 to 15)
32-bit vertex indices (`RTC_FORMAT_UINT` format) for each face, and the
number of edges is inferred from the size of this buffer. The vertex
buffer (`RTC_BUFFER_TYPE_VERTEX` type) stores an array of single
precision `x`, `y`, `z` floating point coordinates (`RTC_FORMAT_FLOAT3`
format), and the number of vertices is inferred from the size of this
buffer.

Optionally, the application may set additional index buffers using
different buffer slots if multiple topologies are required for
face-varying interpolation. The standard vertex buffers
(`RTC_BUFFER_TYPE_VERTEX`) are always bound to the geometry topology
(topology 0) thus use `RTC_BUFFER_TYPE_INDEX` with buffer slot 0. User
vertex data interpolation may use different topologies as described
later.

Optionally, the application can set up the hole buffer
(`RTC_BUFFER_TYPE_HOLE`) which contains an array of 32-bit indices
(`RTC_FORMAT_UINT` format) of faces that should be considered
non-existing in all topologies. The number of holes is inferred from
the size of this buffer.

Optionally, the application can fill the level buffer
(`RTC_BUFFER_TYPE_LEVEL`) with a tessellation rate for each of the
edges of each face. This buffer must have the same size as the index
buffer. The tessellation level is a positive floating point value
(`RTC_FORMAT_FLOAT` format) that specifies how many quads along the
edge should be generated during tessellation. If no level buffer is
specified, a level of 1 is used. The maximally supported edge level is
4096, and larger levels are clamped to that value. Note that edges may
be shared between (typically 2) faces. To guarantee a watertight
tessellation, the level of these shared edges should be identical. A
uniform tessellation rate for an entire subdivision mesh can be set by
using the `rtcSetGeometryTessellationRate` function. The existence of a
level buffer has precedence over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to
make edges appear sharper. The edge crease index buffer
(`RTC_BUFFER_TYPE_EDGE_CREASE_INDEX`) contains an array of pairs of
32-bit vertex indices (`RTC_FORMAT_UINT2` format) that specify
unoriented edges in the geometry topology. The edge crease weight
buffer (`RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT`) stores for each of these
crease edges a positive floating point weight (`RTC_FORMAT_FLOAT`
format). The number of edge creases is inferred from the size of these
buffers, which has to be identical. The larger a weight, the sharper
the edge. Specifying a weight of infinity is supported and marks an
edge as infinitely sharp. Storing an edge multiple times with the same
crease weight is allowed, but has lower performance. Storing an edge
multiple times with different crease weights results in undefined
behavior. For a stored edge (i,j), the reverse direction edges (j,i) do
not have to be stored, as both are considered the same unoriented edge.
Edge crease features are shared between all topologies.

Optionally, the application can fill the sparse vertex crease buffers
to make vertices appear sharper. The vertex crease index buffer
(`RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX`), contains an array of 32-bit
vertex indices (`RTC_FORMAT_UINT` format) to specify a set of vertices
from the geometry topology. The vertex crease weight buffer
(`RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT`) specifies for each of these
vertices a positive floating point weight (`RTC_FORMAT_FLOAT` format).
The number of vertex creases is inferred from the size of these
buffers, and has to be identical. The larger a weight, the sharper the
vertex. Specifying a weight of infinity is supported and makes the
vertex infinitely sharp. Storing a vertex multiple times with the same
crease weight is allowed, but has lower performance. Storing a vertex
multiple times with different crease weights results in undefined
behavior. Vertex crease features are shared between all topologies.

Subdivision modes can be used to force linear interpolation for parts
of the subdivision mesh; see `rtcSetGeometrySubdivisionMode` for more
details.

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers have to have the same stride and size.

Also see tutorial [Subdivision Geometry] for an example of how to
create subdivision surfaces.

#### Parametrization

The parametrization for subdivision faces is different for
quadrilaterals and non-quadrilateral faces.

The parametrization of a quadrilateral face uses the first vertex `p0`
as base point, and the vector `p1 - p0` as u-direction and `p3 - p0` as
v-direction.

The parametrization for all other face types (with number of vertices
not equal 4), have a special parametrization where the subpatch ID `n`
(of the `n`-th quadrilateral that would be obtained by a single
subdivision step) and the local hit location inside this quadrilateral
are encoded in the UV coordinates. The following code extracts the
sub-patch ID `i` and local UVs of this subpatch:

    unsigned int l = floorf(0.5f*U);
    unsigned int h = floorf(0.5f*V);
    unsigned int i = 4*h+l;
    float u = 2.0f*fracf(0.5f*U)-0.5f;
    float v = 2.0f*fracf(0.5f*V)-0.5f;

This encoding allows local subpatch UVs to be in the range `[-0.5,1.5[`
thus negative subpatch UVs can be passed to `rtcInterpolate` to sample
subpatches slightly out of bounds. This can be useful to calculate
derivatives using finite differences if required. The encoding further
has the property that one can just move the value `u` (or `v`) on a
subpatch by adding `du` (or `dv`) to the special UV encoding as long as
it does not fall out of the `[-0.5,1.5[` range.

To smoothly interpolate vertex attributes over the subdivision surface
we recommend using the `rtcInterpolate` function, which will apply the
standard subdivision rules for interpolation and automatically takes
care of the special UV encoding for non-quadrilaterals.

#### Face-Varying Data

Face-varying interpolation is supported through multiple topologies per
subdivision mesh and binding such topologies to vertex attribute
buffers to interpolate. This way, texture coordinates may use a
different topology with additional boundaries to construct separate UV
regions inside one subdivision mesh.

Each such topology `i` has a separate index buffer (specified using
`RTC_BUFFER_TYPE_INDEX` with buffer slot `i`) and separate subdivision
mode that can be set using `rtcSetGeometrySubdivisionMode`. A vertex
attribute buffer `RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE` bound to a buffer
slot `j` can be assigned to use a topology for interpolation using the
`rtcSetGeometryVertexAttributeTopology` call.

The face buffer (`RTC_BUFFER_TYPE_FACE` type) is shared between all
topologies, which means that the `n`-th primitive always has the same
number of vertices (e.g. being a triangle or a quad) for each topology.
However, the indices of the topologies themselves may be different.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry]



RTC\_GEOMETRY\_TYPE\_CURVE
--------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE -
      flat curve geometry with linear basis

    RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE -
      flat curve geometry with cubic Bézier basis

    RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE - 
      flat curve geometry with cubic B-spline basis

    RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE - 
      flat curve geometry with cubic Hermite basis

    RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE - 
      flat curve geometry with Catmull-Rom basis

    RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE -
      flat normal oriented curve geometry with cubic Bézier basis

    RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE - 
      flat normal oriented curve geometry with cubic B-spline basis

    RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE - 
      flat normal oriented curve geometry with cubic Hermite basis

    RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE - 
      flat normal oriented curve geometry with Catmull-Rom basis

    RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE -
      capped cone curve geometry with linear basis - discontinous at edge boundaries

    RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE -
      capped cone curve geometry with linear basis and spherical ending

    RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE -
      swept surface curve geometry with cubic Bézier basis

    RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE -
      swept surface curve geometry with cubic B-spline basis

    RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE -
      swept surface curve geometry with cubic Hermite basis

    RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE -
      swept surface curve geometry with Catmull-Rom basis

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE);

#### DESCRIPTION {#description}

Curves with per vertex radii are supported with linear, cubic Bézier,
cubic B-spline, and cubic Hermite bases. Such curve geometries are
created by passing `RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE`,
`RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BSPLINE_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_HERMITE_CURVE`,
`RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_CATMULL_ROM_CURVE`,
`RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE`,
`RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE`, or
`RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE` to the `rtcNewGeometry`
function. The curve indices can be specified through an index buffer
(`RTC_BUFFER_TYPE_INDEX`) and the curve vertices through a vertex
buffer (`RTC_BUFFER_TYPE_VERTEX`). For the Hermite basis a tangent
buffer (`RTC_BUFFER_TYPE_TANGENT`), normal oriented curves a normal
buffer (`RTC_BUFFER_TYPE_NORMAL`), and for normal oriented Hermite
curves a normal derivative buffer (`RTC_BUFFER_TYPE_NORMAL_DERIVATIVE`)
has to get specified additionally. See `rtcSetGeometryBuffer` and
`rtcSetSharedGeometryBuffer` for more details on how to set buffers.

The index buffer contains an array of 32-bit indices (`RTC_FORMAT_UINT`
format), each pointing to the first control vertex in the vertex
buffer, but also to the first tangent in the tangent buffer, and first
normal in the normal buffer if these buffers are present.

The vertex buffer stores each control vertex in the form of a single
precision position and radius stored in (`x`, `y`, `z`, `r`) order in
memory (`RTC_FORMAT_FLOAT4` format). The number of vertices is inferred
from the size of this buffer. The radii may be smaller than zero but
the interpolated radii should always be greater or equal to zero.
Similarly, the tangent buffer stores the derivative of each control
vertex (`x`, `y`, `z`, `r` order and `RTC_FORMAT_FLOAT4` format) and
the normal buffer stores a single precision normal per control vertex
(`x`, `y`, `z` order and `RTC_FORMAT_FLOAT3` format).

##### Linear Basis

For the linear basis the indices point to the first of 2 consecutive
control points in the vertex buffer. The first control point is the
start and the second control point the end of the line segment. When
constructing hair strands in this basis, the end-point can be shared
with the start of the next line segment.

For the linear basis the user optionally can provide a flags buffer of
type `RTC_BUFFER_TYPE_FLAGS` which contains bytes that encode if the
left neighbor segment (`RTC_CURVE_FLAG_NEIGHBOR_LEFT` flag) and/or
right neighbor segment (`RTC_CURVE_FLAG_NEIGHBOR_RIGHT` flags) exist
(see [RTCCurveFlags]). If this buffer is not set, than the left/right
neighbor bits are automatically calculated base on the index buffer
(left segment exists if segment(id-1)+1 == segment(id) and right
segment exists if segment(id+1)-1 == segment(id)).

A left neighbor segment is assumed to end at the start vertex of the
current segement, and to start at the previous vertex in the vertex
buffer. Similarly, the right neighbor segment is assumed to start at
the end vertex of the current segment, and to end at the next vertex in
the vertex buffer.

Only when the left and right bits are properly specified the current
segment can properly attach to the left and/or right neighbor,
otherwise the touching area may not get rendererd properly.

##### Bézier Basis

For the cubic Bézier basis the indices point to the first of 4
consecutive control points in the vertex buffer. These control points
use the cubic Bézier basis, where the first control point represents
the start point of the curve, and the 4th control point the end point
of the curve. The Bézier basis is interpolating, thus the curve does go
exactly through the first and fourth control vertex.

##### B-spline Basis

For the cubic B-spline basis the indices point to the first of 4
consecutive control points in the vertex buffer. These control points
make up a cardinal cubic B-spline (implicit equidistant knot vector).
This basis is not interpolating, thus the curve does in general not go
through any of the control points directly. A big advantage of this
basis is that 3 control points can be shared for two continuous
neighboring curve segments, e.g. the curves (p0,p1,p2,p3) and
(p1,p2,p3,p4) are C1 continuous. This feature make this basis a good
choise to construct continuous multi-segment curves, as memory
consumption can be kept minimal.

##### Hermite Basis

For the cubic Hermite basis the indices point to the first of 2
consecutive points in the vertex buffer, and the first of 2 consecutive
tangents in the tangent buffer. These two points and two tangents make
up a cubic Hermite curve. This basis is interpolating, thus does
exactly go through the first and second control point, and the first
order derivative at the begin and end matches exactly the value
specified in the tangent buffer. When connecting two segments
continuously, the end point and tangent of the previous segment can be
shared. Different versions of Catmull-Rom splines can be easily
constructed usig the Hermite basis, by calculating a proper tangent
buffer from the control points.

##### Catmull-Rom Basis

For the Catmull-Rom basis the indices point to the first of 4
consecutive control points in the vertex buffer. This basis goes
through p1 and p2, with tangents (p2-p0)/2 and (p3-p1)/2.

##### Flat Curves

The `RTC_GEOMETRY_TYPE_FLAT_*` flat mode is a fast mode designed to
render distant hair. In this mode the curve is rendered as a connected
sequence of ray facing quads. Individual quads are considered to have
subpixel size, and zooming onto the curve might show geometric
artifacts. The number of quads to subdivide into can be specified
through the `rtcSetGeometryTessellationRate` function. By default the
tessellation rate is 4.

##### Normal Oriented Curves

The `RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_*` mode is a mode designed to
render blades of grass. In this mode a vertex spline has to get
specified as for the previous modes, but additionally a normal spline
is required. If the Hermite basis is used, the `RTC_BUFFER_TYPE_NORMAL`
and `RTC_BUFFER_TYPE_NORMAL_DERIVATIVE` buffers have both to be set.

The curve is rendered as a flat band whose center approximately follows
the provided vertex spline, whose half width approximately follows the
provided radius spline, and whose normal orientation approximately
follows the provided normal spline.

To intersect the normal oriented curve, we perform a newton-raphson
style intersection of a ray with a tensor product surface of a linear
basis (perpendicular to the curve) and cubic Bézier basis (along the
curve). We use a guide curve and its derivatives to construct the
control points of that surface. The guide curve is defined by a sweep
surface defined by sweeping a line centered at the vertex spline
location along the curve. At each parameter value the half width of the
line matches the radius spline, and the direction matches the cross
product of the normal from the normal spline and tangent of the vertex
spline. Note that this construction does not work when the provided
normals are parallel to the curve direction. For this reason the
provided normals should best be kept as perpendicular to the curve
direction as possible.

##### Round Curves

In the `RTC_GEOMETRY_TYPE_ROUND_*` round mode, a real geometric surface
is rendered for the curve, which is more expensive but allows closeup
views.

For the linear basis the round mode renders a cone that tangentially
touches a start-sphere and end-sphere. The start sphere is rendered
when no previous segments is indicated by the neighbor bits. The end
sphere is always rendered but parts that lie inside the next segment
are clipped away (if that next segment exists). This way a curve is
closed on both ends and the interiour will render properly as long as
only neighboring segments penetrate into a segment. For this to work
properly it is important that the flags buffer is properly populated
with neighbor information.

For the cubic polynomial bases, the round mode renders a sweep surface
by sweeping a varying radius circle tangential along the curve. As a
limitation, the radius of the curve has to be smaller than the
curvature radius of the curve at each location on the curve.

The intersection with the curve segment stores the parametric hit
location along the curve segment as u-coordinate (range 0 to +1).

For flat curves, the v-coordinate is set to the normalized distance in
the range -1 to +1. For normal oriented curves the v-coordinate is in
the range 0 to 1. For the linear basis and in round mode the
v-coordinate is set to zero.

In flat mode, the geometry normal `Ng` is set to the tangent of the
curve at the hit location. In round mode and for normal oriented
curves, the geometry normal `Ng` is set to the non-normalized geometric
normal of the surface.

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size. For the Hermite
basis also a tangent buffer has to be set for each time step and for
normal oriented curves a normal buffer has to get specified for each
time step.

Also see tutorials [Hair] and [Curves] for examples of how to
create and use curve geometries.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [RTCCurveFlags]



RTC\_GEOMETRY\_TYPE\_POINT
--------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_SPHERE_POINT -
      point geometry spheres

    RTC_GEOMETRY_TYPE_DISC_POINT -
      point geometry with ray-oriented discs

    RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT -
      point geometry with normal-oriented discs

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_DISC_POINT);
    rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT);

#### DESCRIPTION {#description}

Points with per vertex radii are supported with sphere, ray-oriented
discs, and normal-oriented discs geometric representations. Such point
geometries are created by passing `RTC_GEOMETRY_TYPE_SPHERE_POINT`,
`RTC_GEOMETRY_TYPE_DISC_POINT`, or
`RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT` to the `rtcNewGeometry`
function. The point vertices can be specified t through a vertex buffer
(`RTC_BUFFER_TYPE_VERTEX`). For the normal oriented discs a normal
buffer (`RTC_BUFFER_TYPE_NORMAL`) has to get specified additionally.
See `rtcSetGeometryBuffer` and `rtcSetSharedGeometryBuffer` for more
details on how to set buffers.

The vertex buffer stores each control vertex in the form of a single
precision position and radius stored in (`x`, `y`, `z`, `r`) order in
memory (`RTC_FORMAT_FLOAT4` format). The number of vertices is inferred
from the size of this buffer. Similarly, the normal buffer stores a
single precision normal per control vertex (`x`, `y`, `z` order and
`RTC_FORMAT_FLOAT3` format).

In the `RTC_GEOMETRY_TYPE_SPHERE_POINT` mode, a real geometric surface
is rendered for the curve, which is more expensive but allows closeup
views.

The `RTC_GEOMETRY_TYPE_DISC_POINT` flat mode is a fast mode designed to
render distant points. In this mode the point is rendered as a ray
facing disc.

The `RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT` mode is a mode designed as
a midpoint geometrically between ray facing discs and spheres. In this
mode the point is rendered as a normal oriented disc.

For all point types, only the hit distance and geometry normal is
returned as hit information, u and v are set to zero.

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size.

Also see tutorial [Points] for an example of how to create and use
point geometries.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry]



RTC\_GEOMETRY\_TYPE\_USER
-------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_USER - user geometry type

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry geometry =
      rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

#### DESCRIPTION {#description}

User-defined geometries contain a number of user-defined primitives,
just like triangle meshes contain multiple triangles. The shape of the
user-defined primitives is specified through registered callback
functions, which enable extending Embree with arbitrary types of
primitives.

User-defined geometries are created by passing `RTC_GEOMETRY_TYPE_USER`
to the `rtcNewGeometry` function call. One has to set the number of
primitives (see `rtcSetGeometryUserPrimitiveCount`), a user data
pointer (see `rtcSetGeometryUserData`), a bounding function closure
(see `rtcSetGeometryBoundsFunction`), as well as user-defined intersect
(see `rtcSetGeometryIntersectFunction`) and occluded (see
`rtcSetGeometryOccludedFunction`) callback functions. The bounding
function is used to query the bounds of all time steps of a user
primitive, while the intersect and occluded callback functions are
called to intersect the primitive with a ray. The user data pointer is
passed to each callback invocation and can be used to point to the
application's representation of the user geometry.

