Codebase list libcryptx-perl / c14794b src / ltc / stream / sosemanuk / sosemanuk.c
c14794b

Tree @c14794b (Download .tar.gz)

sosemanuk.c @c14794braw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

/*
 * This LTC implementation was adapted from:
 *    http://www.ecrypt.eu.org/stream/e2-sosemanuk.html
 */

/*
 * SOSEMANUK reference implementation.
 *
 * This code is supposed to run on any conforming C implementation (C90
 * or later).
 *
 * (c) 2005 X-CRYPT project. This software is provided 'as-is', without
 * any express or implied warranty. In no event will the authors be held
 * liable for any damages arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to no restriction.
 *
 * Technical remarks and questions can be addressed to
 * <thomas.pornin@cryptolog.com>
 */

#include "tomcrypt_private.h"

#ifdef LTC_SOSEMANUK

/* ======================================================================== */

/*
 * We want (and sometimes need) to perform explicit truncations to 32 bits.
 */
#define T32(x)   ((x) & (ulong32)0xFFFFFFFF)

/*
 * Some of our functions will be tagged as "inline" to help the compiler
 * optimize things. We use "inline" only if the compiler is advanced
 * enough to understand it; C99 compilers, and pre-C99 versions of gcc,
 * understand enough "inline" for our purposes.
 */

/* ======================================================================== */

/*
 * Serpent S-boxes, implemented in bitslice mode. These circuits have
 * been published by Dag Arne Osvik ("Speeding up Serpent", published in
 * the 3rd AES Candidate Conference) and work on five 32-bit registers:
 * the four inputs, and a fifth scratch register. There are meant to be
 * quite fast on Pentium-class processors. These are not the fastest
 * published, but they are "fast enough" and they are unencumbered as
 * far as intellectual property is concerned (note: these are rewritten
 * from the article itself, and hence are not covered by the GPL on
 * Dag's code, which was not used here).
 *
 * The output bits are permuted. Here is the correspondance:
 *   S0:  1420
 *   S1:  2031
 *   S2:  2314
 *   S3:  1234
 *   S4:  1403
 *   S5:  1302
 *   S6:  0142
 *   S7:  4310
 * (for instance, the output of S0 is in "r1, r4, r2, r0").
 */

#define S0(r0, r1, r2, r3, r4)   do { \
        r3 ^= r0;  r4  = r1; \
        r1 &= r3;  r4 ^= r2; \
        r1 ^= r0;  r0 |= r3; \
        r0 ^= r4;  r4 ^= r3; \
        r3 ^= r2;  r2 |= r1; \
        r2 ^= r4;  r4 = ~r4; \
        r4 |= r1;  r1 ^= r3; \
        r1 ^= r4;  r3 |= r0; \
        r1 ^= r3;  r4 ^= r3; \
    } while (0)

#define S1(r0, r1, r2, r3, r4)   do { \
        r0 = ~r0;  r2 = ~r2; \
        r4  = r0;  r0 &= r1; \
        r2 ^= r0;  r0 |= r3; \
        r3 ^= r2;  r1 ^= r0; \
        r0 ^= r4;  r4 |= r1; \
        r1 ^= r3;  r2 |= r0; \
        r2 &= r4;  r0 ^= r1; \
        r1 &= r2; \
        r1 ^= r0;  r0 &= r2; \
        r0 ^= r4; \
    } while (0)

#define S2(r0, r1, r2, r3, r4)   do { \
        r4  = r0;  r0 &= r2; \
        r0 ^= r3;  r2 ^= r1; \
        r2 ^= r0;  r3 |= r4; \
        r3 ^= r1;  r4 ^= r2; \
        r1  = r3;  r3 |= r4; \
        r3 ^= r0;  r0 &= r1; \
        r4 ^= r0;  r1 ^= r3; \
        r1 ^= r4;  r4 = ~r4; \
    } while (0)

#define S3(r0, r1, r2, r3, r4)   do { \
        r4  = r0;  r0 |= r3; \
        r3 ^= r1;  r1 &= r4; \
        r4 ^= r2;  r2 ^= r3; \
        r3 &= r0;  r4 |= r1; \
        r3 ^= r4;  r0 ^= r1; \
        r4 &= r0;  r1 ^= r3; \
        r4 ^= r2;  r1 |= r0; \
        r1 ^= r2;  r0 ^= r3; \
        r2  = r1;  r1 |= r3; \
        r1 ^= r0; \
    } while (0)

#define S4(r0, r1, r2, r3, r4)   do { \
        r1 ^= r3;  r3 = ~r3; \
        r2 ^= r3;  r3 ^= r0; \
        r4  = r1;  r1 &= r3; \
        r1 ^= r2;  r4 ^= r3; \
        r0 ^= r4;  r2 &= r4; \
        r2 ^= r0;  r0 &= r1; \
        r3 ^= r0;  r4 |= r1; \
        r4 ^= r0;  r0 |= r3; \
        r0 ^= r2;  r2 &= r3; \
        r0 = ~r0;  r4 ^= r2; \
    } while (0)

