Codebase list faad2 / 5c87909b-0e3d-4ca0-9f9a-c5e86e4128cb/main libfaad / hcr.c
5c87909b-0e3d-4ca0-9f9a-c5e86e4128cb/main

Tree @5c87909b-0e3d-4ca0-9f9a-c5e86e4128cb/main (Download .tar.gz)

hcr.c @5c87909b-0e3d-4ca0-9f9a-c5e86e4128cb/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
**
** $Id: hcr.c,v 1.26 2009/01/26 23:51:15 menno Exp $
**/

#include "common.h"
#include "structs.h"

#include <stdlib.h>
#include <string.h>

#include "specrec.h"
#include "huffman.h"

/* ISO/IEC 14496-3/Amd.1
 * 8.5.3.3: Huffman Codeword Reordering for AAC spectral data (HCR)
 *
 * HCR devides the spectral data in known fixed size segments, and
 * sorts it by the importance of the data. The importance is firstly
 * the (lower) position in the spectrum, and secondly the largest
 * value in the used codebook.
 * The most important data is written at the start of each segment
 * (at known positions), the remaining data is interleaved inbetween,
 * with the writing direction alternating.
 * Data length is not increased.
*/

#ifdef ERROR_RESILIENCE

/* 8.5.3.3.1 Pre-sorting */

#define NUM_CB      6
#define NUM_CB_ER   22
#define MAX_CB      32
#define VCB11_FIRST 16
#define VCB11_LAST  31

static const uint8_t PreSortCB_STD[NUM_CB] =
    { 11, 9, 7, 5, 3, 1};

static const uint8_t PreSortCB_ER[NUM_CB_ER] =
    { 11, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 9, 7, 5, 3, 1};

/* 8.5.3.3.2 Derivation of segment width */

static const uint8_t maxCwLen[MAX_CB] = {0, 11, 9, 20, 16, 13, 11, 14, 12, 17, 14, 49,
    0, 0, 0, 0, 14, 17, 21, 21, 25, 25, 29, 29, 29, 29, 33, 33, 33, 37, 37, 41};

#define segmentWidth(cb)    min(maxCwLen[cb], ics->length_of_longest_codeword)

/* bit-twiddling helpers */
static const uint8_t  S[] = {1, 2, 4, 8, 16};
static const uint32_t B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF};

typedef struct
{
    uint8_t     cb;
    uint8_t     decoded;
    uint16_t	sp_offset;
    bits_t      bits;
} codeword_t;

/* rewind and reverse */
/* 32 bit version */
static uint32_t rewrev_word(uint32_t v, const uint8_t len)
{
    /* 32 bit reverse */
    v = ((v >> S[0]) & B[0]) | ((v << S[0]) & ~B[0]);
    v = ((v >> S[1]) & B[1]) | ((v << S[1]) & ~B[1]);
    v = ((v >> S[2]) & B[2]) | ((v << S[2]) & ~B[2]);
    v = ((v >> S[3]) & B[3]) | ((v << S[3]) & ~B[3]);
    v = ((v >> S[4]) & B[4]) | ((v << S[4]) & ~B[4]);

    /* shift off low bits */
    v >>= (32 - len);

    return v;
}

/* 64 bit version */
static void rewrev_lword(uint32_t *hi, uint32_t *lo, const uint8_t len)
{
    if (len <= 32) {
        *hi = 0;
        *lo = rewrev_word(*lo, len);
    } else
    {
        uint32_t t = *hi, v = *lo;

        /* double 32 bit reverse */
        v = ((v >> S[0]) & B[0]) | ((v << S[0]) & ~B[0]);
        t = ((t >> S[0]) & B[0]) | ((t << S[0]) & ~B[0]);
        v = ((v >> S[1]) & B[1]) | ((v << S[1]) & ~B[1]);
        t = ((t >> S[1]) & B[1]) | ((t << S[1]) & ~B[1]);
        v = ((v >> S[2]) & B[2]) | ((v << S[2]) & ~B[2]);
        t = ((t >> S[2]) & B[2]) | ((t << S[2]) & ~B[2]);
        v = ((v >> S[3]) & B[3]) | ((v << S[3]) & ~B[3]);
        t = ((t >> S[3]) & B[3]) | ((t << S[3]) & ~B[3]);
        v = ((v >> S[4]) & B[4]) | ((v << S[4]) & ~B[4]);
        t = ((t >> S[4]) & B[4]) | ((t << S[4]) & ~B[4]);

        /* last 32<>32 bit swap is implicit below */

        /* shift off low bits (this is really only one 64 bit shift) */
        *lo = (t >> (64 - len)) | (v << (len - 32));
        *hi = v >> (64 - len);
    }
}


/* bits_t version */
static void rewrev_bits(bits_t *bits)
{
    if (bits->len == 0) return;
    rewrev_lword(&bits->bufb, &bits->bufa,  bits->len);
}