The creation of a user geometry typically looks the following:

    RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
    rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
    rtcSetGeometryUserData(geometry, userGeometryRepresentation);
    rtcSetGeometryBoundsFunction(geometry, boundsFunction);
    rtcSetGeometryIntersectFunction(geometry, intersectFunction);
    rtcSetGeometryOccludedFunction(geometry, occludedFunction);

Please have a look at the `rtcSetGeometryBoundsFunction`,
`rtcSetGeometryIntersectFunction`, and `rtcSetGeometryOccludedFunction`
functions on the implementation of the callback functions.

Primitives of a user geometry are ignored during rendering when their
bounds are empty, thus bounds have lower\>upper in at least one
dimension.

See tutorial [User Geometry] for an example of how to use the
user-defined geometries.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcSetGeometryUserPrimitiveCount],
[rtcSetGeometryUserData], [rtcSetGeometryBoundsFunction],
[rtcSetGeometryIntersectFunction], [rtcSetGeometryOccludedFunction]



RTC\_GEOMETRY\_TYPE\_INSTANCE
-----------------------------

#### NAME {#name}

    RTC_GEOMETRY_TYPE_INSTANCE - instance geometry type

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCGeometry geometry =
       rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE);

#### DESCRIPTION {#description}

Embree supports instancing of scenes using affine transformations (3×3
matrix plus translation). As the instanced scene is stored only a
single time, even if instanced to multiple locations, this feature can
be used to create very complex scenes with small memory footprint.

Embree supports both single-level instancing and multi-level
instancing. The maximum instance nesting depth is
`RTC_MAX_INSTANCE_LEVEL_COUNT`; it can be configured at compile-time
using the constant `EMBREE_MAX_INSTANCE_LEVEL_COUNT`. Users should
adapt this constant to their needs: instances nested any deeper are
silently ignored in release mode, and cause assertions in debug mode.

Instances are created by passing `RTC_GEOMETRY_TYPE_INSTANCE` to the
`rtcNewGeometry` function call. The instanced scene can be set using
the `rtcSetGeometryInstancedScene` call, and the affine transformation
can be set using the `rtcSetGeometryTransform` function.

Please note that `rtcCommitScene` on the instanced scene should be
called first, followed by `rtcCommitGeometry` on the instance, followed
by `rtcCommitScene` for the top-level scene containing the instance.

If a ray hits the instance, the `geomID` and `primID` members of the
hit are set to the geometry ID and primitive ID of the hit primitive in
the instanced scene, and the `instID` member of the hit is set to the
geometry ID of the instance in the top-level scene.

The instancing scheme can also be implemented using user geometries. To
achieve this, the user geometry code should set the `instID` member of
the intersection context to the geometry ID of the instance, then trace
the transformed ray, and finally set the `instID` field of the
intersection context again to -1. The `instID` field is copied
automatically by each primitive intersector into the `instID` field of
the hit structure when the primitive is hit. See the [User Geometry]
tutorial for an example.

For multi-segment motion blur, the number of time steps must be first
specified using the `rtcSetGeometryTimeStepCount` function. Then a
transformation for each time step can be specified using the
`rtcSetGeometryTransform` function.

See tutorials [Instanced Geometry] and [Multi Level Instancing] for
examples of how to use instances.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcSetGeometryInstancedScene],
[rtcSetGeometryTransform]



RTCCurveFlags
-------------

#### NAME {#name}

    RTCCurveFlags - per segment flags for curve geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

enum RTCCurveFlags { RTC\_CURVE\_FLAG\_NEIGHBOR\_LEFT = (1 \<\< 0),
RTC\_CURVE\_FLAG\_NEIGHBOR\_RIGHT = (1 \<\< 1) };

#### DESCRIPTION {#description}

The RTCCurveFlags type is used for linear curves to determine if the
left and/or right neighbor segment exist. Therefore one attaches a
buffer of type RTC\_BUFFER\_TYPE\_FLAGS to the curve geometry which
stores an individual byte per curve segment.

If the RTC\_CURVE\_FLAG\_NEIGHBOR\_LEFT flag in that byte is enabled
for a curve segment, then the left segment exists (which starts one
vertex before the start vertex of the current curve) and the current
segment is rendered to properly attach to that segment.

If the RTC\_CURVE\_FLAG\_NEIGHBOR\_RIGHT flag in that byte is enabled
for a curve segment, then the right segment exists (which ends one
vertex after the end vertex of the current curve) and the current
segment is rendered to properly attach to that segment.

When not properly specifying left and right flags for linear curves,
the rendering at the ending of these curves may not look correct, in
particular when round linear curves are viewed from the inside.

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_CURVE]



rtcRetainGeometry
-----------------

#### NAME {#name}

    rtcRetainGeometry - increments the geometry reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcRetainGeometry(RTCGeometry geometry);

#### DESCRIPTION {#description}

Geometry objects are reference counted. The `rtcRetainGeometry`
function increments the reference count of the passed geometry object
(`geometry` argument). This function together with `rtcReleaseGeometry`
allows to use the internal reference counting in a C++ wrapper class to
handle the ownership of the object.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcReleaseGeometry]



rtcReleaseGeometry
------------------

#### NAME {#name}

    rtcReleaseGeometry - decrements the geometry reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcReleaseGeometry(RTCGeometry geometry);

#### DESCRIPTION {#description}

Geometry objects are reference counted. The `rtcReleaseGeometry`
function decrements the reference count of the passed geometry object
(`geometry` argument). When the reference count falls to 0, the
geometry gets destroyed.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcRetainGeometry]



rtcCommitGeometry
-----------------

#### NAME {#name}

    rtcCommitGeometry - commits geometry changes

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcCommitGeometry(RTCGeometry geometry);

#### DESCRIPTION {#description}

The `rtcCommitGeometry` function is used to commit all geometry changes
performed to a geometry (`geometry` parameter). After a geometry gets
modified, this function must be called to properly update the internal
state of the geometry to perform interpolations using `rtcInterpolate`
or to commit a scene containing the geometry using `rtcCommitScene`.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcInterpolate], [rtcCommitScene]



rtcEnableGeometry
-----------------

#### NAME {#name}

    rtcEnableGeometry - enables the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcEnableGeometry(RTCGeometry geometry);

#### DESCRIPTION {#description}

The `rtcEnableGeometry` function enables the specified geometry
(`geometry` argument). Only enabled geometries are rendered. Each
geometry is enabled by default at construction time.

After enabling a geometry, the scene containing that geometry must be
committed using `rtcCommitScene` for the change to have effect.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcDisableGeometry], [rtcCommitScene]



rtcDisableGeometry
------------------

#### NAME {#name}

    rtcDisableGeometry - disables the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcDisableGeometry(RTCGeometry geometry);

#### DESCRIPTION {#description}

The `rtcDisableGeometry` function disables the specified geometry
(`geometry` argument). A disabled geometry is not rendered. Each
geometry is enabled by default at construction time.

After disabling a geometry, the scene containing that geometry must be
committed using `rtcCommitScene` for the change to have effect.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcEnableGeometry], [rtcCommitScene]



rtcSetGeometryTimeStepCount
---------------------------

#### NAME {#name}

    rtcSetGeometryTimeStepCount - sets the number of time steps of the
      geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryTimeStepCount(
      RTCGeometry geometry,
      unsigned int timeStepCount
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryTimeStepCount` function sets the number of time
steps for multi-segment motion blur (`timeStepCount` parameter) of the
specified geometry (`geometry` parameter).

For triangle meshes (`RTC_GEOMETRY_TYPE_TRIANGLE`), quad meshes
(`RTC_GEOMETRY_TYPE_QUAD`), curves (`RTC_GEOMETRY_TYPE_CURVE`), points
(`RTC_GEOMETRY_TYPE_POINT`), and subdivision geometries
(`RTC_GEOMETRY_TYPE_SUBDIVISION`), the number of time steps directly
corresponds to the number of vertex buffer slots available
(`RTC_BUFFER_TYPE_VERTEX` buffer type). For these geometries, one
vertex buffer per time step must be specified when creating
multi-segment motion blur geometries.

For instance geometries (`RTC_GEOMETRY_TYPE_INSTANCE`), a
transformation must be specified for each time step (see
`rtcSetGeometryTransform`).

For user geometries, the registered bounding callback function must
provide a bounding box per primitive and time step, and the
intersection and occlusion callback functions should properly intersect
the motion-blurred geometry at the ray time.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcSetGeometryTimeRange]



rtcSetGeometryTimeRange
-----------------------

#### NAME {#name}

    rtcSetGeometryTimeRange - sets the time range for a motion blur geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryTimeRange(
      RTCGeometry geometry,
      float startTime,
      float endTime
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryTimeRange` function sets a time range which defines
the start (and end time) of the first (and last) time step of a motion
blur geometry. The time range is defined relative to the camera shutter
interval [0,1] but it can be arbitrary. Thus the startTime can be
smaller, equal, or larger 0, indicating a geometry whose animation
definition start before, at, or after the camera shutter opens. Similar
the endTime can be smaller, equal, or larger than 1, indicating a
geometry whose animation definition ends after, at, or before the
camera shutter closes. The startTime has to be smaller or equal to the
endTime.

The default time range when this function is not called is the entire
camera shutter [0,1]. For best performance at most one time segment
of the piece wise linear definition of the motion should fall outside
the shutter window to the left and to the right. Thus do not set the
startTime or endTime too far outside the [0,1] interval for best
performance.

This time range feature will also allow geometries to appear and
disappear during the camera shutter time if the specified time range is
a sub range of [0,1].

Please also have a look at the `rtcSetGeometryTimeStepCount` function
to see how to define the time steps for the specified time range.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryTimeStepCount]



rtcSetGeometryVertexAttributeCount
----------------------------------

#### NAME {#name}

    rtcSetGeometryVertexAttributeCount - sets the number of vertex
      attributes of the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryVertexAttributeCount(
      RTCGeometry geometry,
      unsigned int vertexAttributeCount
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryVertexAttributeCount` function sets the number of
slots (`vertexAttributeCount` parameter) for vertex attribute buffers
(`RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE`) that can be used for the specified
geometry (`geometry` parameter).

This function is supported only for triangle meshes
(`RTC_GEOMETRY_TYPE_TRIANGLE`), quad meshes (`RTC_GEOMETRY_TYPE_QUAD`),
curves (`RTC_GEOMETRY_TYPE_CURVE`), points (`RTC_GEOMETRY_TYPE_POINT`),
and subdivision geometries (`RTC_GEOMETRY_TYPE_SUBDIVISION`).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [RTCBufferType]



rtcSetGeometryMask
------------------

#### NAME {#name}

    rtcSetGeometryMask - sets the geometry mask

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryMask(
      RTCGeometry geometry,
      unsigned int mask
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryMask` function sets a 32-bit geometry mask (`mask`
argument) for the specified geometry (`geometry` argument).

This geometry mask is used together with the ray mask stored inside the
`mask` field of the ray. The primitives of the geometry are hit by the
ray only if the bitwise `and` operation of the geometry mask with the
ray mask is not 0. This feature can be used to disable selected
geometries for specifically tagged rays, e.g. to disable shadow casting
for certain geometries.

Ray masks are disabled in Embree by default at compile time, and can be
enabled through the `EMBREE_RAY_MASK` parameter in CMake. One can query
whether ray masks are enabled by querying the
`RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED` device property using
`rtcGetDeviceProperty`.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTCRay], [rtcGetDeviceProperty]



rtcSetGeometryBuildQuality
--------------------------

#### NAME {#name}

    rtcSetGeometryBuildQuality - sets the build quality for the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryBuildQuality(
      RTCGeometry geometry,
      enum RTCBuildQuality quality
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryBuildQuality` function sets the build quality
(`quality` argument) for the specified geometry (`geometry` argument).
The per-geometry build quality is only a hint and may be ignored.
Embree currently uses the per-geometry build quality when the scene
build quality is set to `RTC_BUILD_QUALITY_LOW`. In this mode a
two-level acceleration structure is build, and geometries build a
separate acceleration structure using the geometry build quality. The
per-geometry build quality can be one of:

-   `RTC_BUILD_QUALITY_LOW`: Creates lower quality data structures,
    e.g. for dynamic scenes.

-   `RTC_BUILD_QUALITY_MEDIUM`: Default build quality for most usages.
    Gives a good compromise between build and render performance.

-   `RTC_BUILD_QUALITY_HIGH`: Creates higher quality data structures
    for final-frame rendering. Enables a spatial split builder for
    certain primitive types.

-   `RTC_BUILD_QUALITY_REFIT`: Uses a BVH refitting approach when
    changing only the vertex buffer.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetSceneBuildQuality]



rtcSetGeometryBuffer
--------------------

#### NAME {#name}

    rtcSetGeometryBuffer - assigns a view of a buffer to the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryBuffer(
      RTCGeometry geometry,
      enum RTCBufferType type,
      unsigned int slot,
      enum RTCFormat format,
      RTCBuffer buffer,
      size_t byteOffset,
      size_t byteStride,
      size_t itemCount
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryBuffer` function binds a view of a buffer object
(`buffer` argument) to a geometry buffer type and slot (`type` and
`slot` argument) of the specified geometry (`geometry` argument).

One can specify the start of the first buffer element in bytes
(`byteOffset` argument), the byte stride between individual buffer
elements (`byteStride` argument), the format of the buffer elements
(`format` argument), and the number of elements to bind (`itemCount`).

The start address (`byteOffset` argument) and stride (`byteStride`
argument) must be both aligned to 4 bytes, otherwise the
`rtcSetGeometryBuffer` function will fail.

After successful completion of this function, the geometry will hold a
reference to the buffer object.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetSharedGeometryBuffer], [rtcSetNewGeometryBuffer]



rtcSetSharedGeometryBuffer
--------------------------

#### NAME {#name}

    rtcSetSharedGeometryBuffer - assigns a view of a shared data buffer
      to a geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetSharedGeometryBuffer(
      RTCGeometry geometry,
      enum RTCBufferType type,
      unsigned int slot,
      enum RTCFormat format,
      const void* ptr,
      size_t byteOffset,
      size_t byteStride,
      size_t itemCount
    );

#### DESCRIPTION {#description}

The `rtcSetSharedGeometryBuffer` function binds a view of a shared
user-managed data buffer (`ptr` argument) to a geometry buffer type and
slot (`type` and `slot` argument) of the specified geometry (`geometry`
argument).

One can specify the start of the first buffer element in bytes
(`byteOffset` argument), the byte stride between individual buffer
elements (`byteStride` argument), the format of the buffer elements
(`format` argument), and the number of elements to bind (`itemCount`).

The start address (`byteOffset` argument) and stride (`byteStride`
argument) must be both aligned to 4 bytes; otherwise the
`rtcSetGeometryBuffer` function will fail.

When the buffer will be used as a vertex buffer
(`RTC_BUFFER_TYPE_VERTEX` and `RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE`), the
last buffer element must be readable using 16-byte SSE load
instructions, thus padding the last element is required for certain
layouts. E.g. a standard `float3` vertex buffer layout should add
storage for at least one more float to the end of the buffer.

The buffer data must remain valid for as long as the buffer may be
used, and the user is responsible for freeing the buffer data when no
longer required.

Sharing buffers can significantly reduce the memory required by the
application, thus we recommend using this feature. When enabling the
`RTC_SCENE_FLAG_COMPACT` scene flag, the spatial index structures index
into the vertex buffer, resulting in even higher memory savings.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetNewGeometryBuffer]



rtcSetNewGeometryBuffer
-----------------------

#### NAME {#name}

    rtcSetNewGeometryBuffer - creates and assigns a new data buffer to
      the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void* rtcSetNewGeometryBuffer(
      RTCGeometry geometry,
      enum RTCBufferType type,
      unsigned int slot,
      enum RTCFormat format,
      size_t byteStride,
      size_t itemCount
    );

#### DESCRIPTION {#description}

The `rtcSetNewGeometryBuffer` function creates a new data buffer of
specified format (`format` argument), byte stride (`byteStride`
argument), and number of items (`itemCount` argument), and assigns it
to a geometry buffer slot (`type` and `slot` argument) of the specified
geometry (`geometry` argument). The buffer data is managed internally
and automatically freed when the geometry is destroyed.

The byte stride (`byteStride` argument) must be aligned to 4 bytes;
otherwise the `rtcSetNewGeometryBuffer` function will fail.

The allocated buffer will be automatically over-allocated slightly when
used as a vertex buffer, where a requirement is that each buffer
element should be readable using 16-byte SSE load instructions.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer]



RTCFormat
---------

#### NAME {#name}

    RTCFormat - specifies format of data in buffers

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore_ray.h>

    enum RTCFormat
    {
      RTC_FORMAT_UINT,
      RTC_FORMAT_UINT2,
      RTC_FORMAT_UINT3,
      RTC_FORMAT_UINT4,

      RTC_FORMAT_FLOAT,
      RTC_FORMAT_FLOAT2,
      RTC_FORMAT_FLOAT3,
      RTC_FORMAT_FLOAT4,
      RTC_FORMAT_FLOAT5,
      RTC_FORMAT_FLOAT6,
      RTC_FORMAT_FLOAT7,
      RTC_FORMAT_FLOAT8,
      RTC_FORMAT_FLOAT9,
      RTC_FORMAT_FLOAT10,
      RTC_FORMAT_FLOAT11,
      RTC_FORMAT_FLOAT12,
      RTC_FORMAT_FLOAT13,
      RTC_FORMAT_FLOAT14,
      RTC_FORMAT_FLOAT15,
      RTC_FORMAT_FLOAT16,

      RTC_FORMAT_FLOAT3X4_ROW_MAJOR,
      RTC_FORMAT_FLOAT4X4_ROW_MAJOR,

      RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,
      RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,

      RTC_FORMAT_GRID,

};

#### DESCRIPTION {#description}

The `RTFormat` structure defines the data format stored in data buffers
provided to Embree using the [rtcSetGeometryBuffer],
[rtcSetSharedGeometryBuffer], and [rtcSetNewGeometryBuffer] API
calls.

The `RTC_FORMAT_UINT/2/3/4` format are used to specify that data
buffers store unsigned integers, or unsigned integer vectors of size
2,3 or 4. This format has typically to get used when specifying index
buffers, e.g. `RTC_FORMAT_UINT3` for triangle meshes.