#define S5(r0, r1, r2, r3, r4)   do { \
        r0 ^= r1;  r1 ^= r3; \
        r3 = ~r3;  r4  = r1; \
        r1 &= r0;  r2 ^= r3; \
        r1 ^= r2;  r2 |= r4; \
        r4 ^= r3;  r3 &= r1; \
        r3 ^= r0;  r4 ^= r1; \
        r4 ^= r2;  r2 ^= r0; \
        r0 &= r3;  r2 = ~r2; \
        r0 ^= r4;  r4 |= r3; \
        r2 ^= r4; \
    } while (0)

#define S6(r0, r1, r2, r3, r4)   do { \
        r2 = ~r2;  r4  = r3; \
        r3 &= r0;  r0 ^= r4; \
        r3 ^= r2;  r2 |= r4; \
        r1 ^= r3;  r2 ^= r0; \
        r0 |= r1;  r2 ^= r1; \
        r4 ^= r0;  r0 |= r3; \
        r0 ^= r2;  r4 ^= r3; \
        r4 ^= r0;  r3 = ~r3; \
        r2 &= r4; \
        r2 ^= r3; \
    } while (0)

#define S7(r0, r1, r2, r3, r4)   do { \
        r4  = r1;  r1 |= r2; \
        r1 ^= r3;  r4 ^= r2; \
        r2 ^= r1;  r3 |= r4; \
        r3 &= r0;  r4 ^= r2; \
        r3 ^= r1;  r1 |= r4; \
        r1 ^= r0;  r0 |= r4; \
        r0 ^= r2;  r1 ^= r4; \
        r2 ^= r1;  r1 &= r0; \
        r1 ^= r4;  r2 = ~r2; \
        r2 |= r0; \
        r4 ^= r2; \
    } while (0)

/*
 * The Serpent linear transform.
 */
#define SERPENT_LT(x0, x1, x2, x3)  do { \
        x0 = ROLc(x0, 13); \
        x2 = ROLc(x2, 3); \
        x1 = x1 ^ x0 ^ x2; \
        x3 = x3 ^ x2 ^ T32(x0 << 3); \
        x1 = ROLc(x1, 1); \
        x3 = ROLc(x3, 7); \
        x0 = x0 ^ x1 ^ x3; \
        x2 = x2 ^ x3 ^ T32(x1 << 7); \
        x0 = ROLc(x0, 5); \
        x2 = ROLc(x2, 22); \
    } while (0)

/* ======================================================================== */

/*
 * Initialize Sosemanuk's state by providing a key. The key is an array of
 * 1 to 32 bytes.
 * @param st       The Sosemanuk state
 * @param key      Key
 * @param keylen   Length of key in bytes
 * @return CRYPT_OK on success
 */
int sosemanuk_setup(sosemanuk_state *st, const unsigned char *key, unsigned long keylen)
{
    /*
     * This key schedule is actually a truncated Serpent key schedule.
     * The key-derived words (w_i) are computed within the eight
     * local variables w0 to w7, which are reused again and again.
     */

#define SKS(S, o0, o1, o2, o3, d0, d1, d2, d3)   do { \
        ulong32 r0, r1, r2, r3, r4; \
        r0 = w ## o0; \
        r1 = w ## o1; \
        r2 = w ## o2; \
        r3 = w ## o3; \
        S(r0, r1, r2, r3, r4); \
        st->kc[i ++] = r ## d0; \
        st->kc[i ++] = r ## d1; \
        st->kc[i ++] = r ## d2; \
        st->kc[i ++] = r ## d3; \
    } while (0)

#define SKS0    SKS(S0, 4, 5, 6, 7, 1, 4, 2, 0)
#define SKS1    SKS(S1, 0, 1, 2, 3, 2, 0, 3, 1)
#define SKS2    SKS(S2, 4, 5, 6, 7, 2, 3, 1, 4)
#define SKS3    SKS(S3, 0, 1, 2, 3, 1, 2, 3, 4)
#define SKS4    SKS(S4, 4, 5, 6, 7, 1, 4, 0, 3)
#define SKS5    SKS(S5, 0, 1, 2, 3, 1, 3, 0, 2)
#define SKS6    SKS(S6, 4, 5, 6, 7, 0, 1, 4, 2)
#define SKS7    SKS(S7, 0, 1, 2, 3, 4, 3, 1, 0)

#define WUP(wi, wi5, wi3, wi1, cc)   do { \
        ulong32 tt = (wi) ^ (wi5) ^ (wi3) \
            ^ (wi1) ^ (0x9E3779B9 ^ (ulong32)(cc)); \
        (wi) = ROLc(tt, 11); \
    } while (0)