/* merge bits of a to b */
static void concat_bits(bits_t *b, bits_t *a)
{
    uint32_t bl, bh, al, ah;

    if (a->len == 0) return;

    al = a->bufa;
    ah = a->bufb;

    if (b->len > 32)
    {
        /* maskoff superfluous high b bits */
        bl = b->bufa;
        bh = b->bufb & ((1 << (b->len-32)) - 1);
        /* left shift a b->len bits */
        ah = al << (b->len - 32);
        al = 0;
    } else {
        bl = b->bufa & ((1 << (b->len)) - 1);
        bh = 0;
        ah = (ah << (b->len)) | (al >> (32 - b->len));
        al = al << b->len;
    }

    /* merge */
    b->bufa = bl | al;
    b->bufb = bh | ah;

    b->len += a->len;
}

static uint8_t is_good_cb(uint8_t this_CB, uint8_t this_sec_CB)
{
    /* only want spectral data CB's */
    if ((this_sec_CB > ZERO_HCB && this_sec_CB <= ESC_HCB) || (this_sec_CB >= VCB11_FIRST && this_sec_CB <= VCB11_LAST))
    {
        if (this_CB < ESC_HCB)
        {
            /* normal codebook pairs */
            return ((this_sec_CB == this_CB) || (this_sec_CB == this_CB + 1));
        } else
        {
            /* escape codebook */
            return (this_sec_CB == this_CB);
        }
    }
    return 0;
}

static void read_segment(bits_t *segment, uint8_t segwidth, bitfile *ld)
{
    segment->len = segwidth;

     if (segwidth > 32)
     {
        segment->bufb = faad_getbits(ld, segwidth - 32);
        segment->bufa = faad_getbits(ld, 32);

    } else {
        segment->bufa = faad_getbits(ld, segwidth);
        segment->bufb = 0;
    }
}

static void fill_in_codeword(codeword_t *codeword, uint16_t index, uint16_t sp, uint8_t cb)
{
    codeword[index].sp_offset = sp;
    codeword[index].cb = cb;
    codeword[index].decoded = 0;
    codeword[index].bits.len = 0;
}

uint8_t reordered_spectral_data(NeAACDecStruct *hDecoder, ic_stream *ics,
                                bitfile *ld, int16_t *spectral_data)
{
    uint16_t PCWs_done;
    uint16_t numberOfSegments, numberOfSets, numberOfCodewords;

    codeword_t codeword[512];
    bits_t segment[512];

    uint16_t sp_offset[8];
    uint16_t g, i, sortloop, set, bitsread;
    /*uint16_t bitsleft, codewordsleft*/;
    uint8_t w_idx, sfb, this_CB, last_CB, this_sec_CB;

    const uint16_t nshort = hDecoder->frameLength/8;
    const uint16_t sp_data_len = ics->length_of_reordered_spectral_data;

    const uint8_t *PreSortCb;

    /* no data (e.g. silence) */
    if (sp_data_len == 0)
        return 0;

    /* since there is spectral data, at least one codeword has nonzero length */
    if (ics->length_of_longest_codeword == 0)
        return 10;

    if (sp_data_len < ics->length_of_longest_codeword)
        return 10;

    sp_offset[0] = 0;
    for (g = 1; g < ics->num_window_groups; g++)
    {
        sp_offset[g] = sp_offset[g-1] + nshort*ics->window_group_length[g-1];
    }

    PCWs_done = 0;
    numberOfSegments = 0;
    numberOfCodewords = 0;
    bitsread = 0;

    /* VCB11 code books in use */
    if (hDecoder->aacSectionDataResilienceFlag)
    {
        PreSortCb = PreSortCB_ER;
        last_CB = NUM_CB_ER;
    } else
    {
        PreSortCb = PreSortCB_STD;
        last_CB = NUM_CB;
    }

    /* step 1: decode PCW's (set 0), and stuff data in easier-to-use format */
    for (sortloop = 0; sortloop < last_CB; sortloop++)
    {
        /* select codebook to process this pass */
        this_CB = PreSortCb[sortloop];

        /* loop over sfbs */
        for (sfb = 0; sfb < ics->max_sfb; sfb++)
        {
            /* loop over all in this sfb, 4 lines per loop */
            for (w_idx = 0; 4*w_idx < (min(ics->swb_offset[sfb+1], ics->swb_offset_max) - ics->swb_offset[sfb]); w_idx++)
            {
                for(g = 0; g < ics->num_window_groups; g++)
                {
                    for (i = 0; i < ics->num_sec[g]; i++)
                    {
                        /* check whether sfb used here is the one we want to process */
                        if ((ics->sect_start[g][i] <= sfb) && (ics->sect_end[g][i] > sfb))
                        {
                            /* check whether codebook used here is the one we want to process */
                            this_sec_CB = ics->sect_cb[g][i];

                            if (is_good_cb(this_CB, this_sec_CB))
                            {
                                /* precalculate some stuff */
                                uint16_t sect_sfb_size = ics->sect_sfb_offset[g][sfb+1] - ics->sect_sfb_offset[g][sfb];
                                uint8_t inc = (this_sec_CB < FIRST_PAIR_HCB) ? QUAD_LEN : PAIR_LEN;
                                uint16_t group_cws_count = (4*ics->window_group_length[g])/inc;
                                uint8_t segwidth = segmentWidth(this_sec_CB);
                                uint16_t cws;