The `RTC_FORMAT_FLOAT/2/3/4...` format are used to specify that data
buffers store single precision floating point values, or vectors there
of (size 2,3,4, etc.). This format is typcally used to specify to
format of vertex buffers, e.g. the `RTC_FORMAT_FLOAT3` type for vertex
buffers of triangle meshes.

The `RTC_FORMAT_FLOAT3X4_ROW_MAJOR` and
`RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR` formats, specify a 3x4 floating
point matrix layed out either row major or column major. The
`RTC_FORMAT_FLOAT4X4_ROW_MAJOR` and `RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR`
formats, specify a 4x4 floating point matrix layed out either row major
or column major. These matrix formats are used in the
[rtcSetGeometryTransform] function in order to set a transformation
matrix for geometries.

The `RTC_FORMAT_GRID` is a special data format used to specify grid
primitives of layout RTCGrid when creating grid geometries (see
[RTC\_GEOMETRY\_TYPE\_GRID]).

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer],
[rtcSetNewGeometryBuffer], [rtcSetGeometryTransform]



RTCBufferType
-------------

#### NAME {#name}

    RTCFormat - specifies format of data in buffers

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore_ray.h>

    enum RTCBufferType
    {
      RTC_BUFFER_TYPE_INDEX            = 0,
      RTC_BUFFER_TYPE_VERTEX           = 1,
      RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE = 2,
      RTC_BUFFER_TYPE_NORMAL           = 3,
      RTC_BUFFER_TYPE_TANGENT          = 4,
      RTC_BUFFER_TYPE_NORMAL_DERIVATIVE = 5,

      RTC_BUFFER_TYPE_GRID                 = 8,

      RTC_BUFFER_TYPE_FACE                 = 16,
      RTC_BUFFER_TYPE_LEVEL                = 17,
      RTC_BUFFER_TYPE_EDGE_CREASE_INDEX    = 18,
      RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT   = 19,
      RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX  = 20,
      RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT = 21,
      RTC_BUFFER_TYPE_HOLE                 = 22,

      RTC_BUFFER_TYPE_FLAGS = 32
    };

#### DESCRIPTION {#description}

The `RTBufferType` structure defines slots to assign data buffers to
using the [rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer], and
[rtcSetNewGeometryBuffer] API calls.

For most geometry types the `RTC_BUFFER_TYPE_INDEX` slot is used to
assign an index buffer, while the `RTC_BUFFER_TYPE_VERTEX` is used to
assign the corresponding vertex buffer.

The `RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE` slot can get used to assign
arbitrary additional vertex data which can get interpolated using the
[rtcInterpolate] API call.

The `RTC_BUFFER_TYPE_NORMAL`, `RTC_BUFFER_TYPE_TANGENT`, and
`RTC_BUFFER_TYPE_NORMAL_DERIVATIVE` are special buffers required to
assign per vertex normals, tangents, and normal derivatives for some
curve types.

The `RTC_BUFFER_TYPE_GRID` buffer is used to assign the grid primitive
buffer for grid geometries (see [RTC\_GEOMETRY\_TYPE\_GRID]).

The `RTC_BUFFER_TYPE_FACE`, `RTC_BUFFER_TYPE_LEVEL`,
`RTC_BUFFER_TYPE_EDGE_CREASE_INDEX`,
`RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT`,
`RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX`,
`RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT`, and `RTC_BUFFER_TYPE_HOLE` are
special buffers required to create subdivision meshes (see
[RTC\_GEOMETRY\_TYPE\_SUBDIVISION]).

The `RTC_BUFFER_TYPE_FLAGS` can get used to add additional flag per
primitive of a geometry, and is currently only used for linear curves.

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer],
[rtcSetNewGeometryBuffer]



rtcGetGeometryBufferData
------------------------

#### NAME {#name}

    rtcGetGeometryBufferData - gets pointer to
      the first buffer view element

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void* rtcGetGeometryBufferData(
      RTCGeometry geometry,
      enum RTCBufferType type,
      unsigned int slot
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryBufferData` function returns a pointer to the first
element of the buffer view attached to the specified buffer type and
slot (`type` and `slot` argument) of the geometry (`geometry`
argument).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer],
[rtcSetNewGeometryBuffer]



rtcUpdateGeometryBuffer
-----------------------

#### NAME {#name}

    rtcUpdateGeometryBuffer - marks a buffer view bound to the geometry
      as modified

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcUpdateGeometryBuffer(
      RTCGeometry geometry,
      enum RTCBufferType type,
      unsigned int slot
    );

#### DESCRIPTION {#description}

The `rtcUpdateGeometryBuffer` function marks the buffer view bound to
the specified buffer type and slot (`type` and `slot` argument) of a
geometry (`geometry` argument) as modified.

If a data buffer is changed by the application, the
`rtcUpdateGeometryBuffer` call must be invoked for that buffer. Each
buffer view assigned to a buffer slot is initially marked as modified,
thus this function needs to be called only when doing buffer
modifications after the first `rtcCommitScene`.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewGeometry], [rtcCommitScene]



rtcSetGeometryIntersectFilterFunction
-------------------------------------

#### NAME {#name}

    rtcSetGeometryIntersectFilterFunction - sets the intersection filter
      for the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCFilterFunctionNArguments
    {
      int* valid;
      void* geometryUserPtr;
      const struct RTCIntersectContext* context;
      struct RTCRayN* ray;
      struct RTCHitN* hit;
      unsigned int N;
    };

    typedef void (*RTCFilterFunctionN)(
      const struct RTCFilterFunctionNArguments* args
    );

    void rtcSetGeometryIntersectFilterFunction(
      RTCGeometry geometry,
      RTCFilterFunctionN filter
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryIntersectFilterFunction` function registers an
intersection filter callback function (`filter` argument) for the
specified geometry (`geometry` argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered intersection filter function is invoked for every hit
encountered during the `rtcIntersect`-type ray queries and can accept
or reject that hit. The feature can be used to define a silhouette for
a primitive and reject hits that are outside the silhouette. E.g. a
tree leaf could be modeled with an alpha texture that decides whether
hit points lie inside or outside the leaf.

If the `RTC_BUILD_QUALITY_HIGH` mode is set, the filter functions may
be called multiple times for the same primitive hit. Further, rays
hitting exactly the edge might also report two hits for the same
surface. For certain use cases, the application may have to work around
this limitation by collecting already reported hits (`geomID`/`primID`
pairs) and ignoring duplicates.

The filter function callback of type `RTCFilterFunctionN` gets passed a
number of arguments through the `RTCFilterFunctionNArguments`
structure. The `valid` parameter of that structure points to an integer
valid mask (0 means invalid and -1 means valid). The `geometryUserPtr`
member is a user pointer optionally set per geometry through the
`rtcSetGeometryUserData` function. The `context` member points to the
intersection context passed to the ray query function. The `ray`
parameter points to `N` rays in SOA layout. The `hit` parameter points
to `N` hits in SOA layout to test. The `N` parameter is the number of
rays and hits in `ray` and `hit`. The hit distance is provided as the
`tfar` value of the ray. If the hit geometry is instanced, the `instID`
member of the ray is valid, and the ray and the potential hit are in
object space.

The filter callback function has the task to check for each valid ray
whether it wants to accept or reject the corresponding hit. To reject a
hit, the filter callback function just has to write `0` to the integer
valid mask of the corresponding ray. To accept the hit, it just has to
leave the valid mask set to `-1`. The filter function is further
allowed to change the hit and decrease the `tfar` value of the ray but
it should not modify other ray data nor any inactive components of the
ray or hit.

When performing ray queries using `rtcIntersect1`, it is guaranteed
that the packet size is 1 when the callback is invoked. When performing
ray queries using the `rtcIntersect4/8/16` functions, it is not
generally guaranteed that the ray packet size (and order of rays inside
the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and
whether this is the case can be queried using `rtcGetDeviceProperty`.
When performing ray queries using the stream API such as
`rtcIntersect1M`, `rtcIntersect1Mp`, `rtcIntersectNM`, or
`rtcIntersectNp` the order of rays and ray packet size of the callback
function might change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not
cause difficulties in implementing the callback function. However,
algorithms that need to extend the ray with additional data must use
the `rayID` component of the ray to identify the original ray to access
the per-ray data.

The implementation of the filter function can choose to implement a
single code path that uses the ray access helper functions `RTCRay_XXX`
and hit access helper functions `RTCHit_XXX` to access ray and hit
data. Alternatively the code can branch to optimized implementations
for specific sizes of `N` and cast the `ray` and `hit` inputs to the
proper packet types.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryOccludedFilterFunction]



rtcSetGeometryOccludedFilterFunction
------------------------------------

#### NAME {#name}

    rtcSetGeometryOccludedFilterFunction - sets the occlusion filter
      for the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryOccludedFilterFunction(
      RTCGeometry geometry,
      RTCFilterFunctionN filter
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryOccludedFilterFunction` function registers an
occlusion filter callback function (`filter` argument) for the
specified geometry (`geometry` argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered intersection filter function is invoked for every hit
encountered during the `rtcOccluded`-type ray queries and can accept or
reject that hit. The feature can be used to define a silhouette for a
primitive and reject hits that are outside the silhouette. E.g. a tree
leaf could be modeled with an alpha texture that decides whether hit
points lie inside or outside the leaf.

Please see the description of the
`rtcSetGeometryIntersectFilterFunction` for a description of the filter
callback function.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryIntersectFilterFunction]



rtcFilterIntersection
---------------------

#### NAME {#name}

    rtcFilterIntersection - invokes the intersection filter function

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcFilterIntersection(
      const struct RTCIntersectFunctionNArguments* args,
      const struct RTCFilterFunctionNArguments* filterArgs
    );

#### DESCRIPTION {#description}

The `rtcFilterIntersection` function can be called inside an
`RTCIntersectFunctionN` callback function to invoke the intersection
filter registered to the geometry and stored inside the context. For
this an `RTCFilterFunctionNArguments` structure must be created (see
`rtcSetGeometryIntersectFilterFunction`) which basically consists of a
valid mask, a hit packet to filter, the corresponding ray packet, and
the packet size. After the invocation of `rtcFilterIntersection`, only
rays that are still valid (valid mask set to -1) should update a hit.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcFilterOcclusion], [rtcSetGeometryIntersectFunction]



rtcFilterOcclusion
------------------

#### NAME {#name}

    rtcFilterOcclusion - invokes the occlusion filter function

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcFilterOcclusion(
      const struct RTCOccludedFunctionNArguments* args,
      const struct RTCFilterFunctionNArguments* filterArgs
    );

#### DESCRIPTION {#description}

The `rtcFilterOcclusion` function can be called inside an
`RTCOccludedFunctionN` callback function to invoke the occlusion filter
registered to the geometry and stored inside the context. For this an
`RTCFilterFunctionNArguments` structure must be created (see
`rtcSetGeometryIntersectFilterFunction`) which basically consists of a
valid mask, a hit packet to filter, the corresponding ray packet, and
the packet size. After the invocation of `rtcFilterOcclusion` only rays
that are still valid (valid mask set to -1) should signal an occlusion.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcFilterIntersection], [rtcSetGeometryOccludedFunction]



rtcSetGeometryUserData
----------------------

#### NAME {#name}

    rtcSetGeometryUserData - sets the user-defined data pointer of the
      geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryUserData(RTCGeometry geometry, void* userPtr);

#### DESCRIPTION {#description}

The `rtcSetGeometryUserData` function sets the user-defined data
pointer (`userPtr` argument) for a geometry (`geometry` argument). This
user data pointer is intended to be pointing to the application's
representation of the geometry, and is passed to various callback
functions. The application can use this pointer inside the callback
functions to access its geometry representation.

The `rtcGetGeometryUserData` function can be used to query an already
set user data pointer of a geometry.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetGeometryUserData]



rtcGetGeometryUserData
----------------------

#### NAME {#name}

    rtcGetGeometryUserData - returns the user data pointer
      of the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void* rtcGetGeometryUserData(RTCGeometry geometry);

#### DESCRIPTION {#description}

The `rtcGetGeometryUserData` function queries the user data pointer
previously set with `rtcSetGeometryUserData`. When
`rtcSetGeometryUserData` was not called yet, `NULL` is returned.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryUserData]



rtcSetGeometryUserPrimitiveCount
--------------------------------

#### NAME {#name}

    rtcSetGeometryUserPrimitiveCount - sets the number of primitives
      of a user-defined geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryUserPrimitiveCount(
      RTCGeometry geometry,
      unsigned int userPrimitiveCount
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryUserPrimitiveCount` function sets the number of
user-defined primitives (`userPrimitiveCount` parameter) of the
specified user-defined geometry (`geometry` parameter).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_USER]



rtcSetGeometryBoundsFunction
----------------------------

#### NAME {#name}

    rtcSetGeometryBoundsFunction - sets a callback to query the
      bounding box of user-defined primitives

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCBoundsFunctionArguments
    {
      void* geometryUserPtr;
      unsigned int primID;
      unsigned int timeStep;
      struct RTCBounds* bounds_o;
    };

    typedef void (*RTCBoundsFunction)(
      const struct RTCBoundsFunctionArguments* args
    );

    void rtcSetGeometryBoundsFunction(
      RTCGeometry geometry,
      RTCBoundsFunction bounds,
      void* userPtr
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryBoundsFunction` function registers a bounding box
callback function (`bounds` argument) with payload (`userPtr` argument)
for the specified user geometry (`geometry` argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered bounding box callback function is invoked to calculate
axis-aligned bounding boxes of the primitives of the user-defined
geometry during spatial acceleration structure construction. The
bounding box callback of `RTCBoundsFunction` type is invoked with a
pointer to a structure of type `RTCBoundsFunctionArguments` which
contains various arguments, such as: the user data of the geometry
(`geometryUserPtr` member), the ID of the primitive to calculate the
bounds for (`primID` member), the time step at which to calculate the
bounds (`timeStep` member), and a memory location to write the
calculated bound to (`bounds_o` member).

In a typical usage scenario one would store a pointer to the internal
representation of the user geometry object using
`rtcSetGeometryUserData`. The callback function can then read that
pointer from the `geometryUserPtr` field and calculate the proper
bounding box for the requested primitive and time, and store that
bounding box to the destination structure (`bounds_o` member).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_USER]



rtcSetGeometryIntersectFunction
-------------------------------

#### NAME {#name}

    rtcSetGeometryIntersectFunction - sets the callback function to
      intersect a user geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCIntersectFunctionNArguments
    {
      int* valid;
      void* geometryUserPtr;
      unsigned int primID;
      struct RTCIntersectContext* context;
      struct RTCRayHitN* rayhit;
      unsigned int N;
      unsigned int geomID;
    };

    typedef void (*RTCIntersectFunctionN)(
      const struct RTCIntersectFunctionNArguments* args
    );

    void rtcSetGeometryIntersectFunction(
      RTCGeometry geometry,
      RTCIntersectFunctionN intersect
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryIntersectFunction` function registers a
ray/primitive intersection callback function (`intersect` argument) for
the specified user geometry (`geometry` argument).

Only a single callback function can be registered per geometry and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered callback function is invoked by `rtcIntersect`-type ray
queries to calculate the intersection of a ray packet of variable size
with one user-defined primitive. The callback function of type
`RTCIntersectFunctionN` gets passed a number of arguments through the
`RTCIntersectFunctionNArguments` structure. The value `N` specifies the
ray packet size, `valid` points to an array of integers that specify
whether the corresponding ray is valid (-1) or invalid (0), the
`geometryUserPtr` member points to the geometry user data previously
set through `rtcSetGeometryUserData`, the `context` member points to
the intersection context passed to the ray query, the `rayhit` member
points to a ray and hit packet of variable size `N`, and the `geomID`
and `primID` member identifies the geometry ID and primitive ID of the
primitive to intersect.

The `ray` component of the `rayhit` structure contains valid data, in
particular the `tfar` value is the current closest hit distance found.
All data inside the `hit` component of the `rayhit` structure are
undefined and should not be read by the function.

The task of the callback function is to intersect each active ray from
the ray packet with the specified user primitive. If the user-defined
primitive is missed by a ray of the ray packet, the function should
return without modifying the ray or hit. If an intersection of the
user-defined primitive with the ray was found in the valid range (from
`tnear` to `tfar`), it should update the hit distance of the ray
(`tfar` member) and the hit (`u`, `v`, `Ng`, `instID`, `geomID`,
`primID` members). In particular, the currently intersected instance is
stored in the `instID` field of the intersection context, which must be
deep copied into the `instID` member of the hit.

As a primitive might have multiple intersections with a ray, the
intersection filter function needs to be invoked by the user geometry
intersection callback for each encountered intersection, if filtering
of intersections is desired. This can be achieved through the
`rtcFilterIntersection` call.

Within the user geometry intersect function, it is safe to trace new
rays and create new scenes and geometries.

When performing ray queries using `rtcIntersect1`, it is guaranteed
that the packet size is 1 when the callback is invoked. When performing
ray queries using the `rtcIntersect4/8/16` functions, it is not
generally guaranteed that the ray packet size (and order of rays inside
the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and
whether this is the case can be queried using `rtcGetDeviceProperty`.
When performing ray queries using the stream API such as
`rtcIntersect1M`, `rtcIntersect1Mp`, `rtcIntersectNM`, or
`rtcIntersectNp` the order of rays and ray packet size of the callback
function might change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not
cause difficulties in implementing the callback function. However,
algorithms that need to extend the ray with additional data must use
the `rayID` component of the ray to identify the original ray to access
the per-ray data.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryOccludedFunction], [rtcSetGeometryUserData],
[rtcFilterIntersection]



rtcSetGeometryOccludedFunction
------------------------------

#### NAME {#name}

    rtcSetGeometryOccludedFunction - sets the callback function to
      test a user geometry for occlusion

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCOccludedFunctionNArguments
    {
      int* valid;
      void* geometryUserPtr;
      unsigned int primID;
      struct RTCIntersectContext* context;
      struct RTCRayN* ray;
      unsigned int N;
      unsigned int geomID;
    };

    typedef void (*RTCOccludedFunctionN)(
      const struct RTCOccludedFunctionNArguments* args
    );

    void rtcSetGeometryOccludedFunction(
      RTCGeometry geometry,
      RTCOccludedFunctionN filter
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryOccludedFunction` function registers a ray/primitive
occlusion callback function (`filter` argument) for the specified user
geometry (`geometry` argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered callback function is invoked by `rtcOccluded`-type ray
queries to test whether the rays of a packet of variable size are
occluded by a user-defined primitive. The callback function of type
`RTCOccludedFunctionN` gets passed a number of arguments through the
`RTCOccludedFunctionNArguments` structure. The value `N` specifies the
ray packet size, `valid` points to an array of integers which specify
whether the corresponding ray is valid (-1) or invalid (0), the
`geometryUserPtr` member points to the geometry user data previously
set through `rtcSetGeometryUserData`, the `context` member points to
the intersection context passed to the ray query, the `ray` member
points to a ray packet of variable size `N`, and the `geomID` and
`primID` member identifies the geometry ID and primitive ID of the
primitive to intersect.