#define WUP0(cc)   do { \
        WUP(w0, w3, w5, w7, cc); \
        WUP(w1, w4, w6, w0, cc + 1); \
        WUP(w2, w5, w7, w1, cc + 2); \
        WUP(w3, w6, w0, w2, cc + 3); \
    } while (0)

#define WUP1(cc)   do { \
        WUP(w4, w7, w1, w3, cc); \
        WUP(w5, w0, w2, w4, cc + 1); \
        WUP(w6, w1, w3, w5, cc + 2); \
        WUP(w7, w2, w4, w6, cc + 3); \
    } while (0)

    unsigned char wbuf[32];
    ulong32 w0, w1, w2, w3, w4, w5, w6, w7;
    int i = 0;

   LTC_ARGCHK(st  != NULL);
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(keylen > 0 && keylen <= 32);

    /*
     * The key is copied into the wbuf[] buffer and padded to 256 bits
     * as described in the Serpent specification.
     */
    XMEMCPY(wbuf, key, keylen);
    if (keylen < 32) {
        wbuf[keylen] = 0x01;
        if (keylen < 31) {
            XMEMSET(wbuf + keylen + 1, 0, 31 - keylen);
        }
    }

    LOAD32L(w0, wbuf);
    LOAD32L(w1, wbuf + 4);
    LOAD32L(w2, wbuf + 8);
    LOAD32L(w3, wbuf + 12);
    LOAD32L(w4, wbuf + 16);
    LOAD32L(w5, wbuf + 20);
    LOAD32L(w6, wbuf + 24);
    LOAD32L(w7, wbuf + 28);

    WUP0(0);   SKS3;
    WUP1(4);   SKS2;
    WUP0(8);   SKS1;
    WUP1(12);  SKS0;
    WUP0(16);  SKS7;
    WUP1(20);  SKS6;
    WUP0(24);  SKS5;
    WUP1(28);  SKS4;
    WUP0(32);  SKS3;
    WUP1(36);  SKS2;
    WUP0(40);  SKS1;
    WUP1(44);  SKS0;
    WUP0(48);  SKS7;
    WUP1(52);  SKS6;
    WUP0(56);  SKS5;
    WUP1(60);  SKS4;
    WUP0(64);  SKS3;
    WUP1(68);  SKS2;
    WUP0(72);  SKS1;
    WUP1(76);  SKS0;
    WUP0(80);  SKS7;
    WUP1(84);  SKS6;
    WUP0(88);  SKS5;
    WUP1(92);  SKS4;
    WUP0(96);  SKS3;

#undef SKS
#undef SKS0
#undef SKS1
#undef SKS2
#undef SKS3
#undef SKS4
#undef SKS5
#undef SKS6
#undef SKS7
#undef WUP
#undef WUP0
#undef WUP1

    return CRYPT_OK;
}


/*
 * Initialization continues by setting the IV. The IV length is up to 16 bytes.
 * If "ivlen" is 0 (no IV), then the "iv" parameter can be NULL.  If multiple
 * encryptions/decryptions are to be performed with the same key and
 * sosemanuk_done() has not been called, only sosemanuk_setiv() need be called
 * to set the state.
 * @param st       The Sosemanuk state
 * @param iv       Initialization vector
 * @param ivlen    Length of iv in bytes
 * @return CRYPT_OK on success
 */
int sosemanuk_setiv(sosemanuk_state *st, const unsigned char *iv, unsigned long ivlen)
{

    /*
     * The Serpent key addition step.
     */
#define KA(zc, x0, x1, x2, x3)  do { \
        x0 ^= st->kc[(zc)]; \
        x1 ^= st->kc[(zc) + 1]; \
        x2 ^= st->kc[(zc) + 2]; \
        x3 ^= st->kc[(zc) + 3]; \
    } while (0)

    /*
     * One Serpent round.
     *   zc = current subkey counter
     *   S = S-box macro for this round
     *   i0 to i4 = input register numbers (the fifth is a scratch register)
     *   o0 to o3 = output register numbers
     */
#define FSS(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3)  do { \
        KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
        S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
        SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
    } while (0)

    /*
     * Last Serpent round. Contrary to the "true" Serpent, we keep
     * the linear transformation for that last round.
     */
#define FSF(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3)  do { \
        KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
        S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
        SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
        KA(zc + 4, r ## o0, r ## o1, r ## o2, r ## o3); \
    } while (0)

    ulong32 r0, r1, r2, r3, r4;
    unsigned char ivtmp[16] = {0};

    LTC_ARGCHK(st != NULL);
    LTC_ARGCHK(ivlen <= 16);
    LTC_ARGCHK(iv != NULL || ivlen == 0);

    if (ivlen > 0) XMEMCPY(ivtmp, iv, ivlen);