                                /* read codewords until end of sfb or end of window group (shouldn't only 1 trigger?) */
                                for (cws = 0; (cws < group_cws_count) && ((cws + w_idx*group_cws_count) < sect_sfb_size); cws++)
                                {
                                    uint16_t sp = sp_offset[g] + ics->sect_sfb_offset[g][sfb] + inc * (cws + w_idx*group_cws_count);

                                    /* read and decode PCW */
                                    if (!PCWs_done)
                                    {
                                        /* read in normal segments */
                                        if (bitsread + segwidth <= sp_data_len)
                                        {
                                            read_segment(&segment[numberOfSegments], segwidth, ld);
                                            bitsread += segwidth;

                                            huffman_spectral_data_2(this_sec_CB, &segment[numberOfSegments], &spectral_data[sp]);

                                            /* keep leftover bits */
                                            rewrev_bits(&segment[numberOfSegments]);

                                            numberOfSegments++;
                                        } else {
                                            /* remaining stuff after last segment, we unfortunately couldn't read
                                               this in earlier because it might not fit in 64 bits. since we already
                                               decoded (and removed) the PCW it is now guaranteed to fit */
                                            if (bitsread < sp_data_len)
                                            {
                                                const uint8_t additional_bits = sp_data_len - bitsread;

                                                read_segment(&segment[numberOfSegments], additional_bits, ld);
                                                segment[numberOfSegments].len += segment[numberOfSegments-1].len;
                                                rewrev_bits(&segment[numberOfSegments]);

                                                if (segment[numberOfSegments-1].len > 32)
                                                {
                                                    segment[numberOfSegments-1].bufb = segment[numberOfSegments].bufb +
                                                        showbits_hcr(&segment[numberOfSegments-1], segment[numberOfSegments-1].len - 32);
                                                    segment[numberOfSegments-1].bufa = segment[numberOfSegments].bufa +
                                                        showbits_hcr(&segment[numberOfSegments-1], 32);
                                                } else {
                                                    segment[numberOfSegments-1].bufa = segment[numberOfSegments].bufa +
                                                        showbits_hcr(&segment[numberOfSegments-1], segment[numberOfSegments-1].len);
                                                    segment[numberOfSegments-1].bufb = segment[numberOfSegments].bufb;
                                                }
                                                segment[numberOfSegments-1].len += additional_bits;
                                            }
                                            bitsread = sp_data_len;
                                            PCWs_done = 1;

                                            fill_in_codeword(codeword, 0, sp, this_sec_CB);
                                        }
                                    } else {
                                        fill_in_codeword(codeword, numberOfCodewords - numberOfSegments, sp, this_sec_CB);
                                    }
                                    numberOfCodewords++;
                                }
                            }
                        }
                    }
                 }
             }
         }
    }

    if (numberOfSegments == 0)
        return 10;

    numberOfSets = numberOfCodewords / numberOfSegments;

    /* step 2: decode nonPCWs */
    for (set = 1; set <= numberOfSets; set++)
    {
        uint16_t trial;

        for (trial = 0; trial < numberOfSegments; trial++)
        {
            uint16_t codewordBase;

            for (codewordBase = 0; codewordBase < numberOfSegments; codewordBase++)
            {
                const uint16_t segment_idx = (trial + codewordBase) % numberOfSegments;
                const uint16_t codeword_idx = codewordBase + set*numberOfSegments - numberOfSegments;

                /* data up */
                if (codeword_idx >= numberOfCodewords - numberOfSegments) break;

                if (!codeword[codeword_idx].decoded && segment[segment_idx].len > 0)
                {
                    uint8_t tmplen;

                    if (codeword[codeword_idx].bits.len != 0)
                        concat_bits(&segment[segment_idx], &codeword[codeword_idx].bits);

                    tmplen = segment[segment_idx].len;

                    if (huffman_spectral_data_2(codeword[codeword_idx].cb, &segment[segment_idx],
                                               &spectral_data[codeword[codeword_idx].sp_offset]) >= 0)
                    {
                        codeword[codeword_idx].decoded = 1;
                    } else
                    {
                        codeword[codeword_idx].bits = segment[segment_idx];
                        codeword[codeword_idx].bits.len = tmplen;
                    }

                }
            }
        }
        for (i = 0; i < numberOfSegments; i++)
            rewrev_bits(&segment[i]);
    }

#if 0 // Seems to give false errors
    bitsleft = 0;

    for (i = 0; i < numberOfSegments && !bitsleft; i++)
        bitsleft += segment[i].len;

    if (bitsleft) return 10;

    codewordsleft = 0;

    for (i = 0; (i < numberOfCodewords - numberOfSegments) && (!codewordsleft); i++)
        if (!codeword[i].decoded)
                codewordsleft++;

    if (codewordsleft) return 10;
#endif


    return 0;

}
#endif