The task of the callback function is to intersect each active ray from
the ray packet with the specified user primitive. If the user-defined
primitive is missed by a ray of the ray packet, the function should
return without modifying the ray. If an intersection of the
user-defined primitive with the ray was found in the valid range (from
`tnear` to `tfar`), it should set the `tfar` member of the ray to
`-inf`.

As a primitive might have multiple intersections with a ray, the
occlusion filter function needs to be invoked by the user geometry
occlusion callback for each encountered intersection, if filtering of
intersections is desired. This can be achieved through the
`rtcFilterOcclusion` call.

Within the user geometry occlusion function, it is safe to trace new
rays and create new scenes and geometries.

When performing ray queries using `rtcOccluded1`, it is guaranteed that
the packet size is 1 when the callback is invoked. When performing ray
queries using the `rtcOccluded4/8/16` functions, it is not generally
guaranteed that the ray packet size (and order of rays inside the
packet) passed to the callback matches the initial ray packet. However,
under some circumstances these properties are guaranteed, and whether
this is the case can be queried using `rtcGetDeviceProperty`. When
performing ray queries using the stream API such as `rtcOccluded1M`,
`rtcOccluded1Mp`, `rtcOccludedNM`, or `rtcOccludedNp` the order of rays
and ray packet size of the callback function might change to either 1,
4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not
cause difficulties in implementing the callback function. However,
algorithms that need to extend the ray with additional data must use
the `rayID` component of the ray to identify the original ray to access
the per-ray data.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometryIntersectFunction], [rtcSetGeometryUserData],
[rtcFilterOcclusion]



rtcSetGeometryPointQueryFunction
--------------------------------

#### NAME {#name}

    rtcSetGeometryPointQueryFunction - sets the point query callback function
      for a geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCPointQueryFunctionArguments
    {
      // the (world space) query object that was passed as an argument of rtcPointQuery.
      struct RTCPointQuery* query;

      // used for user input/output data. Will not be read or modified internally.
      void* userPtr;

      // primitive and geometry ID of primitive
      unsigned int  primID;        
      unsigned int  geomID;    

      // the context with transformation and instance ID stack
      struct RTCPointQueryContext* context;

      // scaling factor indicating whether the current instance transformation
      // is a similarity transformation.
      float similarityScale;
    };

    typedef bool (*RTCPointQueryFunction)(
      struct RTCPointQueryFunctionArguments* args
    );

    void rtcSetGeometryPointQueryFunction(
      RTCGeometry geometry,
      RTCPointQueryFunction queryFunc
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryPointQueryFunction` function registers a point query
callback function (`queryFunc` argument) for the specified geometry
(`geometry` argument).

Only a single callback function can be registered per geometry and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered callback function is invoked by [rtcPointQuery] for
every primitive of the geometry that intersects the corresponding point
query domain. The callback function of type `RTCPointQueryFunction`
gets passed a number of arguments through the
`RTCPointQueryFunctionArguments` structure. The `query` object is the
original point query object passed into [rtcPointQuery], `usrPtr` is
an arbitrary pointer to pass input into and store results of the
callback function. The `primID`, `geomID` and `context` (see
[rtcInitPointQueryContext] for details) can be used to identify the
geometry data of the primitive.

A `RTCPointQueryFunction` can also be passed directly as an argument to
[rtcPointQuery]. In this case the callback is invoked for all
primitives in the scene that intersect the query domain. If a callback
function is passed as an argument to [rtcPointQuery] and (a
potentially different) callback function is set for a geometry with
[rtcSetGeometryPointQueryFunction] both callback functions are
invoked and the callback function passed to [rtcPointQuery] will be
called before the geometry specific callback function.

If instancing is used, the parameter `simliarityScale` indicates
whether the current instance transform (top element of the stack in
`context`) is a similarity transformation or not. Similarity
transformations are composed of translation, rotation and uniform
scaling and if a matrix M defines a similarity transformation, there is
a scaling factor D such that for all x,y: dist(Mx, My) = D \* dist(x,
y). In this case the parameter `scalingFactor` is this scaling factor D
and otherwise it is 0. A valid similarity scale (`similarityScale` \>
0) allows to compute distance information in instance space and scale
the distances into world space (for example, to update the query
radius, see below) by dividing the instance space distance with the
similarity scale. If the current instance transform is not a similarity
transform (`similarityScale` is 0), the distance computation has to be
performed in world space to ensure correctness. In this case the
instance to world transformations given with the `context` should be
used to transform the primitive data into world space. Otherwise, the
query location can be transformed into instance space which can be more
efficient. If there is no instance transform, the similarity scale is
1.

The callback function will potentially be called for primitives outside
the query domain for two resons: First, the callback is invoked for all
primitives inside a BVH leaf node since no geometry data of primitives
is determined internally and therefore individual primitives are not
culled (only their (aggregated) bounding boxes). Second, in case non
similarity transformations are used, the resulting ellipsoidal query
domain (in instance space) is approximated by its axis aligned bounding
box internally and therefore inner nodes that do not intersect the
original domain might intersect the approximative bounding box which
results in unneccessary callbacks. In any case, the callbacks are
conservative, i.e. if a primitive is inside the query domain a callback
will be invoked but the reverse is not neccessarily true.

For efficiency, the radius of the `query` object can be decreased (in
world space) inside the callback function to improve culling of
geometry during BVH traversal. If the query radius was updated, the
callback function should return `true` to issue an update of internal
traversal information. Increasing the radius or modifying the time or
position of the query results in undefined behaviour.

Within the callback function, it is safe to call [rtcPointQuery]
again, for example when implementing instancing manually. In this case
the instance transformation should be pushed onto the stack in
`context`. Embree will internally compute the point query information
in instance space using the top element of the stack in `context` when
[rtcPointQuery] is called.

For a reference implementation of a closest point traversal of triangle
meshes using instancing and user defined instancing see the tutorial
[ClosestPoint].

#### SEE ALSO {#see-also}

[rtcPointQuery], [rtcInitPointQueryContext]



rtcSetGeometryInstancedScene
----------------------------

#### NAME {#name}

    rtcSetGeometryInstancedScene - sets the instanced scene of
      an instance geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryInstancedScene(
      RTCGeometry geometry,
      RTCScene scene
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryInstancedScene` function sets the instanced scene
(`scene` argument) of the specified instance geometry (`geometry`
argument).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_INSTANCE], [rtcSetGeometryTransform]



rtcSetGeometryTransform
-----------------------

#### NAME {#name}

    rtcSetGeometryTransform - sets the transformation for a particular
      time step of an instance geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryTransform(
      RTCGeometry geometry,
      unsigned int timeStep,
      enum RTCFormat format,
      const float* xfm
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryTransform` function sets the local-to-world affine
transformation (`xfm` parameter) of an instance geometry (`geometry`
parameter) for a particular time step (`timeStep` parameter). The
transformation is specified as a 3×4 matrix (3×3 linear transformation
plus translation), for which the following formats (`format` parameter)
are supported:

-   `RTC_FORMAT_FLOAT3X4_ROW_MAJOR`: The 3×4 float matrix is laid out
    in row-major form.

-   `RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR`: The 3×4 float matrix is laid
    out in column-major form.

-   `RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR`: The 3×4 float matrix is laid
    out in column-major form as a 4×4 homogeneous matrix with the last
    row being equal to (0, 0, 0, 1).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_INSTANCE]



rtcSetGeometryTransformQuaternion
---------------------------------

#### NAME {#name}

    rtcSetGeometryTransformQuaternion - sets the transformation for a particular
      time step of an instance geometry as a decomposition of the
      transformation matrix using quaternions to represent the rotation.

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryTransformQuaternion(
      RTCGeometry geometry,
      unsigned int timeStep,
      const struct RTCQuaternionDecomposition* qd
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryTransformQuaternion` function sets the
local-to-world affine transformation (`qd` parameter) of an instance
geometry (`geometry` parameter) for a particular time step (`timeStep`
parameter). The transformation is specified as a
[RTCQuaternionDecomposition], which is a decomposition of an affine
transformation that represents the rotational component of an affine
transformation as a quaternion. This allows interpolating rotational
transformations exactly using spherical linear interpolation (such as a
turning wheel).

For more information about the decomposition see
[RTCQuaternionDecomposition]. The quaternion given in the
`RTCQuaternionDecomposition` struct will be normalized internally.

For correct results, the transformation matrices for all time steps
must be set either using `rtcSetGeometryTransform` or
`rtcSetGeometryTransformQuaternion`. Mixing both representations is not
allowed. Spherical linear interpolation will be used, iff the
transformation matizes are set with
`rtcSetGeometryTransformQuaternion`.

For an example of this feature see the tutorial [Quaternion Motion
Blur].

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcInitQuaternionDecomposition], [rtcSetGeometryTransform]



rtcGetGeometryTransform
-----------------------

#### NAME {#name}

    rtcGetGeometryTransform - returns the interpolated instance
      transformation for the specified time

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcGetGeometryTransform(
      RTCGeometry geometry,
      float time,
      enum RTCFormat format,
      void* xfm
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryTransform` function returns the interpolated local
to world transformation (`xfm` parameter) of an instance geometry
(`geometry` parameter) for a particular time (`time` parameter in range
$[0,1]$) in the specified format (`format` parameter).

Possible formats for the returned matrix are:

-   `RTC_FORMAT_FLOAT3X4_ROW_MAJOR`: The 3×4 float matrix is laid out
    in row-major form.

-   `RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR`: The 3×4 float matrix is laid
    out in column-major form.

-   `RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR`: The 3×4 float matrix is laid
    out in column-major form as a 4×4 homogeneous matrix with last row
    equal to (0, 0, 0, 1).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_INSTANCE], [rtcSetGeometryTransform]



rtcSetGeometryTessellationRate
------------------------------

#### NAME {#name}

    rtcSetGeometryTessellationRate - sets the tessellation rate of the
      geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryTessellationRate(
      RTCGeometry geometry,
      float tessellationRate
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryTessellationRate` function sets the tessellation
rate (`tessellationRate` argument) for the specified geometry
(`geometry` argument). The tessellation rate can only be set for flat
curves and subdivision geometries. For curves, the tessellation rate
specifies the number of ray-facing quads per curve segment. For
subdivision surfaces, the tessellation rate specifies the number of
quads along each edge.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_CURVE], [RTC\_GEOMETRY\_TYPE\_SUBDIVISION]



rtcSetGeometryTopologyCount
---------------------------

#### NAME {#name}

    rtcSetGeometryTopologyCount - sets the number of topologies of
      a subdivision geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryTopologyCount(
      RTCGeometry geometry,
      unsigned int topologyCount
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryTopologyCount` function sets the number of
topologies (`topologyCount` parameter) for the specified subdivision
geometry (`geometry` parameter). The number of topologies of a
subdivision geometry must be greater or equal to 1.

To use multiple topologies, first the number of topologies must be
specified, then the individual topologies can be configured using
`rtcSetGeometrySubdivisionMode` and by setting an index buffer
(`RTC_BUFFER_TYPE_INDEX`) using the topology ID as the buffer slot.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_SUBDIVISION], [rtcSetGeometrySubdivisionMode]



rtcSetGeometrySubdivisionMode
-----------------------------

#### NAME {#name}

    rtcSetGeometrySubdivisionMode - sets the subdivision mode
      of a subdivision geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometrySubdivisionMode(
      RTCGeometry geometry,
      unsigned int topologyID,
      enum RTCSubdivisionMode mode
    );

#### DESCRIPTION {#description}

The `rtcSetGeometrySubdivisionMode` function sets the subdivision mode
(`mode` parameter) for the topology (`topologyID` parameter) of the
specified subdivision geometry (`geometry` parameter).

The subdivision modes can be used to force linear interpolation for
certain parts of the subdivision mesh:

-   `RTC_SUBDIVISION_MODE_NO_BOUNDARY`: Boundary patches are ignored.
    This way each rendered patch has a full set of control vertices.

-   `RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY`: The sequence of boundary
    control points are used to generate a smooth B-spline boundary
    curve (default mode).

-   `RTC_SUBDIVISION_MODE_PIN_CORNERS`: Corner vertices are pinned to
    their location during subdivision.

-   `RTC_SUBDIVISION_MODE_PIN_BOUNDARY`: All vertices at the border are
    pinned to their location during subdivision. This way the boundary
    is interpolated linearly. This mode is typically used for texturing
    to also map texels at the border of the texture to the mesh.

-   `RTC_SUBDIVISION_MODE_PIN_ALL`: All vertices at the border are
    pinned to their location during subdivision. This way all patches
    are linearly interpolated.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_SUBDIVISION]



rtcSetGeometryVertexAttributeTopology
-------------------------------------

#### NAME {#name}

    rtcSetGeometryVertexAttributeTopology - binds a vertex
      attribute to a topology of the geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcSetGeometryVertexAttributeTopology(
      RTCGeometry geometry,
      unsigned int vertexAttributeID,
      unsigned int topologyID
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryVertexAttributeTopology` function binds a vertex
attribute buffer slot (`vertexAttributeID` argument) to a topology
(`topologyID` argument) for the specified subdivision geometry
(`geometry` argument). Standard vertex buffers are always bound to the
default topology (topology 0) and cannot be bound differently. A vertex
attribute buffer always uses the topology it is bound to when used in
the `rtcInterpolate` and `rtcInterpolateN` calls.

A topology with ID `i` consists of a subdivision mode set through
`rtcSetGeometrySubdivisionMode` and the index buffer bound to the index
buffer slot `i`. This index buffer can assign indices for each face of
the subdivision geometry that are different to the indices of the
default topology. These new indices can for example be used to
introduce additional borders into the subdivision mesh to map multiple
textures onto one subdivision geometry.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcSetGeometrySubdivisionMode], [rtcInterpolate],
[rtcInterpolateN]



rtcSetGeometryDisplacementFunction
----------------------------------

#### NAME {#name}

    rtcSetGeometryDisplacementFunction - sets the displacement function
      for a subdivision geometry

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCDisplacementFunctionNArguments
    {
      void* geometryUserPtr;
      RTCGeometry geometry;
      unsigned int primID;
      unsigned int timeStep;
      const float* u;
      const float* v;
      const float* Ng_x;
      const float* Ng_y;
      const float* Ng_z;
      float* P_x;
      float* P_y;
      float* P_z;
      unsigned int N;
    };

    typedef void (*RTCDisplacementFunctionN)(
       const struct RTCDisplacementFunctionNArguments* args
    );

    void rtcSetGeometryDisplacementFunction(
      RTCGeometry geometry,
      RTCDisplacementFunctionN displacement
    );

#### DESCRIPTION {#description}

The `rtcSetGeometryDisplacementFunction` function registers a
displacement callback function (`displacement` argument) for the
specified subdivision geometry (`geometry` argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing `NULL` as function pointer disables the registered callback
function.

The registered displacement callback function is invoked to displace
points on the subdivision geometry during spatial acceleration
structure construction, during the `rtcCommitScene` call.

The callback function of type `RTCDisplacementFunctionN` is invoked
with a number of arguments stored inside the
`RTCDisplacementFunctionNArguments` structure. The provided user data
pointer of the geometry (`geometryUserPtr` member) can be used to point
to the application's representation of the subdivision mesh. A number
`N` of points to displace are specified in a structure of array layout.
For each point to displace, the local patch UV coordinates (`u` and `v`
arrays), the normalized geometry normal (`Ng_x`, `Ng_y`, and `Ng_z`
arrays), and the position (`P_x`, `P_y`, and `P_z` arrays) are
provided. The task of the displacement function is to use this
information and change the position data.

The geometry handle (`geometry` member) and primitive ID (`primID`
member) of the patch to displace are additionally provided as well as
the time step `timeStep`, which can be important if the displacement is
time-dependent and motion blur is used.

All passed arrays must be aligned to 64 bytes and properly padded to
make wide vector processing inside the displacement function easily
possible.

Also see tutorial [Displacement Geometry] for an example of how to
use the displacement mapping functions.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[RTC\_GEOMETRY\_TYPE\_SUBDIVISION]



rtcGetGeometryFirstHalfEdge
---------------------------

#### NAME {#name}

    rtcGetGeometryFirstHalfEdge - returns the first half edge of a face

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    unsigned int rtcGetGeometryFirstHalfEdge(
      RTCGeometry geometry,
      unsigned int faceID
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryFirstHalfEdge` function returns the ID of the first
half edge belonging to the specified face (`faceID` argument). For
instance in the following example the first half edge of face `f1` is
`e4`.

![][imgHalfEdges]

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

Here f0 to f7 are 8 quadrilateral faces with 4 vertices each. The edges
e0 to e23 of these faces are shown with their orientation. For each
face the ID of the edges corresponds to the slots the face occupies in
the index array of the geometry. E.g. as the indices of face f1 start
at location 4 of the index array, the first edge is edge e4, the next
edge e5, etc.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]



rtcGetGeometryFace
------------------

#### NAME {#name}

    rtcGetGeometryFace - returns the face of some half edge

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    unsigned int rtcGetGeometryFace(
      RTCGeometry geometry,
      unsigned int edgeID
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryFace` function returns the ID of the face the
specified half edge (`edgeID` argument) belongs to. For instance in the
following example the face `f1` is returned for edges `e4`, `e5`, `e6`,
and `e7`.