    /*
     * Decode IV into four 32-bit words (little-endian).
     */
    LOAD32L(r0, ivtmp);
    LOAD32L(r1, ivtmp + 4);
    LOAD32L(r2, ivtmp + 8);
    LOAD32L(r3, ivtmp + 12);

    /*
     * Encrypt IV with Serpent24. Some values are extracted from the
     * output of the twelfth, eighteenth and twenty-fourth rounds.
     */
    FSS(0, S0, 0, 1, 2, 3, 4, 1, 4, 2, 0);
    FSS(4, S1, 1, 4, 2, 0, 3, 2, 1, 0, 4);
    FSS(8, S2, 2, 1, 0, 4, 3, 0, 4, 1, 3);
    FSS(12, S3, 0, 4, 1, 3, 2, 4, 1, 3, 2);
    FSS(16, S4, 4, 1, 3, 2, 0, 1, 0, 4, 2);
    FSS(20, S5, 1, 0, 4, 2, 3, 0, 2, 1, 4);
    FSS(24, S6, 0, 2, 1, 4, 3, 0, 2, 3, 1);
    FSS(28, S7, 0, 2, 3, 1, 4, 4, 1, 2, 0);
    FSS(32, S0, 4, 1, 2, 0, 3, 1, 3, 2, 4);
    FSS(36, S1, 1, 3, 2, 4, 0, 2, 1, 4, 3);
    FSS(40, S2, 2, 1, 4, 3, 0, 4, 3, 1, 0);
    FSS(44, S3, 4, 3, 1, 0, 2, 3, 1, 0, 2);
    st->s09 = r3;
    st->s08 = r1;
    st->s07 = r0;
    st->s06 = r2;

    FSS(48, S4, 3, 1, 0, 2, 4, 1, 4, 3, 2);
    FSS(52, S5, 1, 4, 3, 2, 0, 4, 2, 1, 3);
    FSS(56, S6, 4, 2, 1, 3, 0, 4, 2, 0, 1);
    FSS(60, S7, 4, 2, 0, 1, 3, 3, 1, 2, 4);
    FSS(64, S0, 3, 1, 2, 4, 0, 1, 0, 2, 3);
    FSS(68, S1, 1, 0, 2, 3, 4, 2, 1, 3, 0);
    st->r1  = r2;
    st->s04 = r1;
    st->r2  = r3;
    st->s05 = r0;

    FSS(72, S2, 2, 1, 3, 0, 4, 3, 0, 1, 4);
    FSS(76, S3, 3, 0, 1, 4, 2, 0, 1, 4, 2);
    FSS(80, S4, 0, 1, 4, 2, 3, 1, 3, 0, 2);
    FSS(84, S5, 1, 3, 0, 2, 4, 3, 2, 1, 0);
    FSS(88, S6, 3, 2, 1, 0, 4, 3, 2, 4, 1);
    FSF(92, S7, 3, 2, 4, 1, 0, 0, 1, 2, 3);
    st->s03 = r0;
    st->s02 = r1;
    st->s01 = r2;
    st->s00 = r3;

    st->ptr = sizeof(st->buf);

#undef KA
#undef FSS
#undef FSF

    return CRYPT_OK;
}

/*
 * Multiplication by alpha: alpha * x = T32(x << 8) ^ mul_a[x >> 24]
 */
static const ulong32 mul_a[] = {
    0x00000000, 0xE19FCF13, 0x6B973726, 0x8A08F835,
    0xD6876E4C, 0x3718A15F, 0xBD10596A, 0x5C8F9679,
    0x05A7DC98, 0xE438138B, 0x6E30EBBE, 0x8FAF24AD,
    0xD320B2D4, 0x32BF7DC7, 0xB8B785F2, 0x59284AE1,
    0x0AE71199, 0xEB78DE8A, 0x617026BF, 0x80EFE9AC,
    0xDC607FD5, 0x3DFFB0C6, 0xB7F748F3, 0x566887E0,
    0x0F40CD01, 0xEEDF0212, 0x64D7FA27, 0x85483534,
    0xD9C7A34D, 0x38586C5E, 0xB250946B, 0x53CF5B78,
    0x1467229B, 0xF5F8ED88, 0x7FF015BD, 0x9E6FDAAE,
    0xC2E04CD7, 0x237F83C4, 0xA9777BF1, 0x48E8B4E2,
    0x11C0FE03, 0xF05F3110, 0x7A57C925, 0x9BC80636,
    0xC747904F, 0x26D85F5C, 0xACD0A769, 0x4D4F687A,
    0x1E803302, 0xFF1FFC11, 0x75170424, 0x9488CB37,
    0xC8075D4E, 0x2998925D, 0xA3906A68, 0x420FA57B,
    0x1B27EF9A, 0xFAB82089, 0x70B0D8BC, 0x912F17AF,
    0xCDA081D6, 0x2C3F4EC5, 0xA637B6F0, 0x47A879E3,
    0x28CE449F, 0xC9518B8C, 0x435973B9, 0xA2C6BCAA,
    0xFE492AD3, 0x1FD6E5C0, 0x95DE1DF5, 0x7441D2E6,
    0x2D699807, 0xCCF65714, 0x46FEAF21, 0xA7616032,
    0xFBEEF64B, 0x1A713958, 0x9079C16D, 0x71E60E7E,
    0x22295506, 0xC3B69A15, 0x49BE6220, 0xA821AD33,
    0xF4AE3B4A, 0x1531F459, 0x9F390C6C, 0x7EA6C37F,
    0x278E899E, 0xC611468D, 0x4C19BEB8, 0xAD8671AB,
    0xF109E7D2, 0x109628C1, 0x9A9ED0F4, 0x7B011FE7,
    0x3CA96604, 0xDD36A917, 0x573E5122, 0xB6A19E31,
    0xEA2E0848, 0x0BB1C75B, 0x81B93F6E, 0x6026F07D,
    0x390EBA9C, 0xD891758F, 0x52998DBA, 0xB30642A9,
    0xEF89D4D0, 0x0E161BC3, 0x841EE3F6, 0x65812CE5,
    0x364E779D, 0xD7D1B88E, 0x5DD940BB, 0xBC468FA8,
    0xE0C919D1, 0x0156D6C2, 0x8B5E2EF7, 0x6AC1E1E4,
    0x33E9AB05, 0xD2766416, 0x587E9C23, 0xB9E15330,
    0xE56EC549, 0x04F10A5A, 0x8EF9F26F, 0x6F663D7C,
    0x50358897, 0xB1AA4784, 0x3BA2BFB1, 0xDA3D70A2,
    0x86B2E6DB, 0x672D29C8, 0xED25D1FD, 0x0CBA1EEE,
    0x5592540F, 0xB40D9B1C, 0x3E056329, 0xDF9AAC3A,
    0x83153A43, 0x628AF550, 0xE8820D65, 0x091DC276,
    0x5AD2990E, 0xBB4D561D, 0x3145AE28, 0xD0DA613B,
    0x8C55F742, 0x6DCA3851, 0xE7C2C064, 0x065D0F77,
    0x5F754596, 0xBEEA8A85, 0x34E272B0, 0xD57DBDA3,
    0x89F22BDA, 0x686DE4C9, 0xE2651CFC, 0x03FAD3EF,
    0x4452AA0C, 0xA5CD651F, 0x2FC59D2A, 0xCE5A5239,
    0x92D5C440, 0x734A0B53, 0xF942F366, 0x18DD3C75,
    0x41F57694, 0xA06AB987, 0x2A6241B2, 0xCBFD8EA1,
    0x977218D8, 0x76EDD7CB, 0xFCE52FFE, 0x1D7AE0ED,
    0x4EB5BB95, 0xAF2A7486, 0x25228CB3, 0xC4BD43A0,
    0x9832D5D9, 0x79AD1ACA, 0xF3A5E2FF, 0x123A2DEC,
    0x4B12670D, 0xAA8DA81E, 0x2085502B, 0xC11A9F38,
    0x9D950941, 0x7C0AC652, 0xF6023E67, 0x179DF174,
    0x78FBCC08, 0x9964031B, 0x136CFB2E, 0xF2F3343D,
    0xAE7CA244, 0x4FE36D57, 0xC5EB9562, 0x24745A71,
    0x7D5C1090, 0x9CC3DF83, 0x16CB27B6, 0xF754E8A5,
    0xABDB7EDC, 0x4A44B1CF, 0xC04C49FA, 0x21D386E9,
    0x721CDD91, 0x93831282, 0x198BEAB7, 0xF81425A4,
    0xA49BB3DD, 0x45047CCE, 0xCF0C84FB, 0x2E934BE8,
    0x77BB0109, 0x9624CE1A, 0x1C2C362F, 0xFDB3F93C,
    0xA13C6F45, 0x40A3A056, 0xCAAB5863, 0x2B349770,
    0x6C9CEE93, 0x8D032180, 0x070BD9B5, 0xE69416A6,
    0xBA1B80DF, 0x5B844FCC, 0xD18CB7F9, 0x301378EA,
    0x693B320B, 0x88A4FD18, 0x02AC052D, 0xE333CA3E,
    0xBFBC5C47, 0x5E239354, 0xD42B6B61, 0x35B4A472,
    0x667BFF0A, 0x87E43019, 0x0DECC82C, 0xEC73073F,
    0xB0FC9146, 0x51635E55, 0xDB6BA660, 0x3AF46973,
    0x63DC2392, 0x8243EC81, 0x084B14B4, 0xE9D4DBA7,
    0xB55B4DDE, 0x54C482CD, 0xDECC7AF8, 0x3F53B5EB
};