![][imgHalfEdges]

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]



rtcGetGeometryNextHalfEdge
--------------------------

#### NAME {#name}

    rtcGetGeometryNextHalfEdge - returns the next half edge

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    unsigned int rtcGetGeometryNextHalfEdge(
      RTCGeometry geometry,
      unsigned int edgeID
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryNextHalfEdge` function returns the ID of the next
half edge of the specified half edge (`edgeID` argument). For instance
in the following example the next half edge of `e10` is `e11`.

![][imgHalfEdges]

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]



rtcGetGeometryPreviousHalfEdge
------------------------------

#### NAME {#name}

    rtcGetGeometryPreviousHalfEdge - returns the previous half edge

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    unsigned int rtcGetGeometryPreviousHalfEdge(
      RTCGeometry geometry,
      unsigned int edgeID
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryPreviousHalfEdge` function returns the ID of the
previous half edge of the specified half edge (`edgeID` argument). For
instance in the following example the previous half edge of `e6` is
`e5`.

![][imgHalfEdges]

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]



rtcGetGeometryOppositeHalfEdge
------------------------------

#### NAME {#name}

    rtcGetGeometryOppositeHalfEdge - returns the opposite half edge

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    unsigned int rtcGetGeometryOppositeHalfEdge(
      RTCGeometry geometry,
      unsigned int topologyID,
      unsigned int edgeID
    );

#### DESCRIPTION {#description}

The `rtcGetGeometryOppositeHalfEdge` function returns the ID of the
opposite half edge of the specified half edge (`edgeID` argument) in
the specified topology (`topologyID` argument). For instance in the
following example the opposite half edge of `e6` is `e16`.

![][imgHalfEdges]

An opposite half edge does not exist if the specified half edge has
either no neighboring face, or more than 2 neighboring faces. In these
cases the function just returns the same edge `edgeID` again.

This function can only be used for subdivision geometries. The function
depends on the topology as the topologies of a subdivision geometry
have different index buffers assigned.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]



rtcInterpolate
--------------

#### NAME {#name}

    rtcInterpolate - interpolates vertex attributes

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCInterpolateArguments
    {
      RTCGeometry geometry;
      unsigned int primID;
      float u;
      float v;
      enum RTCBufferType bufferType;
      unsigned int bufferSlot;
      float* P;
      float* dPdu;
      float* dPdv;
      float* ddPdudu;
      float* ddPdvdv;
      float* ddPdudv;
      unsigned int valueCount;
    };

    void rtcInterpolate(
      const struct RTCInterpolateArguments* args
    );

#### DESCRIPTION {#description}

The `rtcInterpolate` function smoothly interpolates per-vertex data
over the geometry. This interpolation is supported for triangle meshes,
quad meshes, curve geometries, and subdivision geometries. Apart from
interpolating the vertex attribute itself, it is also possible to get
the first and second order derivatives of that value. This
interpolation ignores displacements of subdivision surfaces and always
interpolates the underlying base surface.

The `rtcInterpolate` call gets passed a number of arguments inside a
structure of type `RTCInterpolateArguments`. For some geometry
(`geometry` parameter) this function smoothly interpolates the
per-vertex data stored inside the specified geometry buffer
(`bufferType` and `bufferSlot` parameters) to the u/v location (`u` and
`v` parameters) of the primitive (`primID` parameter). The number of
floating point values to interpolate and store to the destination
arrays can be specified using the `valueCount` parameter. As
interpolation buffer, one can specify vertex buffers
(`RTC_BUFFER_TYPE_VERTEX`) and vertex attribute buffers
(`RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE`) as well.

The `rtcInterpolate` call stores `valueCount` number of interpolated
floating point values to the memory location pointed to by `P`. One can
avoid storing the interpolated value by setting `P` to `NULL`.

The first order derivative of the interpolation by u and v are stored
at the `dPdu` and `dPdv` memory locations. One can avoid storing first
order derivatives by setting both `dPdu` and `dPdv` to `NULL`.

The second order derivatives are stored at the `ddPdudu`, `ddPdvdv`,
and `ddPdudv` memory locations. One can avoid storing second order
derivatives by setting these three pointers to `NULL`.

To use `rtcInterpolate` for a geometry, all changes to that geometry
must be properly committed using `rtcCommitGeometry`.

All input buffers and output arrays must be padded to 16 bytes, as the
implementation uses 16-byte SSE instructions to read and write into
these buffers.

See tutorial [Interpolation] for an example of using the
`rtcInterpolate` function.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcInterpolateN]



rtcInterpolateN
---------------

#### NAME {#name}

    rtcInterpolateN - performs N interpolations of vertex attribute data

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCInterpolateNArguments
    {
      RTCGeometry geometry;
      const void* valid;
      const unsigned int* primIDs;
      const float* u;
      const float* v;
      unsigned int N;
      enum RTCBufferType bufferType;
      unsigned int bufferSlot;
      float* P;
      float* dPdu;
      float* dPdv;
      float* ddPdudu;
      float* ddPdvdv;
      float* ddPdudv;
      unsigned int valueCount;
    };

    void rtcInterpolateN(
      const struct RTCInterpolateNArguments* args
    );

#### DESCRIPTION {#description}

The `rtcInterpolateN` is similar to `rtcInterpolate`, but performs `N`
many interpolations at once. It additionally gets an array of u/v
coordinates and a valid mask (`valid` parameter) that specifies which
of these coordinates are valid. The valid mask points to `N` integers,
and a value of -1 denotes valid and 0 invalid. If the valid pointer is
`NULL` all elements are considers valid. The destination arrays are
filled in structure of array (SOA) layout. The value `N` must be
divisible by 4.

To use `rtcInterpolateN` for a geometry, all changes to that geometry
must be properly committed using `rtcCommitGeometry`.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcInterpolate]



rtcNewBuffer
------------

#### NAME {#name}

    rtcNewBuffer - creates a new data buffer

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCBuffer rtcNewBuffer(
      RTCDevice device,
      size_t byteSize
    );

#### DESCRIPTION {#description}

The `rtcNewBuffer` function creates a new data buffer object of
specified size in bytes (`byteSize` argument) that is bound to the
specified device (`device` argument). The buffer object is reference
counted with an initial reference count of 1. The returned buffer
object can be released using the `rtcReleaseBuffer` API call. The
specified number of bytes are allocated at buffer construction time and
deallocated when the buffer is destroyed.

When the buffer will be used as a vertex buffer
(`RTC_BUFFER_TYPE_VERTEX` and `RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE`), the
last buffer element must be readable using 16-byte SSE load
instructions, thus padding the last element is required for certain
layouts. E.g. a standard `float3` vertex buffer layout should add
storage for at least one more float to the end of the buffer.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcRetainBuffer], [rtcReleaseBuffer]



rtcNewSharedBuffer
------------------

#### NAME {#name}

    rtcNewSharedBuffer - creates a new shared data buffer

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCBuffer rtcNewSharedBuffer(
      RTCDevice device,
      void* ptr,
      size_t byteSize
    );

#### DESCRIPTION {#description}

The `rtcNewSharedBuffer` function creates a new shared data buffer
object bound to the specified device (`device` argument). The buffer
object is reference counted with an initial reference count of 1. The
buffer can be released using the `rtcReleaseBuffer` function.

At construction time, the pointer to the user-managed buffer data
(`ptr` argument) including its size in bytes (`byteSize` argument) is
provided to create the buffer. At buffer construction time no buffer
data is allocated, but the buffer data provided by the application is
used. The buffer data must remain valid for as long as the buffer may
be used, and the user is responsible to free the buffer data when no
longer required.

When the buffer will be used as a vertex buffer
(`RTC_BUFFER_TYPE_VERTEX` and `RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE`), the
last buffer element must be readable using 16-byte SSE load
instructions, thus padding the last element is required for certain
layouts. E.g. a standard `float3` vertex buffer layout should add
storage for at least one more float to the end of the buffer.

The data pointer (`ptr` argument) must be aligned to 4 bytes; otherwise
the `rtcNewSharedBuffer` function will fail.

#### EXIT STATUS {#exit-status}

On failure `NULL` is returned and an error code is set that can be
queried using `rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcRetainBuffer], [rtcReleaseBuffer]



rtcRetainBuffer
---------------

#### NAME {#name}

    rtcRetainBuffer - increments the buffer reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcRetainBuffer(RTCBuffer buffer);

#### DESCRIPTION {#description}

Buffer objects are reference counted. The `rtcRetainBuffer` function
increments the reference count of the passed buffer object (`buffer`
argument). This function together with `rtcReleaseBuffer` allows to use
the internal reference counting in a C++ wrapper class to handle the
ownership of the object.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewBuffer], [rtcReleaseBuffer]



rtcReleaseBuffer
----------------

#### NAME {#name}

    rtcReleaseBuffer - decrements the buffer reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcReleaseBuffer(RTCBuffer buffer);

#### DESCRIPTION {#description}

Buffer objects are reference counted. The `rtcReleaseBuffer` function
decrements the reference count of the passed buffer object (`buffer`
argument). When the reference count falls to 0, the buffer gets
destroyed.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewBuffer], [rtcRetainBuffer]



rtcGetBufferData
----------------

#### NAME {#name}

    rtcGetBufferData - gets a pointer to the buffer data

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void* rtcGetBufferData(RTCBuffer buffer);

#### DESCRIPTION {#description}

The `rtcGetBufferData` function returns a pointer to the buffer data of
the specified buffer object (`buffer` argument).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewBuffer]



RTCRay
------

#### NAME {#name}

    RTCRay - single ray structure

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore_ray.h>

    struct RTC_ALIGN(16) RTCRay
    {
      float org_x;        // x coordinate of ray origin
      float org_y;        // y coordinate of ray origin
      float org_z;        // z coordinate of ray origin
      float tnear;        // start of ray segment

      float dir_x;        // x coordinate of ray direction
      float dir_y;        // y coordinate of ray direction
      float dir_z;        // z coordinate of ray direction
      float time;         // time of this ray for motion blur

      float tfar;         // end of ray segment (set to hit distance)
      unsigned int mask;  // ray mask
      unsigned int id;    // ray ID
      unsigned int flags; // ray flags
    };

#### DESCRIPTION {#description}

The `RTCRay` structure defines the ray layout for a single ray. The ray
contains the origin (`org_x`, `org_y`, `org_z` members), direction
vector (`dir_x`, `dir_y`, `dir_z` members), and ray segment (`tnear`
and `tfar` members). The ray direction does not have to be normalized,
and only the parameter range specified by the `tnear`/`tfar` interval
is considered valid.

The ray segment must be in the range $[0, \infty]$, thus ranges that
start behind the ray origin are not allowed, but ranges can reach to
infinity. For rays inside a ray stream, `tfar` \< `tnear` identifies an
inactive ray.

The ray further contains a motion blur time in the range $[0, 1]$
(`time` member), a ray mask (`mask` member), a ray ID (`id` member),
and ray flags (`flags` member). The ray mask can be used to mask out
some geometries for some rays (see `rtcSetGeometryMask` for more
details). The ray ID can be used to identify a ray inside a callback
function, even if the order of rays inside a ray packet or stream has
changed. The ray flags are reserved.

The `embree3/rtcore_ray.h` header additionally defines the same ray
structure in structure of array (SOA) layout for API functions
accepting ray packets of size 4 (`RTCRay4` type), size 8 (`RTCRay8`
type), and size 16 (`RTCRay16` type). The header additionally defines
an `RTCRayNt` template for ray packets of an arbitrary compile-time
size.

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTCHit]



RTCHit
------

#### NAME {#name}

    RTCHit - single hit structure

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCHit
    {
      float Ng_x;                                        // x coordinate of geometry normal
      float Ng_y;                                        // y coordinate of geometry normal
      float Ng_z;                                        // z coordinate of geometry normal

      float u;                                           // barycentric u coordinate of hit
      float v;                                           // barycentric v coordinate of hit

      unsigned int primID;                               // geometry ID
      unsigned int geomID;                               // primitive ID
      unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT]; // instance ID
    };

#### DESCRIPTION {#description}

The `RTCHit` type defines the type of a ray/primitive intersection
result. The hit contains the unnormalized geometric normal in object
space at the hit location (`Ng_x`, `Ng_y`, `Ng_z` members), the
barycentric u/v coordinates of the hit (`u` and `v` members), as well
as the primitive ID (`primID` member), geometry ID (`geomID` member),
and instance ID stack (`instID` member) of the hit. The parametric
intersection distance is not stored inside the hit, but stored inside
the `tfar` member of the ray.

The `embree3/rtcore_ray.h` header additionally defines the same hit
structure in structure of array (SOA) layout for hit packets of size 4
(`RTCHit4` type), size 8 (`RTCHit8` type), and size 16 (`RTCHit16`
type). The header additionally defines an `RTCHitNt` template for hit
packets of an arbitrary compile-time size.

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTCRay], [Multi-Level Instancing]



RTCRayHit
---------

#### NAME {#name}

    RTCRayHit - combined single ray/hit structure

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore_ray.h>

    struct RTCORE_ALIGN(16) RTCRayHit
    {
      struct RTCRay ray;
      struct RTCHit hit;
    };

#### DESCRIPTION {#description}

The `RTCRayHit` structure is used as input for the `rtcIntersect`-type
functions and stores the ray to intersect and some hit fields that hold
the intersection result afterwards.

The `embree3/rtcore_ray.h` header additionally defines the same ray/hit
structure in structure of array (SOA) layout for API functions
accepting ray packets of size 4 (`RTCRayHit4` type), size 8
(`RTCRayHit8` type), and size 16 (`RTCRayHit16` type). The header
additionally defines an `RTCRayHitNt` template to generate ray/hit
packets of an arbitrary compile-time size.

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTCRay], [RTCHit]



RTCRayN
-------

#### NAME {#name}

    RTCRayN - ray packet of runtime size

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore_ray.h>

    struct RTCRayN;

    float& RTCRayN_org_x(RTCRayN* ray, unsigned int N, unsigned int i);
    float& RTCRayN_org_y(RTCRayN* ray, unsigned int N, unsigned int i);
    float& RTCRayN_org_z(RTCRayN* ray, unsigned int N, unsigned int i);
    float& RTCRayN_tnear(RTCRayN* ray, unsigned int N, unsigned int i);

    float& RTCRayN_dir_x(RTCRayN* ray, unsigned int N, unsigned int i);
    float& RTCRayN_dir_y(RTCRayN* ray, unsigned int N, unsigned int i);
    float& RTCRayN_dir_z(RTCRayN* ray, unsigned int N, unsigned int i);
    float& RTCRayN_time (RTCRayN* ray, unsigned int N, unsigned int i);

    float&        RTCRayN_tfar (RTCRayN* ray, unsigned int N, unsigned int i);
    unsigned int& RTCRayN_mask (RTCRayN* ray, unsigned int N, unsigned int i);
    unsigned int& RTCRayN_id   (RTCRayN* ray, unsigned int N, unsigned int i);
    unsigned int& RTCRayN_flags(RTCRayN* ray, unsigned int N, unsigned int i);

#### DESCRIPTION {#description}

When the ray packet size is not known at compile time (e.g. when Embree
returns a ray packet in the `RTCFilterFuncN` callback function), Embree
uses the `RTCRayN` type for ray packets. These ray packets can only
have sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these
possible packet sizes and cast the ray to the appropriate ray packet
type, or implement one general code path that uses the `RTCRayN_XXX`
helper functions to access the ray packet components.

These helper functions get a pointer to the ray packet (`ray`
argument), the packet size (`N` argument), and returns a reference to a
component (e.g. x-component of origin) of the the i-th ray of the
packet (`i` argument).

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTCHitN]



RTCHitN
-------

#### NAME {#name}

    RTCHitN - hit packet of runtime size

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct HitN;

    float& RTCHitN_Ng_x(RTCHitN* hit, unsigned int N, unsigned int i);
    float& RTCHitN_Ng_y(RTCHitN* hit, unsigned int N, unsigned int i);
    float& RTCHitN_Ng_z(RTCHitN* hit, unsigned int N, unsigned int i);

    float& RTCHitN_u(RTCHitN* hit, unsigned int N, unsigned int i);
    float& RTCHitN_v(RTCHitN* hit, unsigned int N, unsigned int i);

    unsigned& RTCHitN_primID(RTCHitN* hit, unsigned int N, unsigned int i);
    unsigned& RTCHitN_geomID(RTCHitN* hit, unsigned int N, unsigned int i);
    unsigned& RTCHitN_instID(RTCHitN* hit, unsigned int N, unsigned int i, unsigned int level);

#### DESCRIPTION {#description}

When the hit packet size is not known at compile time (e.g. when Embree
returns a hit packet in the `RTCFilterFuncN` callback function), Embree
uses the `RTCHitN` type for hit packets. These hit packets can only
have sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these
possible packet sizes and cast the hit to the appropriate hit packet
type, or implement one general code path that uses the `RTCHitN_XXX`
helper functions to access hit packet components.

These helper functions get a pointer to the hit packet (`hit`
argument), the packet size (`N` argument), and returns a reference to a
component (e.g. x component of `Ng`) of the the i-th hit of the packet
(`i` argument).

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTCRayN]



RTCRayHitN
----------

#### NAME {#name}

    RTCRayHitN - combined ray/hit packet of runtime size

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore_ray.h>

    struct RTCRayHitN;

    struct RTCRayN* RTCRayHitN_RayN(struct RTCRayHitN* rayhit, unsigned int N);
    struct RTCHitN* RTCRayHitN_HitN(struct RTCRayHitN* rayhit, unsigned int N);

#### DESCRIPTION {#description}

When the packet size of a ray/hit structure is not known at compile
time (e.g. when Embree returns a ray/hit packet in the
`RTCIntersectFunctionN` callback function), Embree uses the
`RTCRayHitN` type for ray packets. These ray/hit packets can only have
sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these
possible packet sizes and cast the ray/hit to the appropriate ray/hit
packet type, or extract the `RTCRayN` and `RTCHitN` components using
the `rtcGetRayN` and `rtcGetHitN` helper functions and use the
`RTCRayN_XXX` and `RTCHitN_XXX` functions to access the ray and hit
parts of the structure.

#### EXIT STATUS {#exit-status}

#### SEE ALSO {#see-also}

[RTCHitN]



rtcInitIntersectContext
-----------------------

#### NAME {#name}

    rtcInitIntersectContext - initializes the intersection context

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    enum RTCIntersectContextFlags
    {
      RTC_INTERSECT_CONTEXT_FLAG_NONE,
      RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT,
      RTC_INTERSECT_CONTEXT_FLAG_COHERENT,
    };

    struct RTCIntersectContext
    {
      enum RTCIntersectContextFlags flags;
      RTCFilterFunctionN filter;
      
      #if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
        unsigned int instStackSize;
      #endif
      
      unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

      #if RTC_MIN_WIDTH
        float minWidthDistanceFactor;
      #endif
    };

    void rtcInitIntersectContext(
      struct RTCIntersectContext* context
    );

#### DESCRIPTION {#description}

A per ray-query intersection context (`RTCIntersectContext` type) is
supported that can be used to configure intersection flags (`flags`
member), specify a filter callback function (`filter` member), specify
the chain of IDs of the current instance (`instID` and `instStackSize`
members), and to attach arbitrary data to the query (e.g. per ray
data).

The `rtcInitIntersectContext` function initializes the context to
default values and should be called to initialize every intersection
context. This function gets inlined, which minimizes overhead and
allows for compiler optimizations.

The intersection context flag can be used to tune the behavior of the
traversal algorithm. Using the `RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT`
flags uses an optimized traversal algorithm for incoherent rays
(default), while `RTC_INTERSECT_CONTEXT_FLAG_COHERENT` uses an
optimized traversal algorithm for coherent rays (e.g. primary camera
rays).

Best primary ray performance can be obtained by using the ray stream
API and setting the intersect context flag to
`RTC_INTERSECT_CONTEXT_FLAG_COHERENT`. For secondary rays, it is
typically better to use the `RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT`
flag, unless the rays are known to be very coherent too (e.g. for
primary transparency rays).

A filter function can be specified inside the context. This filter
function is invoked as a second filter stage after the per-geometry
intersect or occluded filter function is invoked. Only rays that passed
the first filter stage are valid in this second filter stage. Having
such a per ray-query filter function can be useful to implement
modifications of the behavior of the query, such as collecting all hits
or accumulating transparencies. The support for the context filter
function must be enabled for a scene by using the
`RTC_SCENE_FLAG_CONTEXT_FILTER_FUNCTION` scene flag. In case of
instancing this feature has to get enabled also for each instantiated
scene.

The minWidthDistanceFactor value controls the target size of the curve
radii when the min-width feature is enabled. Please see the
[rtcSetGeometryMaxRadiusScale] function for more details on the
min-width feature.

It is guaranteed that the pointer to the intersection context passed to
a ray query is directly passed to the registered callback functions.
This way it is possible to attach arbitrary data to the end of the
intersection context, such as a per-ray payload.

Please note that the ray pointer is not guaranteed to be passed to the
callback functions, thus reading additional data from the ray pointer
passed to callbacks is not possible.

#### EXIT STATUS {#exit-status}

No error code is set by this function.

#### SEE ALSO {#see-also}

[rtcIntersect1], [rtcOccluded1]



rtcIntersect1
-------------

#### NAME {#name}

    rtcIntersect1 - finds the closest hit for a single ray

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcIntersect1(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHit* rayhit
    );

#### DESCRIPTION {#description}

The `rtcIntersect1` function finds the closest hit of a single ray with
the scene (`scene` argument). The provided ray/hit structure (`rayhit`
argument) contains the ray to intersect and some hit output fields that
are filled when a hit is found.

The user has to initialize the ray origin (`org` ray member), ray
direction (`dir` ray member), ray segment (`tnear`, `tfar` ray
members), and set the ray flags to `0` (`flags` ray member). If the
scene contains motion blur geometries, also the ray time (`time` ray
member) must be initialized to a value in the range $[0, 1]$. If ray
masks are enabled at compile time, the ray mask (`mask` ray member)
must be initialized as well. The ray segment has to be in the range
$[0, \infty]$, thus ranges that start behind the ray origin are not
valid, but ranges can reach to infinity. See Section [RTCRay] for the
ray layout description.

The geometry ID (`geomID` hit member) of the hit data must be
initialized to `RTC_INVALID_GEOMETRY_ID` (-1).

Further, an intersection context for the ray query function must be
created and initialized (see `rtcInitIntersectContext`).

When no intersection is found, the ray/hit data is not updated. When an
intersection is found, the hit distance is written into the `tfar`
member of the ray and all hit data is set, such as unnormalized
geometry normal in object space (`Ng` hit member), local hit
coordinates (`u`, `v` hit member), instance ID stack (`instID` hit
member), geometry ID (`geomID` hit member), and primitive ID (`primID`
hit member). See Section [RTCHit] for the hit layout description.

If the instance ID stack has a prefix of values not equal to
`RTC_INVALID_GEOMETRY_ID`, the instance ID on each level corresponds to
the geometry ID of the hit instance of the higher-level scene, the
geometry ID corresponds to the hit geometry inside the hit instanced
scene, and the primitive ID corresponds to the n-th primitive of that
geometry.

If level 0 of the instance ID stack is equal to
`RTC_INVALID_GEOMETRY_ID`, the geometry ID corresponds to the hit
geometry inside the top-level scene, and the primitive ID corresponds
to the n-th primitive of that geometry.

The implementation makes no guarantees that primitives whose hit
distance is exactly at (or very close to) `tnear` or `tfar` are hit or
missed. If you want to exclude intersections at `tnear` just pass a
slightly enlarged `tnear`, and if you want to include intersections at
`tfar` pass a slightly enlarged `tfar`.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the
intersection context.

The ray/hit structure must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccluded1], [RTCRayHit], [RTCRay], [RTCHit]



rtcOccluded1
------------

#### NAME {#name}

    rtcOccluded1 - finds any hit for a single ray

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcOccluded1(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRay* ray
    );

#### DESCRIPTION {#description}

The `rtcOccluded1` function checks for a single ray (`ray` argument)
whether there is any hit with the scene (`scene` argument).

The user must initialize the ray origin (`org` ray member), ray
direction (`dir` ray member), ray segment (`tnear`, `tfar` ray
members), and must set the ray flags to `0` (`flags` ray member). If
the scene contains motion blur geometries, also the ray time (`time`
ray member) must be initialized to a value in the range $[0, 1]$. If
ray masks are enabled at compile time, the ray mask (`mask` ray member)
must be initialized as well. The ray segment must be in the range
$[0, \infty]$, thus ranges that start behind the ray origin are not
valid, but ranges can reach to infinity. See Section [RTCRay] for the
ray layout description.

When no intersection is found, the ray data is not updated. In case a
hit was found, the `tfar` component of the ray is set to `-inf`.

The implementation makes no guarantees that primitives whose hit
distance is exactly at (or very close to) `tnear` or `tfar` are hit or
missed. If you want to exclude intersections at `tnear` just pass a
slightly enlarged `tnear`, and if you want to include intersections at
`tfar` pass a slightly enlarged `tfar`.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the
intersection context.

The ray must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccluded1], [RTCRay]



rtcIntersect4/8/16
------------------

#### NAME {#name}

    rtcIntersect4/8/16 - finds the closest hits for a ray packet

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcIntersect4(
      const int* valid,
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHit4* rayhit
    );

    void rtcIntersect8(
      const int* valid,
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHit8* rayhit
    );

    void rtcIntersect16(
      const int* valid,
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHit16* rayhit
    );

#### DESCRIPTION {#description}

The `rtcIntersect4/8/16` functions finds the closest hits for a ray
packet of size 4, 8, or 16 (`rayhit` argument) with the scene (`scene`
argument). The ray/hit input contains a ray packet and hit packet. See
Section [rtcIntersect1] for a description of how to set up and trace
rays.

A ray valid mask must be provided (`valid` argument) which stores one
32-bit integer (`-1` means valid and `0` invalid) per ray in the
packet. Only active rays are processed, and hit data of inactive rays
is not changed.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the
intersection context.

The implementation of these functions is guaranteed to invoke callback
functions always with the same ray packet size and ordering of rays as
specified initially.

For `rtcIntersect4` the ray packet must be aligned to 16 bytes, for
`rtcIntersect8` the alignment must be 32 bytes, and for
`rtcIntersect16` the alignment must be 64 bytes.

The `rtcIntersect4`, `rtcIntersect8` and `rtcIntersect16` functions may
change the ray packet size and ray order when calling back into
intersect filter functions or user geometry callbacks. Under some
conditions the application can assume packets to stay intakt, which can
determined by querying the `RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED`,
`RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED`,
`RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED` properties through the
`rtcGetDeviceProperty` function. See [rtcGetDeviceProperty] for more
information.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccluded4/8/16]



rtcOccluded4/8/16
-----------------

#### NAME {#name}

    rtcOccluded4/8/16 - finds any hits for a ray packet

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcOccluded4(
      const int* valid,
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRay4* ray
    );

    void rtcOccluded8(
      const int* valid,
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRay8* ray
    );

    void rtcOccluded16(
      const int* valid,
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRay16* ray
    );

#### DESCRIPTION {#description}

The `rtcOccluded4/8/16` functions checks for each active ray of the ray
packet of size 4, 8, or 16 (`ray` argument) whether there is any hit
with the scene (`scene` argument). See Section [rtcOccluded1] for a
description of how to set up and trace occlusion rays.

A ray valid mask must be provided (`valid` argument) which stores one
32-bit integer (`-1` means valid and `0` invalid) per ray in the
packet. Only active rays are processed, and hit data of inactive rays
is not changed.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the
intersection context.

The implementation of these functions is guaranteed to invoke callback
functions always with the same ray packet size and ordering of rays as
specified initially.

For `rtcOccluded4` the ray packet must be aligned to 16 bytes, for
`rtcOccluded8` the alignment must be 32 bytes, and for `rtcOccluded16`
the alignment must be 64 bytes.

The `rtcOccluded4`, `rtcOccluded8` and `rtcOccluded16` functions may
change the ray packet size and ray order when calling back into
intersect filter functions or user geometry callbacks. Under some
conditions the application can assume packets to stay intakt, which can
determined by querying the `RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED`,
`RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED`,
`RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED` properties through the
`rtcGetDeviceProperty` function. See [rtcGetDeviceProperty] for more
information.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccluded4/8/16]



rtcIntersect1M
--------------

#### NAME {#name}

    rtcIntersect1M - finds the closest hits for a stream of M single
      rays

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcIntersect1M(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHit* rayhit,
      unsigned int M,
      size_t byteStride
    );

#### DESCRIPTION {#description}

The `rtcIntersect1M` function finds the closest hits for a stream of
`M` single rays (`rayhit` argument) with the scene (`scene` argument).
The `rayhit` argument points to an array of ray and hit data with
specified byte stride (`byteStride` argument) between the ray/hit
structures. See Section [rtcIntersect1] for a description of how to
set up and trace rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The stream size `M` can be an arbitrary positive integer including 0.
Each ray must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccluded1M]



rtcOccluded1M
-------------

#### NAME {#name}

    rtcOccluded1M - finds any hits for a stream of M single rays

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcOccluded1M(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRay* ray,
      unsigned int M,
      size_t byteStride
    );

#### DESCRIPTION {#description}

The `rtcOccluded1M` function checks whether there are any hits for a
stream of `M` single rays (`ray` argument) with the scene (`scene`
argument). The `ray` argument points to an array of rays with specified
byte stride (`byteStride` argument) between the rays. See Section
[rtcOccluded1] for a description of how to set up and trace occlusion
rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The stream size `M` can be an arbitrary positive integer including 0.
Each ray must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcIntersect1M]



rtcIntersect1Mp
---------------

#### NAME {#name}

    rtcIntersect1Mp - finds the closest hits for a stream of M pointers
      to single rays

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcIntersect1Mp(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHit** rayhit,
      unsigned int M
    );

#### DESCRIPTION {#description}

The `rtcIntersect1Mp` function finds the closest hits for a stream of
`M` single rays (`rayhit` argument) with the scene (`scene` argument).
The `rayhit` argument points to an array of pointers to the individual
ray/hit structures. See Section [rtcIntersect1] for a description of
how to set up and trace a ray.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The stream size `M` can be an arbitrary positive integer including 0.
Each ray must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccluded1Mp]



rtcOccluded1Mp
--------------

#### NAME {#name}

    rtcOccluded1Mp - find any hits for a stream of M pointers to
      single rays

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcOccluded1M(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRay** ray,
      unsigned int M
    );

#### DESCRIPTION {#description}

The `rtcOccluded1Mp` function checks whether there are any hits for a
stream of `M` single rays (`ray` argument) with the scene (`scene`
argument). The `ray` argument points to an array of pointers to rays.
Section [rtcOccluded1] for a description of how to set up and trace a
occlusion rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The stream size `M` can be an arbitrary positive integer including 0.
Each ray must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcIntersect1Mp]



rtcIntersectNM
--------------

#### NAME {#name}

    rtcIntersectNM - finds the closest hits for a stream of M
      ray packets of size N

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcIntersectNM(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHitN* rayhit,
      unsigned int N,
      unsigned int M,
      size_t byteStride
    );

#### DESCRIPTION {#description}

The `rtcIntersectNM` function finds the closest hits for a stream of
`M` ray packets (`rayhit` argument) of size `N` with the scene (`scene`
argument). The `rays` argument points to an array of ray and hit
packets with specified byte stride (`byteStride` argument) between the
ray/hit packets. See Section [rtcIntersect1] for a description of how
to set up and trace rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The packet size `N` must be larger than 0, and the stream size `M` can
be an arbitrary positive integer including 0. Each ray must be aligned
to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccludedNM]



rtcOccludedNM
-------------

#### NAME {#name}

    rtcOccludedNM - finds any hits for a stream of M ray packets of
      size N

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcOccludedNM(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayN* ray,
      unsigned int N,
      unsigned int M,
      size_t byteStride
    );

#### DESCRIPTION {#description}

The `rtcOccludedNM` function checks whether there are any hits for a
stream of `M` ray packets (`ray` argument) of size `N` with the scene
(`scene` argument). The `ray` argument points to an array of ray
packets with specified byte stride (`byteStride` argument) between the
ray packets. See Section [rtcOccluded1] for a description of how to
set up and trace occlusion rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The packet size `N` must be larger than 0, and the stream size `M` can
be an arbitrary positive integer including 0. Each ray must be aligned
to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcIntersectNM]



rtcIntersectNp
--------------

#### NAME {#name}

    rtcIntersectNp - finds the closest hits for a SOA ray stream of
      size N

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcIntersectNp(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayHitNp* rayhit,
      unsigned int N
    );

#### DESCRIPTION {#description}

The `rtcIntersectNp` function finds the closest hits for a SOA ray
stream (`rays` argument) of size `N` (basically a large ray packet)
with the scene (`scene` argument). The `rayhit` argument points to two
structures of pointers with one pointer for each ray and hit component.
Each of these pointers points to an array with the ray or hit component
data for each ray or hit. This way the individual components of the SOA
ray stream do not need to be stored sequentially in memory, which makes
it possible to have large varying size ray packets in SOA layout. See
Section [rtcIntersect1] for a description of how to set up and trace
rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The stream size `N` can be an arbitrary positive integer including 0.
Each ray component array must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcOccludedNp]



rtcOccludedNp
-------------

#### NAME {#name}

    rtcOccludedNp - finds any hits for a SOA ray stream of size N

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcOccludedNp(
      RTCScene scene,
      struct RTCIntersectContext* context,
      struct RTCRayNp* ray,
      unsigned int N
    );

#### DESCRIPTION {#description}

The `rtcOccludedNp` function checks whether there are any hits for a
SOA ray stream (`ray` argument) of size `N` (basically a large ray
packet) with the scene (`scene` argument). The `ray` argument points to
a structure of pointers with one pointer for each ray component. Each
of these pointers points to an array with the ray component data for
each ray. This way the individual components of the SOA ray stream do
not need to be stored sequentially in memory, which makes it possible
to have large varying size ray packets in SOA layout. See Section
[rtcOccluded1] for a description of how to set up and trace occlusion
rays.

The intersection context (`context` argument) can specify flags to
optimize traversal and a filter callback function to be invoked for
every intersection. Further, the pointer to the intersection context is
propagated to callback functions invoked during traversal and can thus
be used to extend the ray with additional data. See Section
`RTCIntersectContext` for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For
this reason, callback functions may be invoked with an arbitrary packet
size (of size 1, 4, 8, or 16) and different ordering as specified
initially. For this reason, one may have to use the `rayID` component
of the ray to identify the original ray, e.g. to access a per-ray
payload.

A ray in a ray stream is considered inactive if its `tnear` value is
larger than its `tfar` value.

The stream size `N` can be an arbitrary positive integer including 0.
Each ray component array must be aligned to 16 bytes.

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcIntersectNp]



rtcInitPointQueryContext
------------------------

#### NAME {#name}

    rtcInitPointQueryContext - initializes the context information (e.g.
      stack of (multilevel-)instance transformations) for point queries

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTC_ALIGN(16) RTCPointQueryContext
    {
      // accumulated 4x4 column major matrices from world to instance space.
      float world2inst[RTC_MAX_INSTANCE_LEVEL_COUNT][16];
      
      // accumulated 4x4 column major matrices from instance to world space.
      float inst2world[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

      // instance ids.
      unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];
      
      // number of instances currently on the stack.
      unsigned int instStackSize;
    };

    void rtcInitPointQueryContext(
      struct RTCPointQueryContext* context
    );

#### DESCRIPTION {#description}

A stack (`RTCPointQueryContext` type) which stores the IDs and instance
transformations during a BVH traversal for a point query. The
transformations are assumed to be affine transformations (3×3 matrix
plus translation) and therefore the last column is ignored (see
[RTC\_GEOMETRY\_TYPE\_INSTANCE] for details).

The `rtcInitPointContext` function initializes the context to default
values and should be called for initialization.

The context will be passed as an argument to the point query callback
function (see [rtcSetGeometryPointQueryFunction]) and should be used
to pass instance information down the instancing chain for user defined
instancing (see tutorial [ClosestPoint] for a reference
implementation of point queries with user defined instancing).

The context is an necessary argument to [rtcPointQuery] and Embree
internally uses the topmost instance tranformation of the stack to
transform the point query into instance space.

#### EXIT STATUS {#exit-status}

No error code is set by this function.