/*
 * Multiplication by 1/alpha: 1/alpha * x = (x >> 8) ^ mul_ia[x & 0xFF]
 */
static const ulong32 mul_ia[] = {
    0x00000000, 0x180F40CD, 0x301E8033, 0x2811C0FE,
    0x603CA966, 0x7833E9AB, 0x50222955, 0x482D6998,
    0xC078FBCC, 0xD877BB01, 0xF0667BFF, 0xE8693B32,
    0xA04452AA, 0xB84B1267, 0x905AD299, 0x88559254,
    0x29F05F31, 0x31FF1FFC, 0x19EEDF02, 0x01E19FCF,
    0x49CCF657, 0x51C3B69A, 0x79D27664, 0x61DD36A9,
    0xE988A4FD, 0xF187E430, 0xD99624CE, 0xC1996403,
    0x89B40D9B, 0x91BB4D56, 0xB9AA8DA8, 0xA1A5CD65,
    0x5249BE62, 0x4A46FEAF, 0x62573E51, 0x7A587E9C,
    0x32751704, 0x2A7A57C9, 0x026B9737, 0x1A64D7FA,
    0x923145AE, 0x8A3E0563, 0xA22FC59D, 0xBA208550,
    0xF20DECC8, 0xEA02AC05, 0xC2136CFB, 0xDA1C2C36,
    0x7BB9E153, 0x63B6A19E, 0x4BA76160, 0x53A821AD,
    0x1B854835, 0x038A08F8, 0x2B9BC806, 0x339488CB,
    0xBBC11A9F, 0xA3CE5A52, 0x8BDF9AAC, 0x93D0DA61,
    0xDBFDB3F9, 0xC3F2F334, 0xEBE333CA, 0xF3EC7307,
    0xA492D5C4, 0xBC9D9509, 0x948C55F7, 0x8C83153A,
    0xC4AE7CA2, 0xDCA13C6F, 0xF4B0FC91, 0xECBFBC5C,
    0x64EA2E08, 0x7CE56EC5, 0x54F4AE3B, 0x4CFBEEF6,
    0x04D6876E, 0x1CD9C7A3, 0x34C8075D, 0x2CC74790,
    0x8D628AF5, 0x956DCA38, 0xBD7C0AC6, 0xA5734A0B,
    0xED5E2393, 0xF551635E, 0xDD40A3A0, 0xC54FE36D,
    0x4D1A7139, 0x551531F4, 0x7D04F10A, 0x650BB1C7,
    0x2D26D85F, 0x35299892, 0x1D38586C, 0x053718A1,
    0xF6DB6BA6, 0xEED42B6B, 0xC6C5EB95, 0xDECAAB58,
    0x96E7C2C0, 0x8EE8820D, 0xA6F942F3, 0xBEF6023E,
    0x36A3906A, 0x2EACD0A7, 0x06BD1059, 0x1EB25094,
    0x569F390C, 0x4E9079C1, 0x6681B93F, 0x7E8EF9F2,
    0xDF2B3497, 0xC724745A, 0xEF35B4A4, 0xF73AF469,
    0xBF179DF1, 0xA718DD3C, 0x8F091DC2, 0x97065D0F,
    0x1F53CF5B, 0x075C8F96, 0x2F4D4F68, 0x37420FA5,
    0x7F6F663D, 0x676026F0, 0x4F71E60E, 0x577EA6C3,
    0xE18D0321, 0xF98243EC, 0xD1938312, 0xC99CC3DF,
    0x81B1AA47, 0x99BEEA8A, 0xB1AF2A74, 0xA9A06AB9,
    0x21F5F8ED, 0x39FAB820, 0x11EB78DE, 0x09E43813,
    0x41C9518B, 0x59C61146, 0x71D7D1B8, 0x69D89175,
    0xC87D5C10, 0xD0721CDD, 0xF863DC23, 0xE06C9CEE,
    0xA841F576, 0xB04EB5BB, 0x985F7545, 0x80503588,
    0x0805A7DC, 0x100AE711, 0x381B27EF, 0x20146722,
    0x68390EBA, 0x70364E77, 0x58278E89, 0x4028CE44,
    0xB3C4BD43, 0xABCBFD8E, 0x83DA3D70, 0x9BD57DBD,
    0xD3F81425, 0xCBF754E8, 0xE3E69416, 0xFBE9D4DB,
    0x73BC468F, 0x6BB30642, 0x43A2C6BC, 0x5BAD8671,
    0x1380EFE9, 0x0B8FAF24, 0x239E6FDA, 0x3B912F17,
    0x9A34E272, 0x823BA2BF, 0xAA2A6241, 0xB225228C,
    0xFA084B14, 0xE2070BD9, 0xCA16CB27, 0xD2198BEA,
    0x5A4C19BE, 0x42435973, 0x6A52998D, 0x725DD940,
    0x3A70B0D8, 0x227FF015, 0x0A6E30EB, 0x12617026,
    0x451FD6E5, 0x5D109628, 0x750156D6, 0x6D0E161B,
    0x25237F83, 0x3D2C3F4E, 0x153DFFB0, 0x0D32BF7D,
    0x85672D29, 0x9D686DE4, 0xB579AD1A, 0xAD76EDD7,
    0xE55B844F, 0xFD54C482, 0xD545047C, 0xCD4A44B1,
    0x6CEF89D4, 0x74E0C919, 0x5CF109E7, 0x44FE492A,
    0x0CD320B2, 0x14DC607F, 0x3CCDA081, 0x24C2E04C,
    0xAC977218, 0xB49832D5, 0x9C89F22B, 0x8486B2E6,
    0xCCABDB7E, 0xD4A49BB3, 0xFCB55B4D, 0xE4BA1B80,
    0x17566887, 0x0F59284A, 0x2748E8B4, 0x3F47A879,
    0x776AC1E1, 0x6F65812C, 0x477441D2, 0x5F7B011F,
    0xD72E934B, 0xCF21D386, 0xE7301378, 0xFF3F53B5,
    0xB7123A2D, 0xAF1D7AE0, 0x870CBA1E, 0x9F03FAD3,
    0x3EA637B6, 0x26A9777B, 0x0EB8B785, 0x16B7F748,
    0x5E9A9ED0, 0x4695DE1D, 0x6E841EE3, 0x768B5E2E,
    0xFEDECC7A, 0xE6D18CB7, 0xCEC04C49, 0xD6CF0C84,
    0x9EE2651C, 0x86ED25D1, 0xAEFCE52F, 0xB6F3A5E2
};