#### SEE ALSO {#see-also}

[rtcPointQuery], [rtcSetGeometryPointQueryFunction]



rtcPointQuery
-------------

#### NAME {#name}

    rtcPointQuery - traverses the BVH with a point query object

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTC_ALIGN(16) RTCPointQuery
    {
      // location of the query
      float x;
      float y;
      float z;

      // radius and time of the query
      float radius;
      float time;
    };

    void rtcPointQuery(
      RTCScene scene,
      struct RTCPointQuery* query,
      struct RTCPointQueryContext* context,
      struct RTCPointQueryFunction* queryFunc,
      void* userPtr
    );

#### DESCRIPTION {#description}

The `rtcPointQuery` function traverses the BVH using a `RTCPointQuery`
object (`query` argument) and calls a user defined callback function
(e.g `queryFunc` argument) for each primitive of the scene (`scene`
argument) that intersects the query domain.

The user has to initialize the query location (`x`, `y` and `z` member)
and query radius in the range $[0, \infty]$. If the scene contains
motion blur geometries, also the query time (`time` member) must be
initialized to a value in the range $[0, 1]$.

Further, a `RTCPointQueryContext` (`context` argument) must be created
and initialized. It contains ID and transformation information of the
instancing hierarchy if (multilevel-)instancing is used. See
[rtcInitPointQueryContext] for further information.

For every primitive that intersects the query domain, the callback
function (`queryFunc` argument) is called, in which distance
computations to the primitive can be implemented. The user will be
provided with the primID and geomID of the according primitive,
however, the geometry information (e.g. triangle index and vertex data)
has to be determined manually. The `userPtr` argument can be used to
input geometry data of the scene or output results of the point query
(e.g. closest point currently found on surface geometry (see tutorial
[ClosestPoint])).

The parameter `queryFunc` is optional and can be NULL, in which case
the callback function is not invoked. However, a callback function can
still get attached to a specific `RTCGeometry` object using
[rtcSetGeometryPointQueryFunction]. If a callback function is
attached to a geometry and (a potentially different) callback function
is passed as an argument to `rtcPointQuery`, both functions are called
for the primitives of the according geometries.

The query radius can be decreased inside the callback function, which
allows to efficiently cull parts of the scene during BVH traversal.
Increasing the query radius and modifying time or location of the query
will result in undefined behaviour.

The callback function will be called for all primitives in a leaf node
of the BVH even if the primitive is outside the query domain, since
Embree does not gather geometry information of primitives internally.

Point queries can be used with (multilevel)-instancing. However, care
has to be taken when the instance transformation contains anisotropic
scaling or sheering. In these cases distance computations have to be
performed in world space to ensure correctness and the ellipsoidal
query domain (in instance space) will be approximated with its axis
aligned bounding box interally. Therefore, the callback function might
be invoked even for primitives in inner BVH nodes that do not intersect
the query domain. See [rtcSetGeometryPointQueryFunction] for details.

The point query structure must be aligned to 16 bytes.

#### SUPPORTED PRIMITIVES

Currenly, all primitive types are supported by the point query API
except of points (see [RTC\_GEOMETRY\_TYPE\_POINT]), curves (see
[RTC\_GEOMETRY\_TYPE\_CURVE]) and sudivision surfaces (see
[RTC\_GEOMETRY\_SUBDIVISION]).

#### EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

#### SEE ALSO {#see-also}

[rtcSetGeometryPointQueryFunction], [rtcInitPointQueryContext]



rtcCollide
----------

#### NAME {#name}

    rtcCollide - intersects one BVH with another

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTCCollision {
      unsigned int geomID0, primID0;
      unsigned int geomID1, primID1;
    };

    typedef void (*RTCCollideFunc) (
      void* userPtr,
      RTCCollision* collisions,
      size_t num_collisions);

    void rtcCollide (
        RTCScene hscene0, 
        RTCScene hscene1, 
        RTCCollideFunc callback, 
        void* userPtr
    );

#### DESCRIPTION {#description}

The `rtcCollide` function intersects the BVH of `hscene0` with the BVH
of scene `hscene1` and calls a user defined callback function (e.g
`callback` argument) for each pair of intersecting primitives between
the two scenes. A user defined data pointer (`userPtr` argument) can
also be passed in.

For every pair of primitives that may intersect each other, the
callback function (`callback` argument) is called. The user will be
provided with the primID's and geomID's of multiple potentially
intersecting primitive pairs. Currently, only scene entirely composed
of user geometries are supported, thus the user is expected to
implement a primitive/primitive intersection to filter out false
positives in the callback function. The `userPtr` argument can be used
to input geometry data of the scene or output results of the
intersection query.

#### SUPPORTED PRIMITIVES {#supported-primitives}

Currently, the only supported type is the user geometry type (see
[RTC\_GEOMETRY\_TYPE\_USER]).

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}



rtcNewBVH
---------

#### NAME {#name}

    rtcNewBVH - creates a new BVH object

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    RTCBVH rtcNewBVH(RTCDevice device);

#### DESCRIPTION {#description}

This function creates a new BVH object and returns a handle to this
BVH. The BVH object is reference counted with an initial reference
count of 1. The handle can be released using the `rtcReleaseBVH` API
call.

The BVH object can be used to build a BVH in a user-specified format
over user-specified primitives. See the documentation of the
`rtcBuildBVH` call for more details.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcRetainBVH], [rtcReleaseBVH], [rtcBuildBVH]



rtcRetainBVH
------------

#### NAME {#name}

    rtcRetainBVH - increments the BVH reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcRetainBVH(RTCBVH bvh);

#### DESCRIPTION {#description}

BVH objects are reference counted. The `rtcRetainBVH` function
increments the reference count of the passed BVH object (`bvh`
argument). This function together with `rtcReleaseBVH` allows to use
the internal reference counting in a C++ wrapper class to handle the
ownership of the object.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewBVH], [rtcReleaseBVH]



rtcReleaseBVH
-------------

#### NAME {#name}

    rtcReleaseBVH - decrements the BVH reference count

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    void rtcReleaseBVH(RTCBVH bvh);

#### DESCRIPTION {#description}

BVH objects are reference counted. The `rtcReleaseBVH` function
decrements the reference count of the passed BVH object (`bvh`
argument). When the reference count falls to 0, the BVH gets destroyed.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewBVH], [rtcRetainBVH]



rtcBuildBVH
-----------

#### NAME {#name}

    rtcBuildBVH - builds a BVH

#### SYNOPSIS {#synopsis}

    #include <embree3/rtcore.h>

    struct RTC_ALIGN(32) RTCBuildPrimitive
    {
      float lower_x, lower_y, lower_z; 
      unsigned int geomID;
      float upper_x, upper_y, upper_z;
      unsigned int primID;
    };

    typedef void* (*RTCCreateNodeFunction) (
      RTCThreadLocalAllocator allocator,
      unsigned int childCount,
      void* userPtr
    );

    typedef void (*RTCSetNodeChildrenFunction) (
      void* nodePtr,
      void** children,
      unsigned int childCount,
      void* userPtr
    );

    typedef void (*RTCSetNodeBoundsFunction) (
      void* nodePtr,
      const struct RTCBounds** bounds,
      unsigned int childCount,
      void* userPtr
    );

    typedef void* (*RTCCreateLeafFunction) (
      RTCThreadLocalAllocator allocator,
      const struct RTCBuildPrimitive* primitives,
      size_t primitiveCount,
      void* userPtr
    );

    typedef void (*RTCSplitPrimitiveFunction) (
      const struct RTCBuildPrimitive* primitive,
      unsigned int dimension,
      float position,
      struct RTCBounds* leftBounds,
      struct RTCBounds* rightBounds,
      void* userPtr
    );

    typedef bool (*RTCProgressMonitorFunction)(
      void* userPtr, double n
    );

    enum RTCBuildFlags
    {
      RTC_BUILD_FLAG_NONE,
      RTC_BUILD_FLAG_DYNAMIC
    };

    struct RTCBuildArguments
    {
      size_t byteSize;

      enum RTCBuildQuality buildQuality;
      enum RTCBuildFlags buildFlags;
      unsigned int maxBranchingFactor;
      unsigned int maxDepth;
      unsigned int sahBlockSize;
      unsigned int minLeafSize;
      unsigned int maxLeafSize;
      float traversalCost;
      float intersectionCost;

      RTCBVH bvh;
      struct RTCBuildPrimitive* primitives;
      size_t primitiveCount;
      size_t primitiveArrayCapacity;
      
      RTCCreateNodeFunction createNode;
      RTCSetNodeChildrenFunction setNodeChildren;
      RTCSetNodeBoundsFunction setNodeBounds;
      RTCCreateLeafFunction createLeaf;
      RTCSplitPrimitiveFunction splitPrimitive;
      RTCProgressMonitorFunction buildProgress;
      void* userPtr;
    };

    struct RTCBuildArguments rtcDefaultBuildArguments();

    void* rtcBuildBVH(
      const struct RTCBuildArguments* args
    );

#### DESCRIPTION {#description}

The `rtcBuildBVH` function can be used to build a BVH in a user-defined
format over arbitrary primitives. All arguments to the function are
provided through the `RTCBuildArguments` structure. The first member of
that structure must be set to the size of the structure in bytes
(`bytesSize` member) which allows future extensions of the structure.
It is recommended to initialize the build arguments structure using the
`rtcDefaultBuildArguments` function.

The `rtcBuildBVH` function gets passed the BVH to build (`bvh` member),
the array of primitives (`primitives` member), the capacity of that
array (`primitiveArrayCapacity` member), the number of primitives
stored inside the array (`primitiveCount` member), callback function
pointers, and a user-defined pointer (`userPtr` member) that is passed
to all callback functions when invoked. The `primitives` array can be
freed by the application after the BVH is built. All callback functions
are typically called from multiple threads, thus their implementation
must be thread-safe.

Four callback functions must be registered, which are invoked during
build to create BVH nodes (`createNode` member), to set the pointers to
all children (`setNodeChildren` member), to set the bounding boxes of
all children (`setNodeBounds` member), and to create a leaf node
(`createLeaf` member).

The function pointer to the primitive split function (`splitPrimitive`
member) may be `NULL`, however, then no spatial splitting in high
quality mode is possible. The function pointer used to report the build
progress (`buildProgress` member) is optional and may also be `NULL`.

Further, some build settings are passed to configure the BVH build.
Using the build quality settings (`buildQuality` member), one can
select between a faster, low quality build which is good for dynamic
scenes, and a standard quality build for static scenes. One can also
specify the desired maximum branching factor of the BVH
(`maxBranchingFactor` member), the maximum depth the BVH should have
(`maxDepth` member), the block size for the SAH heuristic
(`sahBlockSize` member), the minimum and maximum leaf size
(`minLeafSize` and `maxLeafSize` member), and the estimated costs of
one traversal step and one primitive intersection (`traversalCost` and
`intersectionCost` members). When enabling the `RTC_BUILD_FLAG_DYNAMIC`
build flags (`buildFlags` member), re-build performance for dynamic
scenes is improved at the cost of higher memory requirements.

To spatially split primitives in high quality mode, the builder needs
extra space at the end of the build primitive array to store splitted
primitives. The total capacity of the build primitive array is passed
using the `primitiveArrayCapacity` member, and should be about twice
the number of primitives when using spatial splits.

The `RTCCreateNodeFunc` and `RTCCreateLeafFunc` callbacks are passed a
thread local allocator object that should be used for fast allocation
of nodes using the `rtcThreadLocalAlloc` function. We strongly
recommend using this allocation mechanism, as alternative approaches
like standard `malloc` can be over 10× slower. The allocator object
passed to the create callbacks may be used only inside the current
thread. Memory allocated using `rtcThreadLocalAlloc` is automatically
freed when the `RTCBVH` object is deleted. If you use your own memory
allocation scheme you have to free the memory yourself when the
`RTCBVH` object is no longer used.

The `RTCCreateNodeFunc` callback additionally gets the number of
children for this node in the range from 2 to `maxBranchingFactor`
(`childCount` argument).

The `RTCSetNodeChildFunc` callback function gets a pointer to the node
as input (`nodePtr` argument), an array of pointers to the children
(`childPtrs` argument), and the size of this array (`childCount`
argument).

The `RTCSetNodeBoundsFunc` callback function gets a pointer to the node
as input (`nodePtr` argument), an array of pointers to the bounding
boxes of the children (`bounds` argument), and the size of this array
(`childCount` argument).

The `RTCCreateLeafFunc` callback additionally gets an array of
primitives as input (`primitives` argument), and the size of this array
(`primitiveCount` argument). The callback should read the `geomID` and
`primID` members from the passed primitives to construct the leaf.

The `RTCSplitPrimitiveFunc` callback is invoked in high quality mode to
split a primitive (`primitive` argument) at the specified position
(`position` argument) and dimension (`dimension` argument). The
callback should return bounds of the clipped left and right parts of
the primitive (`leftBounds` and `rightBounds` arguments).

The `RTCProgressMonitorFunction` callback function is called with the
estimated completion rate `n` in the range $[0,1]$. Returning `true`
from the callback lets the build continue; returning `false` cancels
the build.

#### EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
`rtcGetDeviceError`.

#### SEE ALSO {#see-also}

[rtcNewBVH]



RTCQuaternionDecomposition
--------------------------

#### NAME {#name}

    RTCQuaternionDecomposition - structure that represents a quaternion
      decomposition of an affine transformation

#### SYNOPSIS {#synopsis}

    struct RTCQuaternionDecomposition
    {
      float scale_x, scale_y, scale_z;
      float skew_xy, skew_xz, skew_yz;
      float shift_x, shift_y, shift_z;
      float quaternion_r, quaternion_i, quaternion_j, quaternion_k;
      float translation_x, translation_y, translation_z;
    };

#### DESCRIPTION {#description}

The struct `RTCQuaternionDecomposition` represents an affine
transformation decomposed into three parts. An upper triangular
scaling/skew/shift matrix

$$
S = \left( \begin{array}{cccc}
scale_x & skew_{xy} & skew_{xz} & shift_x \ 
0 & scale_y & skew_{yz} & shift_y \ 
0 & 0 & scale_z & shift_z \ 
0 & 0 & 0 & 1 \ 
\end{array} \right),
$$

a translation matrix

$$
T = \left( \begin{array}{cccc}
1 & 0 & 0 & translation_x \ 
0 & 1 & 0 & translation_y \ 
0 & 0 & 1 & translation_z \ 
0 & 0 & 0 & 1 \ 
\end{array} \right),
$$

and a rotation matrix $R$, represented as a quaternion

$quaternion_r + quaternion_i  \mathbf{i} + quaternion_j  \mathbf{i} + quaternion_k  \mathbf{k}$

where $\mathbf{i}$, $\mathbf{j}$ $\mathbf{k}$ are the imaginary
quaternion units. The passed quaternion will be normalized internally.

The affine transformation matrix corresponding to a
`RTCQuaternionDecomposition` is $TRS$ and a point
$p = (p_x, p_y, p_z, 1)^T$ will be transformed as
$$p' = T  R  S  p.$$

The functions `rtcInitQuaternionDecomposition`,
`rtcQuaternionDecompositionSetQuaternion`,
`rtcQuaternionDecompositionSetScale`,
`rtcQuaternionDecompositionSetSkew`,
`rtcQuaternionDecompositionSetShift`, and
`rtcQuaternionDecompositionSetTranslation` allow to set the fields of
the structure more conveniently.

#### EXIT STATUS {#exit-status}

No error code is set by this function.

#### SEE ALSO {#see-also}

[rtcSetGeometryTransformQuaternion],
[rtcInitQuaternionDecomposition]



rtcInitQuaternionDecomposition
------------------------------

#### NAME {#name}

    rtcInitQuaternionDecomposition - initializes quaternion decomposition

#### SYNOPSIS {#synopsis}

    void rtcInitQuaternionDecomposition(
      struct RTCQuaternionDecomposition* qd
    );

#### DESCRIPTION {#description}

The `rtcInitQuaternionDecomposition` function initializes a
`RTCQuaternionDecomposition` structure to represent an identity
transformation.

#### EXIT STATUS {#exit-status}

No error code is set by this function.

#### SEE ALSO {#see-also}

[rtcSetGeometryTransformQuaternion], [RTCQuaternionDecomposition]



Performance Recommendations
===========================

MXCSR control and status register
---------------------------------

It is strongly recommended to have the `Flush to Zero` and
`Denormals are Zero` mode of the MXCSR control and status register
enabled for each thread before calling the `rtcIntersect`-type and
`rtcOccluded`-type functions. Otherwise, under some circumstances
special handling of denormalized floating point numbers can
significantly reduce application and Embree performance. When using
Embree together with the Intel® Threading Building Blocks, it is
sufficient to execute the following code at the beginning of the
application main thread (before the creation of the
`tbb::task_scheduler_init` object):

    #include <xmmintrin.h>
    #include <pmmintrin.h>
    ...
    _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
    _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each rendering thread
has the proper mode set.

Thread Creation and Affinity Settings
-------------------------------------

Tasking systems like TBB create worker threads on demand, which will
add a runtime overhead for the very first `rtcCommitScene` call. In
case you want to benchmark the scene build time, you should start the
threads at application startup. You can let Embree start TBB threads by
passing `start_threads=1` to the `cfg` parameter of `rtcNewDevice`.

On machines with a high thread count (e.g. dual-socket Xeon or Xeon Phi
machines), affinitizing TBB worker threads increases build and
rendering performance. You can let Embree affinitize TBB worker threads
by passing `set_affinity=1` to the `cfg` parameter of `rtcNewDevice`.
By default, threads are not affinitized by Embree with the exception of
Xeon Phi Processors where they are affinitized by default.

All Embree tutorials automatically start and affinitize TBB worker
threads by passing `start_threads=1,set_affinity=1` to `rtcNewDevice`.

Fast Coherent Rays
------------------

For getting the highest performance for highly coherent rays, e.g.
primary or hard shadow rays, it is recommended to use packets or
streams of single rays/packets with setting the
`RTC_INTERSECT_CONTEXT_FLAG_COHERENT` flag in the `RTCIntersectContext`
passed to the `rtcIntersect`/`rtcOccluded` calls. The total number of
rays in a coherent stream of ray packets should be around 64, e.g. 8
times 8-wide packets, or 4 times 16-wide packets. The rays inside each
packet should be grouped as coherent as possible.

Huge Page Support
-----------------

It is recommended to use huge pages under Linux to increase rendering
performance. Embree supports 2MB huge pages under Windows, Linux, and
macOS. Under Linux huge page support is enabled by default, and under
Windows and macOS disabled by default. Huge page support can be enabled
in Embree by passing `hugepages=1` to `rtcNewDevice` or disabled by
passing `hugepages=0` to `rtcNewDevice`.

We recommend using 2MB huge pages with Embree under Linux as this
improves ray tracing performance by about 5-10%. Under Windows using
huge pages requires the application to run in elevated mode which is a
security issue, thus likely not an option for most use cases. Under
macOS huge pages are rarely available as memory tends to get quickly
fragmented, thus we do not recommend using huge pages on macOS.

### Huge Pages under Linux

Linux supports transparent huge pages and explicit huge pages. To
enable transparent huge page support under Linux, execute the following
as root:

    echo always > /sys/kernel/mm/transparent_hugepage/enabled

When transparent huge pages are enabled, the kernel tries to merge 4KB
pages to 2MB pages when possible as a background job. Many Linux
distributions have transparent huge pages enabled by default. See the
following webpage for more information on [transparent huge pages under
Linux](https://www.kernel.org/doc/Documentation/vm/transhuge.txt). In
this mode each application, including your rendering application based
on Embree, will automatically tend to use huge pages.

Using transparent huge pages, the transitioning from 4KB to 2MB pages
might take some time. For that reason Embree also supports allocating
2MB pages directly when a huge page pool is configured. Such a pool can
be configured by writing some number of huge pages to allocate to
`/proc/sys/vm/nr_overcommit_hugepages` as root user. E.g. to configure
2GB of address space for huge page allocation, execute the following as
root:

    echo 1000 > /proc/sys/vm/nr_overcommit_hugepages

See the following webpage for more information on [huge pages under
Linux](https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt).

### Huge Pages under Windows

To use huge pages under Windows, the current user must have the "Lock
pages in memory" (SeLockMemoryPrivilege) assigned. This can be
configured through the "Local Security Policy" application, by adding a
user to "Local Policies" -\> "User Rights Assignment" -\> "Lock pages
in memory". You have to log out and in again for this change to take
effect.

Further, your application must be executed as an elevated process ("Run
as administrator") and the "SeLockMemoryPrivilege" must be explicitly
enabled by your application. Example code on how to enable this
privilege can be found in the "common/sys/alloc.cpp" file of Embree.
Alternatively, Embree will try to enable this privilege when passing
`enable_selockmemoryprivilege=1` to `rtcNewDevice`. Further, huge pages
should be enabled in Embree by passing `hugepages=1` to `rtcNewDevice`.

When the system has been running for a while, physical memory gets
fragmented, which can slow down the allocation of huge pages
significantly under Windows.

### Huge Pages under macOS

To use huge pages under macOS you have to pass `hugepages=1` to
`rtcNewDevice` to enable that feature in Embree.

When the system has been running for a while, physical memory gets
quickly fragmented, and causes huge page allocations to fail. For this
reason, huge pages are not very useful under macOS in practice.

Avoid store-to-load forwarding issues with single rays
------------------------------------------------------

We recommend to use a single SSE store to set up the `org` and `tnear`
components, and a single SSE store to set up the `dir` and `time`
components of a single ray (`RTCRay` type). Storing these values using
scalar stores causes a store-to-load forwarding penalty because Embree
is reading these components using SSE loads later on.



Embree Tutorials
================

Embree comes with a set of tutorials aimed at helping users understand
how Embree can be used and extended. There is a very basic minimal
that can be compiled as both C and C++, which should get new users started quickly. 
All other tutorials exist in an ISPC and C++ version to demonstrate 
the two versions of the API. Look for files
named `tutorialname_device.ispc` for the ISPC implementation of the
tutorial, and files named `tutorialname_device.cpp` for the single ray C++
version of the tutorial. To start the C++ version use the `tutorialname`
executables, to start the ISPC version use the `tutorialname_ispc`
executables. All tutorials can print available command line options
using the `--help` command line parameter.

For all tutorials except minimal, you can select an initial camera using 
the `--vp` (camera position), `--vi` (camera look-at point), `--vu` 
(camera up vector), and `--fov` (vertical field of view) command line 
parameters:

    ./triangle_geometry --vp 10 10 10 --vi 0 0 0

You can select the initial window size using the `--size` command line
parameter, or start the tutorials in full screen using the `--fullscreen`
parameter:

    ./triangle_geometry --size 1024 1024
    ./triangle_geometry --fullscreen

The initialization string for the Embree device (`rtcNewDevice` call)
can be passed to the ray tracing core through the `--rtcore` command
line parameter, e.g.:

    ./triangle_geometry --rtcore verbose=2,threads=1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest.
With the left mouse button you can rotate around the center of interest
(the point initially set with `--vi`). Holding Control pressed while
clicking the left mouse button rotates the camera around its location.
You can also use the arrow keys for navigation.

You can use the following keys:

F1
:   Default shading

F2
:   Gray EyeLight shading

F3
:   Traces occlusion rays only.

F4
:   UV Coordinate visualization

F5
:   Geometry normal visualization

F6
:   Geometry ID visualization

F7
:   Geometry ID and Primitive ID visualization

F8
:   Simple shading with 16 rays per pixel for benchmarking.

F9
:   Switches to render cost visualization. Pressing again reduces
    brightness.

F10
:   Switches to render cost visualization. Pressing again increases
    brightness.

f
:   Enters or leaves full screen mode.

c
:   Prints camera parameters.

ESC
:   Exits the tutorial.

q
:   Exits the tutorial.

Minimal
-------

This tutorial is designed to get new users started with Embree.
It can be compiled as both C and C++. It demonstrates how to initialize
a device and scene, and how to intersect rays with the scene.
There is no image output to keep the tutorial as simple as possible.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/minimal/minimal.cpp)

Triangle Geometry
-----------------

[![][imgTriangleGeometry]](https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp)

This tutorial demonstrates the creation of a static cube and ground
plane using triangle meshes. It also demonstrates the use of the
`rtcIntersect1` and `rtcOccluded1` functions to render primary visibility
and hard shadows. The cube sides are colored based on the ID of the hit
primitive.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp)

Dynamic Scene
-------------

[![][imgDynamicScene]](https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp)

This tutorial demonstrates the creation of a dynamic scene, consisting
of several deforming spheres. Half of the spheres use the
`RTC_BUILD_QUALITY_REFIT` geometry build quality, which allows Embree
to use a refitting strategy for these spheres, the other half uses the
`RTC_BUILD_QUALITY_LOW` geometry build quality, causing a high
performance rebuild of their spatial data structure each frame. The
spheres are colored based on the ID of the hit sphere geometry.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp)

Multi Scene Geometry
-------------

[![][imgDynamicScene]](https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp)

This tutorial demonstrates the creation of multiple scenes sharing the
same geometry objects.  Here, three scenes are built.  One with all
the dynamic spheres of the Dynamic Scene test and two others each with
half.  The ground plane is shared by all three scenes.  The space bar
is used to cycle the scene chosen for rendering.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp)

User Geometry
-------------

[![][imgUserGeometry]](https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp)

This tutorial shows the use of user-defined geometry, to re-implement
instancing, and to add analytic spheres. A two-level scene is created,
with a triangle mesh as ground plane, and several user geometries that
instance other scenes with a small number of spheres of different kinds.
The spheres are colored using the instance ID and geometry ID of the hit
sphere, to demonstrate how the same geometry instanced in different
ways can be distinguished.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp)

Viewer
------

[![][imgViewer]](https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp)

This tutorial demonstrates a simple OBJ viewer that traces primary
visibility rays only. A scene consisting of multiple meshes is created,
each mesh sharing the index and vertex buffer with the application.
It also demonstrates how to support additional per-vertex data, such as
shading normals.

You need to specify an OBJ file at the command line for this tutorial to
work:

    ./viewer -i model.obj

[Source Code](https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp)

Stream Viewer
-------------

[![][imgViewerStream]](https://github.com/embree/embree/blob/master/tutorials/viewer_stream/viewer_stream_device.cpp)

This tutorial is a simple OBJ viewer that demonstrates the use of ray
streams. You need to specify an OBJ file at the command line for this
tutorial to work:

    ./viewer_stream -i model.obj

[Source Code](https://github.com/embree/embree/blob/master/tutorials/viewer_stream/viewer_stream_device.cpp)

Intersection Filter
-------------------

[![][imgIntersectionFilter]](https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp)

This tutorial demonstrates the use of filter callback functions to
efficiently implement transparent objects. The filter function used for
primary rays lets the ray pass through the geometry if it is entirely
transparent. Otherwise, the shading loop handles the transparency
properly, by potentially shooting secondary rays. The filter function
used for shadow rays accumulates the transparency of all surfaces along
the ray, and terminates traversal if an opaque occluder is hit.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp)

Instanced Geometry
------------------

[![][imgInstancedGeometry]](https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp)

This tutorial demonstrates the in-build instancing feature of Embree, by
instancing a number of other scenes built from triangulated spheres. The
spheres are again colored using the instance ID and geometry ID of the
hit sphere, to demonstrate how the same geometry instanced in different
ways can be distinguished.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp)

Multi Level Instancing
----------------------

[![][imgMultiLevelInstancing]](https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp)

This tutorial demonstrates multi-level instancing, i.e., nesting instances
into instances. To enable the tutorial, set the compile-time variable
`EMBREE_MAX_INSTANCE_LEVEL_COUNT` to a value other than the default 1.
This variable is available in the code as `RTC_MAX_INSTANCE_LEVEL_COUNT`.

The renderer uses a basic path tracing approach, and the
image will progressively refine over time.
There are two levels of instances in this scene: multiple instances of
the same tree nest instances of a twig.
Intersections on up to `RTC_MAX_INSTANCE_LEVEL_COUNT` nested levels of
instances work out of the box. Users may obtain the *instance ID stack* for
a given hitpoint from the `instID` member.
During shading, the instance ID stack is used to accumulate
normal transformation matrices for each hit. The tutorial visualizes
transformed normals as colors.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp)

Path Tracer
-----------

[![][imgPathtracer]](https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp)

This tutorial is a simple path tracer, based on the viewer tutorial.

You need to specify an OBJ file and light source at the command line for
this tutorial to work:

    ./pathtracer -i model.obj --ambientlight 1 1 1

As example models we provide the "Austrian Imperial Crown" model by
[Martin Lubich](http://www.loramel.net) and the "Asian Dragon" model from the
[Stanford 3D Scanning Repository](http://graphics.stanford.edu/data/3Dscanrep/).

[crown.zip](https://github.com/embree/models/releases/download/release/crown.zip)

[asian_dragon.zip](https://github.com/embree/models/releases/download/release/asian_dragon.zip)

To render these models execute the following:

    ./pathtracer -c crown/crown.ecs
    ./pathtracer -c asian_dragon/asian_dragon.ecs

[Source Code](https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp)

Hair
----

[![][imgHairGeometry]](https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp)

This tutorial demonstrates the use of the hair geometry to render a
hairball.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp)

Curve Geometry
--------------

[![][imgCurveGeometry]](https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp)

This tutorial demonstrates the use of the Linear Basis, B-Spline, and Catmull-Rom curve geometries.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp)

Subdivision Geometry
--------------------

[![][imgSubdivisionGeometry]](https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp)

This tutorial demonstrates the use of Catmull-Clark subdivision
surfaces.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp)

Displacement Geometry
---------------------

[![][imgDisplacementGeometry]](https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp)

This tutorial demonstrates the use of Catmull-Clark subdivision
surfaces with procedural displacement mapping using a constant edge
tessellation level.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp)

Grid Geometry
---------------------

[![][imgGridGeometry]](https://github.com/embree/embree/tree/master/tutorials/grid_geometry)

This tutorial demonstrates the use of the memory efficient grid
primitive to handle highly tessellated and displaced geometry.

[Source Code](https://github.com/embree/embree/tree/master/tutorials/grid_geometry)

Point Geometry
---------------------

[![][imgPointGeometry]](https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp)

This tutorial demonstrates the use of the three representations
of point geometry.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp)

Motion Blur Geometry
--------------------

[![][imgMotionBlurGeometry]](https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp)

This tutorial demonstrates rendering of motion blur using the
multi-segment motion blur feature. Shown is motion blur of a triangle mesh,
quad mesh, subdivision surface, line segments, hair geometry, Bézier
curves, instantiated triangle mesh where the instance moves,
instantiated quad mesh where the instance and the quads move, and user
geometry.

The number of time steps used can be configured using the `--time-steps
<int>` and `--time-steps2 <int>` command line parameters, and the
geometry can be rendered at a specific time using the the `--time
<float>` command line parameter.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp)

Quaternion Motion Blur
----------------------

[![][imgQuaternionMotionBlur]](https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp)

This tutorial demonstrates rendering of motion blur using quaternion
interpolation. Shown is motion blur using spherical linear interpolation of
the rotational component of the instance transformation on the left and
simple linear interpolation of the instance transformation on the right. The
number of time steps can be modified as well.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp)

Interpolation
-------------

[![][imgInterpolation]](https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp)

This tutorial demonstrates interpolation of user-defined per-vertex data.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp)

Closest Point
----------------------

[![][imgClosestPoint]](https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp)

This tutorial demonstrates a use-case of the point query API. The scene
consists of a simple collection of objects that are instanced and for several
point in the scene (red points) the closest point on the surfaces of the
scene are computed (white points). The closest point functionality is
implemented for Embree internal and for user-defined instancing. The tutorial
also illustrates how to handle instance transformations that are not
similarity transforms.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp)

Voronoi
----------------------

[![][imgVoronoi]](https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp)

This tutorial demonstrates how to implement nearest neighbour lookups using
the point query API. Several colored points are located on a plane and the
corresponding voroni regions are illustrated.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp)

Collision Detection
----------------------

[![][imgCollision]](https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp)

This tutorial demonstrates how to implement collision detection using
the collide API. A simple cloth solver is setup to collide with a sphere.

The cloth can be reset with the `space` bar.  The sim stepped once with `n` 
and continuous simulation started and paused with `p`.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp)

BVH Builder
-----------

This tutorial demonstrates how to use the templated hierarchy builders
of Embree to build a bounding volume hierarchy with a user-defined
memory layout using a high-quality SAH builder using spatial splits, a
standard SAH builder, and a very fast Morton builder.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/bvh_builder/bvh_builder_device.cpp)

BVH Access
-----------

This tutorial demonstrates how to access the internal triangle
acceleration structure build by Embree. Please be aware that the
internal Embree data structures might change between Embree updates.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/bvh_access/bvh_access.cpp)

Find Embree
-----------

This tutorial demonstrates how to use the `FIND_PACKAGE` CMake feature
to use an installed Embree. Under Linux and macOS the tutorial finds
the Embree installation automatically, under Windows the `embree_DIR`
CMake variable must be set to the following folder of the Embree
installation: `C:\Program Files\Intel\Embree3`.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/find_embree/CMakeLists.txt)

Next Hit
-----------

This tutorial demonstrates how to robustly enumerate all hits along
the ray using multiple ray queries and an intersection filter
function. To improve performance, the tutorial also supports
collecting the next N hits in a single ray query.

[Source Code](https://github.com/embree/embree/blob/master/tutorials/next_hit/next_hit_device.cpp)



[Embree API]: #embree-api
[Embree Tutorials]: #embree-tutorials
[Ray Layout]: #ray-layout
[Extending the Ray Structure]: #extending-the-ray-structure
[Embree Example Renderer]: https://embree.github.io/renderer.html
[Triangle Geometry]: #triangle-geometry
[Stream Viewer]: #stream-viewer
[User Geometry]: #user-geometry
[Instanced Geometry]: #instanced-geometry
[Multi Level Instancing]: #multi-level-instancing
[Intersection Filter]: #intersection-filter
[Hair]: #hair
[Curves]: #bézier-curves
[Subdivision Geometry]: #subdivision-geometry
[Displacement Geometry]: #displacement-geometry
[Quaternion Motion Blur]: #quaternion-motion-blur
[BVH Builder]: #bvh-builder
[Interpolation]: #interpolation
[Closest Point]: #closest-point
[Voronoi]: #voronoi
[imgHalfEdges]: https://embree.github.io/images/half_edges.png
[imgTriangleUV]: https://embree.github.io/images/triangle_uv.png
[imgQuadUV]: https://embree.github.io/images/quad_uv.png
[imgTriangleGeometry]: https://embree.github.io/images/triangle_geometry.jpg
[imgDynamicScene]: https://embree.github.io/images/dynamic_scene.jpg
[imgUserGeometry]: https://embree.github.io/images/user_geometry.jpg
[imgViewer]: https://embree.github.io/images/viewer.jpg
[imgViewerStream]: https://embree.github.io/images/viewer_stream.jpg
[imgInstancedGeometry]: https://embree.github.io/images/instanced_geometry.jpg
[imgMultiLevelInstancing]: https://embree.github.io/images/multi_level_instancing.jpg
[imgIntersectionFilter]: https://embree.github.io/images/intersection_filter.jpg
[imgPathtracer]: https://embree.github.io/images/pathtracer.jpg
[imgHairGeometry]: https://embree.github.io/images/hair_geometry.jpg
[imgCurveGeometry]: https://embree.github.io/images/curve_geometry.jpg
[imgSubdivisionGeometry]: https://embree.github.io/images/subdivision_geometry.jpg
[imgDisplacementGeometry]: https://embree.github.io/images/displacement_geometry.jpg
[imgGridGeometry]: https://embree.github.io/images/grid_geometry.jpg
[imgPointGeometry]: https://embree.github.io/images/point_geometry.jpg
[imgMotionBlurGeometry]: https://embree.github.io/images/motion_blur_geometry.jpg
[imgQuaternionMotionBlur]: https://embree.github.io/images/quaternion_motion_blur.jpg
[imgInterpolation]: https://embree.github.io/images/interpolation.jpg
[imgClosestPoint]: https://embree.github.io/images/closest_point.jpg
[imgVoronoi]: https://embree.github.io/images/voronoi.jpg
[imgCollision]: https://embree.github.io/images/collide.jpg