/*
 * Compute the next block of bits of output stream. This is equivalent
 * to one full rotation of the shift register.
 */
static LTC_INLINE void _sosemanuk_internal(sosemanuk_state *st)
{
    /*
     * MUL_A(x) computes alpha * x (in F_{2^32}).
     * MUL_G(x) computes 1/alpha * x (in F_{2^32}).
     */
#define MUL_A(x)    (T32((x) << 8) ^ mul_a[(x) >> 24])
#define MUL_G(x)    (((x) >> 8) ^ mul_ia[(x) & 0xFF])

    /*
     * This macro computes the special multiplexer, which chooses
     * between "x" and "x xor y", depending on the least significant
     * bit of the control word. We use the C "?:" selection operator
     * (which most compilers know how to optimise) except for Alpha,
     * where the manual sign extension seems to perform equally well
     * with DEC/Compaq/HP compiler, and much better with gcc.
     */
#ifdef __alpha
#define XMUX(c, x, y)   ((((signed int)((c) << 31) >> 31) & (y)) ^ (x))
#else
#define XMUX(c, x, y)   (((c) & 0x1) ? ((x) ^ (y)) : (x))
#endif

    /*
     * FSM() updates the finite state machine.
     */
#define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)   do { \
        ulong32 tt, or1; \
        tt = XMUX(r1, s ## x1, s ## x8); \
        or1 = r1; \
        r1 = T32(r2 + tt); \
        tt = T32(or1 * 0x54655307); \
        r2 = ROLc(tt, 7); \
    } while (0)

    /*
     * LRU updates the shift register; the dropped value is stored
     * in variable "dd".
     */
#define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd)   do { \
        dd = s ## x0; \
        s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ## x9; \
    } while (0)

    /*
     * CC1 stores into variable "ee" the next intermediate word
     * (combination of the new states of the LFSR and the FSM).
     */
#define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee)   do { \
        ee = T32(s ## x9 + r1) ^ r2; \
    } while (0)

    /*
     * STEP computes one internal round. "dd" receives the "s_t"
     * value (dropped from the LFSR) and "ee" gets the value computed
     * from the LFSR and FSM.
     */
#define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee)   do { \
        FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \
        LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \
        CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \
    } while (0)

    /*
     * Apply one Serpent round (with the provided S-box macro), XOR
     * the result with the "v" values, and encode the result into
     * the destination buffer, at the provided offset. The "x*"
     * arguments encode the output permutation of the "S" macro.
     */
#define SRD(S, x0, x1, x2, x3, ooff)   do { \
        S(u0, u1, u2, u3, u4); \
        STORE32L(u ## x0 ^ v0, st->buf + ooff); \
        STORE32L(u ## x1 ^ v1, st->buf + ooff +  4); \
        STORE32L(u ## x2 ^ v2, st->buf + ooff +  8); \
        STORE32L(u ## x3 ^ v3, st->buf + ooff + 12); \
    } while (0)

    ulong32 s00 = st->s00;
    ulong32 s01 = st->s01;
    ulong32 s02 = st->s02;
    ulong32 s03 = st->s03;
    ulong32 s04 = st->s04;
    ulong32 s05 = st->s05;
    ulong32 s06 = st->s06;
    ulong32 s07 = st->s07;
    ulong32 s08 = st->s08;
    ulong32 s09 = st->s09;
    ulong32 r1 = st->r1;
    ulong32 r2 = st->r2;
    ulong32 u0, u1, u2, u3, u4;
    ulong32 v0, v1, v2, v3;

    STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0);
    STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v1, u1);
    STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v2, u2);
    STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v3, u3);
    SRD(S2, 2, 3, 1, 4, 0);
    STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v0, u0);
    STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v1, u1);
    STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v2, u2);
    STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v3, u3);
    SRD(S2, 2, 3, 1, 4, 16);
    STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v0, u0);
    STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v1, u1);
    STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v2, u2);
    STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v3, u3);
    SRD(S2, 2, 3, 1, 4, 32);
    STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v0, u0);
    STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v1, u1);
    STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v2, u2);
    STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v3, u3);
    SRD(S2, 2, 3, 1, 4, 48);
    STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v0, u0);
    STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v1, u1);
    STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v2, u2);
    STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3);
    SRD(S2, 2, 3, 1, 4, 64);

    st->s00 = s00;
    st->s01 = s01;
    st->s02 = s02;
    st->s03 = s03;
    st->s04 = s04;
    st->s05 = s05;
    st->s06 = s06;
    st->s07 = s07;
    st->s08 = s08;
    st->s09 = s09;
    st->r1 = r1;
    st->r2 = r2;
}

/*
 * Combine buffers in1[] and in2[] by XOR, result in out[]. The length
 * is "datalen" (in bytes). Partial overlap of out[] with either in1[]
 * or in2[] is not allowed. Total overlap (out == in1 and/or out == in2)
 * is allowed.
 */
static LTC_INLINE void _xorbuf(const unsigned char *in1, const unsigned char *in2,
    unsigned char *out, unsigned long datalen)
{
    while (datalen -- > 0) {
        *out ++ = *in1 ++ ^ *in2 ++;
    }
}


/*
 * Cipher operation, as a stream cipher: data is read from the "in"
 * buffer, combined by XOR with the stream, and the result is written
 * in the "out" buffer. "in" and "out" must be either equal, or
 * reference distinct buffers (no partial overlap is allowed).
 * @param st       The Sosemanuk state
 * @param in       Data in
 * @param inlen    Length of data in bytes
 * @param out      Data out
 * @return CRYPT_OK on success
 */
int sosemanuk_crypt(sosemanuk_state *st,
                        const unsigned char *in, unsigned long inlen, unsigned char *out)
{
    LTC_ARGCHK(st  != NULL);
    LTC_ARGCHK(in  != NULL);
    LTC_ARGCHK(out != NULL);

    if (st->ptr < (sizeof(st->buf))) {
        unsigned long rlen = (sizeof(st->buf)) - st->ptr;

        if (rlen > inlen) {
            rlen = inlen;
        }
        _xorbuf(st->buf + st->ptr, in, out, rlen);
        in += rlen;
        out += rlen;
        inlen -= rlen;
        st->ptr += rlen;
    }
    while (inlen > 0) {
        _sosemanuk_internal(st);
        if (inlen >= sizeof(st->buf)) {
            _xorbuf(st->buf, in, out, sizeof(st->buf));
            in += sizeof(st->buf);
            out += sizeof(st->buf);
            inlen -= sizeof(st->buf);
        } else {
            _xorbuf(st->buf, in, out, inlen);
            st->ptr = inlen;
            inlen = 0;
        }
    }
    return CRYPT_OK;
}



/*
 * Cipher operation, as a PRNG: the provided output buffer is filled with
 * pseudo-random bytes as output from the stream cipher.
 * @param st       The Sosemanuk state
 * @param out      Data out
 * @param outlen   Length of output in bytes
 * @return CRYPT_OK on success
 */
int sosemanuk_keystream(sosemanuk_state *st, unsigned char *out, unsigned long outlen)
{
   if (outlen == 0) return CRYPT_OK; /* nothing to do */
   LTC_ARGCHK(out != NULL);
   XMEMSET(out, 0, outlen);
   return sosemanuk_crypt(st, out, outlen, out);
}


/*
 * Terminate and clear Sosemanuk key context
 * @param st      The Sosemanuk state
 * @return CRYPT_OK on success
 */
int sosemanuk_done(sosemanuk_state *st)
{
   LTC_ARGCHK(st != NULL);
   XMEMSET(st, 0, sizeof(sosemanuk_state));
   return CRYPT_OK;
}


#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */