Codebase list libdata-stag-perl / HEAD
HEAD

Tree @HEAD (Download .tar.gz)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
NAME
      Data::Stag - Structured Tags datastructures

SYNOPSIS
      # PROCEDURAL USAGE
      use Data::Stag qw(:all);
      $doc = stag_parse($file);
      @persons = stag_find($doc, "person");
      foreach $p (@persons) {
        printf "%s, %s phone: %s\n",
          stag_sget($p, "family_name"),
          stag_sget($p, "given_name"),
          stag_sget($p, "phone_no"),
        ;
      } 

      # OBJECT-ORIENTED USAGE
      use Data::Stag;
      $doc = Data::Stag->parse($file);
      @persons = $doc->find("person");
      foreach $p (@person) {
        printf "%s, %s phone:%s\n",
          $p->sget("family_name"),
          $p->sget("given_name"),
          $p->sget("phone_no"),
        ;
      }

DESCRIPTION
    This module is for manipulating data as hierarchical tag/value pairs
    (Structured TAGs or Simple Tree AGgreggates). These datastructures can
    be represented as nested arrays, which have the advantage of being
    native to perl. A simple example is shown below:

      [ person=> [  [ family_name => $family_name ],
                    [ given_name  => $given_name  ],
                    [ phone_no    => $phone_no    ] ] ],

    the Data::Stag manpage uses a subset of XML for import and export. This
    means the module can also be used as a general XML parser/writer (with
    certain caveats).

    The above set of structured tags can be represented in XML as

      <person>
        <family_name>...</family_name>
        <given_name>...</given_name>
        <phone_no>...</phone_no>
      </person>

    This datastructure can be examined, manipulated and exported using Stag
    functions or methods:

      $document = Data::Stag->parse($file);
      @persons = $document->find('person');
      foreach my $person (@person) {
        $person->set('full_name',
                     $person->sget('given_name') . ' ' .
                     $person->sget('family_name'));
      }

    Advanced querying is performed by passing functions, for example:

      # get all people in dataset with name starting 'A'
      @persons = 
        $document->where('person',
                         sub {shift->sget('family_name') =~ /^A/});

    One of the things that marks this module out against other XML modules
    is this emphasis on a functional approach as an obect-oriented or
    procedural approach.

  PROCEDURAL VS OBJECT-ORIENTED USAGE

    Depending on your preference, this module can be used a set of
    procedural subroutine calls, or as method calls upon Data::Stag objects,
    or both.

    In procedural mode, all the subroutine calls are prefixed "stag_" to
    avoid namespace clashes. The following three calls are equivalent:

      $person = stag_find($doc, "person");
      $person = $doc->find("person");
      $person = $doc->find_person;

    In object mode, you can treat any tree element as if it is an object
    with automatically defined methods for getting/setting the tag values.

  USE OF XML

    Nested arrays can be imported and exported as XML, as well as other
    formats. XML can be slurped into memory all at once (using less memory
    than an equivalent DOM tree), or a simplified SAX style event handling
    model can be used. Similarly, data can be exported all at once, or as a
    series of events.

    Although this module can be used as a general XML tool, it is intended
    primarily as a tool for manipulating hierarchical data using nested
    tag/value pairs.

    By using a simpler subset of XML equivalent to a basic data tree
    structure, we can write simpler, cleaner code. This simplicity comes at
    a price - this module is not very suitable for XML with attributes or
    mixed content.

    All attributes are turned into elements. This means that it will not
    round-trip a piece of xml with attributes in it. For some applications
    this is acceptable, for others it is not.

    Mixed content cannot be represented in a simple tree format, so this is
    also expanded.

    The following piece of XML

      <paragraph id="1">
        example of <bold>mixed</bold>content
      </paragraph>

    gets parsed as if it were actually:

      <paragraph>
        <paragraph-id>1</paragraph-id>
        <paragraph-text>example of</paragraph-text>
        <bold>mixed</bold>
        <paragraph-text>content</paragraph-text>
      </paragraph>

    This module is more suited to dealing with data-oriented documents than
    text-oriented documents.

    It can also be used as part of a SAX-style event generation / handling
    framework - see the Data::Stag::BaseHandler manpage

    Because nested arrays are native to perl, we can specify an XML
    datastructure directly in perl without going through multiple object
    calls.

    For example, instead of the lengthy

      $obj->startTag("record");
      $obj->startTag("field1");
      $obj->characters("foo");
      $obj->endTag("field1");
      $obj->startTag("field2");
      $obj->characters("bar");
      $obj->endTag("field2");
      $obj->end("record");

    We can instead write

      $struct = [ record => [
                  [ field1 => 'foo'],
                  [ field2 => 'bar']]];

   PARSING

    The following example is for parsing out subsections of a tree and
    changing sub-elements

      use Data::Stag qw(:all);
      my $tree = stag_parse($xmlfile);
      my ($subtree) = stag_findnode($tree, $element);
      stag_set($element, $sub_element, $new_val);
      print stag_xml($subtree);

   OBJECT ORIENTED

    The same can be done in a more OO fashion

      use Data::Stag qw(:all);
      my $tree = Data::Stag->parse($xmlfile);
      my ($subtree) = $tree->findnode($element);
      $element->set($sub_element, $new_val);
      print $subtree->xml;

   IN A STREAM

    Rather than parsing in a whole file into memory all at once (which may
    not be suitable for very large files), you can take an event handling
    approach. The easiest way to do this to register which nodes in the file
    you are interested in using the makehandler method. The parser will
    sweep through the file, building objects as it goes, and handing the
    object to a subroutine that you specify.

    For example:

      use Data::Stag;
      # catch the end of 'person' elements
      my $h = Data::Stag->makehandler( person=> sub {
                                                   my ($self, $person) = @_;
                                                   printf "name:%s phone:%s\n",
                                                     $person->get_name,
                                                     $person->get_phone;
                                                   return;   # clear node
                                                    });
      Data::Stag->parse(-handler=>$h,
                        -file=>$f);

    see the Data::Stag::BaseHandler manpage for writing handlers

    See the Stag website at http://stag.sourceforge.net for more examples.

  STRUCTURED TAGS TREE DATA STRUCTURE

    A tree of structured tags is represented as a recursively nested array,
    the elements of the array represent nodes in the tree.

    A node is a name/data pair, that can represent tags and values. A node
    is represented using a reference to an array, where the first element of
    the array is the tagname, or element, and the second element is the data

    This can be visualised as a box:

      +-----------+
      |Name | Data|
      +-----------+

    In perl, we represent this pair as a reference to an array

      [ Name => $Data ]

    The Data can either be a list of child nodes (subtrees), or a data
    value.

    The terminal nodes (leafs of the tree) contain data values; this is
    represented in perl using primitive scalars.

    For example:

      [ Name => 'Fred' ]

    For non-terminal nodes, the Data is a reference to an array, where each
    element of the the array is a new node.

      +-----------+
      |Name | Data|
      +-----------+
              |||   +-----------+
              ||+-->|Name | Data|
              ||    +-----------+
              ||    
              ||    +-----------+
              |+--->|Name | Data|
              |     +-----------+
              |     
              |     +-----------+
              +---->|Name | Data|
                    +-----------+

    In perl this would be:

      [ Name => [
                  [Name1 => $Data1],
                  [Name2 => $Data2],
                  [Name3 => $Data3],
                ]
      ];

    The extra level of nesting is required to be able to store any node in
    the tree using a single variable. This representation has lots of
    advantages over others, eg hashes and mixed hash/array structures.

  MANIPULATION AND QUERYING

    The following example is taken from biology; we have a list of species
    (mouse, human, fly) and a list of genes found in that species. These are
    cross-referenced by an identifier called tax_id. We can do a
    relational-style inner join on this identifier, as follows -

      use Data::Stag qw(:all);
      my $tree =
      Data::Stag->new(
        'db' => [
        [ 'species_set' => [
          [ 'species' => [
            [ 'common_name' => 'house mouse' ],
            [ 'binomial' => 'Mus musculus' ],
            [ 'tax_id' => '10090' ]]],
          [ 'species' => [
            [ 'common_name' => 'fruit fly' ],
            [ 'binomial' => 'Drosophila melanogaster' ],
            [ 'tax_id' => '7227' ]]],
          [ 'species' => [
            [ 'common_name' => 'human' ],
            [ 'binomial' => 'Homo sapiens' ],
            [ 'tax_id' => '9606' ]]]]],
        [ 'gene_set' => [
          [ 'gene' => [
            [ 'symbol' => 'HGNC' ],
            [ 'tax_id' => '9606' ],
            [ 'phenotype' => 'Hemochromatosis' ],
            [ 'phenotype' => 'Porphyria variegata' ],
            [ 'GO_term' => 'iron homeostasis' ],
            [ 'map' => '6p21.3' ]]],
          [ 'gene' => [
            [ 'symbol' => 'Hfe' ],
            [ 'synonym' => 'MR2' ],
            [ 'tax_id' => '10090' ],
            [ 'GO_term' => 'integral membrane protein' ],
            [ 'map' => '13 A2-A4' ]]]]]]
       );

      # inner join of species and gene parts of tree,
      # based on 'tax_id' element
      my $gene_set = $tree->find("gene_set");       # get <gene_set> element
      my $species_set = $tree->find("species_set"); # get <species_set> element
      $gene_set->ijoin("gene", "tax_id", $species_set);   # INNER JOIN

      print "Reorganised data:\n";
      print $gene_set->xml;

      # find all genes starting with letter 'H' in where species/common_name=human
      my @genes =
        $gene_set->where('gene',
                         sub { my $g = shift;
                               $g->get_symbol =~ /^H/ &&
                               $g->findval("common_name") eq ('human')});

      print "Human genes beginning 'H'\n";
      print $_->xml foreach @genes;

  S-Expression (Lisp) representation

    The data represented using this module can be represented as Lisp-style
    S-Expressions.

    See the Data::Stag::SxprParser manpage and the Data::Stag::SxprWriter
    manpage

    If we execute this code on the XML from the example above

      $stag = Data::Stag->parse($xmlfile);
      print $stag->sxpr;

    The following S-Expression will be printed:

      '(db
        (species_set
          (species
            (common_name "house mouse")
            (binomial "Mus musculus")
            (tax_id "10090"))
          (species
            (common_name "fruit fly")
            (binomial "Drosophila melanogaster")
            (tax_id "7227"))
          (species
            (common_name "human")
            (binomial "Homo sapiens")
            (tax_id "9606")))
        (gene_set
          (gene
            (symbol "HGNC")
            (tax_id "9606")
            (phenotype "Hemochromatosis")
            (phenotype "Porphyria variegata")
            (GO_term "iron homeostasis")
            (map
              (cytological
                (chromosome "6")
                (band "p21.3"))))
          (gene
            (symbol "Hfe")
            (synonym "MR2")
            (tax_id "10090")
            (GO_term "integral membrane protein")))
        (similarity_set
          (pair
            (symbol "HGNC")
            (symbol "Hfe"))
          (pair
            (symbol "WNT3A")
            (symbol "Wnt3a"))))

   TIPS FOR EMACS USERS AND LISP PROGRAMMERS

    If you use emacs, you can save this as a file with the ".el" suffix and
    get syntax highlighting for editing this file. Quotes around the
    terminal node data items are optional.

    If you know emacs lisp or any other lisp, this also turns out to be a
    very nice language for manipulating these datastructures. Try copying
    and pasting the above s-expression to the emacs scratch buffer and
    playing with it in lisp.

  INDENTED TEXT REPRESENTATION

    Data::Stag has its own text format for writing data trees. Again, this
    is only possible because we are working with a subset of XML (no
    attributes, no mixed elements). The data structure above can be written
    as follows -

      db:
        species_set:
          species:
            common_name: house mouse
            binomial: Mus musculus
            tax_id: 10090
          species:
            common_name: fruit fly
            binomial: Drosophila melanogaster
            tax_id: 7227
          species:
            common_name: human
            binomial: Homo sapiens
            tax_id: 9606
        gene_set:
          gene:
            symbol: HGNC
            tax_id: 9606
            phenotype: Hemochromatosis
            phenotype: Porphyria variegata
            GO_term: iron homeostasis
            map: 6p21.3
          gene:
            symbol: Hfe
            synonym: MR2
            tax_id: 10090
            GO_term: integral membrane protein
            map: 13 A2-A4
        similarity_set:
          pair:
            symbol: HGNC
            symbol: Hfe
          pair:
            symbol: WNT3A
            symbol: Wnt3a

    See the Data::Stag::ITextParser manpage and the Data::Stag::ITextWriter
    manpage

  NESTED ARRAY SPECIFICATION II

    To avoid excessive square bracket usage, you can specify a structure
    like this:

      use Data::Stag qw(:all);
  
      *N = \&stag_new;
      my $tree =
        N(top=>[
                N('personset'=>[
                                N('person'=>[
                                             N('name'=>'davey'),
                                             N('address'=>'here'),
                                             N('description'=>[
                                                               N('hair'=>'green'),
                                                               N('eyes'=>'two'),
                                                               N('teeth'=>5),
                                                              ]
                                              ),
                                             N('pets'=>[
                                                        N('petname'=>'igor'),
                                                        N('petname'=>'ginger'),
                                                       ]
                                              ),
                                                                          
                                            ],
                                 ),
                                N('person'=>[
                                             N('name'=>'shuggy'),
                                             N('address'=>'there'),
                                             N('description'=>[
                                                               N('hair'=>'red'),
                                                               N('eyes'=>'three'),
                                                               N('teeth'=>1),
                                                              ]
                                              ),
                                             N('pets'=>[
                                                        N('petname'=>'thud'),
                                                        N('petname'=>'spud'),
                                                       ]
                                              ),
                                            ]
                                 ),
                               ]
                 ),
                N('animalset'=>[
                                N('animal'=>[
                                             N('name'=>'igor'),
                                             N('class'=>'rat'),
                                             N('description'=>[
                                                               N('fur'=>'white'),
                                                               N('eyes'=>'red'),
                                                               N('teeth'=>50),
                                                              ],
                                              ),
                                            ],
                                 ),
                               ]
                 ),

               ]
         );

      # find all people
      my @persons = stag_find($tree, 'person');

      # write xml for all red haired people
      foreach my $p (@persons) {
        print stag_xml($p)
          if stag_tmatch($p, "hair", "red");
      } ;

      # find all people that have name == shuggy
      my @p =
        stag_qmatch($tree, 
                    "person",
                    "name",
                    "shuggy");

NODES AS DATA OBJECTS
    As well as the methods listed below, a node can be treated as if it is a
    data object of a class determined by the element.

    For example, the following are equivalent.

      $node->get_name;
      $node->get('name');

      $node->set_name('fred');
      $node->set('name', 'fred');

    This is really just syntactic sugar. The autoloaded methods are not
    checked against any schema, although this may be added in future.

STAG METHODS
    All method calls are also available as procedural subroutine calls;
    unless otherwise noted, the subroutine call is the same as the method
    call, but with the string stag_ prefixed to the method name. The first
    argument should be a Data::Stag datastructure.

    To import all subroutines into the current namespace, use this idiom:

      use Data::Stag qw(:all);
      $doc = stag_parse($file);
      @persons = stag_find($doc, 'person');

    If you wish to use this module procedurally, and you are too lazy to
    prefix all calls with stag_, use this idiom:

      use Data::Stag qw(:lazy);
      $doc = parse($file);
      @persons = find($doc, 'person');

    But beware of clashes!

    Most method calls also have a handy short mnemonic. Use of these is
    optional. Software engineering types prefer longer names, in the belief
    that this leads to clearer code. Hacker types prefer shorter names, as
    this requires less keystrokes, and leads to a more compact
    representation of the code. It is expected that if you do use this
    module, then its usage will be fairly ubiquitous within your code, and
    the mnemonics will become familiar, much like the qw and s/ operators in
    perl. As always with perl, the decision is yours.

    Some methods take a single parameter or list of parameters; some have
    large lists of parameters that can be passed in any order. If the
    documentation states:

      Args: [x str], [y int], [z ANY]

    Then the method can be called like this:

      $stag->foo("this is x", 55, $ref);

    or like this:

      $stag->foo(-z=>$ref, -x=>"this is x", -y=>55);

  INITIALIZATION METHODS

   new

           Title: new

            Args: element str, data STAG-DATA
         Returns: Data::Stag node
         Example: $node = stag_new();
         Example: $node = Data::Stag->new;
         Example: $node = Data::Stag->new(person => [[name=>$n], [phone=>$p]]);

    creates a new instance of a Data::Stag node

   stagify (nodify)

           Title: stagify
         Synonym: nodify
            Args: data ARRAY-REF
         Returns: Data::Stag node
         Example: $node = stag_stagify([person => [[name=>$n], [phone=>$p]]]);

    turns a perl array reference into a Data::Stag node.

    similar to new

   parse

           Title: parse

            Args: [file str], [format str], [handler obj], [fh FileHandle]
         Returns: Data::Stag node
         Example: $node = stag_parse($fn);
         Example: $node = stag_parse(-fh=>$fh, -handler=>$h, -errhandler=>$eh);
         Example: $node = Data::Stag->parse(-file=>$fn, -handler=>$myhandler);

    slurps a file or string into a Data::Stag node structure. Will guess the
    format (xml, sxpr, itext) from the suffix if it is not given.

    The format can also be the name of a parsing module, or an actual parser
    object;

    The handler is any object that can take nested Stag events (start_event,
    end_event, evbody) which are generated from the parse. If the handler is
    omitted, all events will be cached and the resulting tree will be
    returned.

    See the Data::Stag::BaseHandler manpage for writing your own handlers

    See the Data::Stag::BaseGenerator manpage for details on parser classes,
    and error handling

   parsestr

           Title: parsestr

            Args: [str str], [format str], [handler obj]
         Returns: Data::Stag node
         Example: $node = stag_parsestr('(a (b (c "1")))');
         Example: $node = Data::Stag->parsestr(-str=>$str, -handler=>$myhandler);

    Similar to parse(), except the first argument is a string

   from

           Title: from

            Args: format str, source str
         Returns: Data::Stag node
         Example: $node = stag_from('xml', $fn);
         Example: $node = stag_from('xmlstr', q[<top><x>1</x></top>]);
         Example: $node = Data::Stag->from($parser, $fn);

    Similar to parse

    slurps a file or string into a Data::Stag node structure.

    The format can also be the name of a parsing module, or an actual parser
    object

   unflatten

           Title: unflatten

            Args: data array
         Returns: Data::Stag node
         Example: $node = stag_unflatten(person=>[name=>$n, phone=>$p, address=>[street=>$s, city=>$c]]);

    Creates a node structure from a semi-flattened representation, in which
    children of a node are represented as a flat list of data rather than a
    list of array references.

    This means a structure can be specified as:

      person=>[name=>$n,
               phone=>$p, 
               address=>[street=>$s, 
                         city=>$c]]

    Instead of:

      [person=>[ [name=>$n],
                 [phone=>$p], 
                 [address=>[ [street=>$s], 
                             [city=>$c] ] ]
               ]
      ]

    The former gets converted into the latter for the internal
    representation

   makehandler

           Title: makehandler

            Args: hash of CODEREFs keyed by element name
                  OR a string containing the name of a module
         Returns: L<Data::Stag::BaseHandler>
         Example: $h = Data::Stag->makehandler(%subs);
         Example: $h = Data::Stag->makehandler("My::FooHandler");

    This creates a Stag event handler. The argument is a hash of subroutines
    keyed by element/node name. After each node is fired by the
    parser/generator, the subroutine is called, passing the handler object
    and the stag node as arguments. whatever the subroutine returns is
    placed back into the tree

    For example, for a a parser/generator that fires events with the
    following tree form

      <person>
        <name>foo</name>
        ...
      </person>

    we can create a handler that writes person/name like this:

      $h = Data::Stag->makehandler(
                                   person => sub { my ($self,$stag) = @_;
                                                   print $stag->name;
                                                   return $stag; # dont change tree
                                                 });
      $stag = Data::Stag->parse(-str=>"(...)", -handler=>$h)

    See the Data::Stag::BaseHandler manpage for details on handlers

   getformathandler

           Title: getformathandler

            Args: format str OR L<Data::Stag::BaseHandler>
         Returns: L<Data::Stag::BaseHandler>
         Example: $h = Data::Stag->getformathandler('xml');
                  $h->file("my.xml");
                  Data::Stag->parse(-fn=>$fn, -handler=>$h);

    Creates a Stag event handler - this handler can be passed to an event
    generator / parser. Built in handlers include:

    xml Generates xml tags from events

    sxpr
        Generates S-Expressions from events

    itext
        Generates indented text from events

    All the above are kinds of the Data::Stag::Writer manpage

   chainhandler

           Title: chainhandler

            Args: blocked events - str or str[]
                  initial handler - handler object
                  final handler - handler object
         Returns: 
         Example: $h = Data::Stag->chainhandler('foo', $processor, 'xml')

    chains handlers together - for example, you may want to make transforms
    on an event stream, and then pass the event stream to another handler -
    for example, and xml handler

      $processor = Data::Stag->makehandler(
                                           a => sub { my ($self,$stag) = @_;
                                                      $stag->set_foo("bar");
                                                      return $stag
                                                    },
                                           b => sub { my ($self,$stag) = @_;
                                                      $stag->set_blah("eek");
                                                      return $stag
                                                    },
                                           );
      $chainh = Data::Stag->chainhandler(['a', 'b'], $processor, 'xml');
      $stag = Data::Stag->parse(-str=>"(...)", -handler=>$chainh)

    chains together two handlers (see also the script stag-handle.pl)

  RECURSIVE SEARCHING

   find (f)

           Title: find
         Synonym: f

            Args: element str
         Returns: node[] or ANY
         Example: @persons = stag_find($struct, 'person');
         Example: @persons = $struct->find('person');

    recursively searches tree for all elements of the given type, and
    returns all nodes or data elements found.

    if the element found is a non-terminal node, will return the node if the
    element found is a terminal (leaf) node, will return the data value

    the element argument can be a path

      @names = $struct->find('department/person/name');

    will find name in the nested structure below:

      (department
       (person
        (name "foo")))

   findnode (fn)

           Title: findnode
         Synonym: fn

            Args: element str
         Returns: node[]
         Example: @persons = stag_findnode($struct, 'person');
         Example: @persons = $struct->findnode('person');

    recursively searches tree for all elements of the given type, and
    returns all nodes found.

    paths can also be used (see find)

   findval (fv)

           Title: findval
         Synonym: fv

            Args: element str
         Returns: ANY[] or ANY
         Example: @names = stag_findval($struct, 'name');
         Example: @names = $struct->findval('name');
         Example: $firstname = $struct->findval('name');

    recursively searches tree for all elements of the given type, and
    returns all data values found. the data values could be primitive
    scalars or nodes.

    paths can also be used (see find)

   sfindval (sfv)

           Title: sfindval
         Synonym: sfv

            Args: element str
         Returns: ANY
         Example: $name = stag_sfindval($struct, 'name');
         Example: $name = $struct->sfindval('name');

    as findval, but returns the first value found

    paths can also be used (see find)

   findvallist (fvl)

           Title: findvallist
         Synonym: fvl

            Args: element str[]
         Returns: ANY[]
         Example: ($name, $phone) = stag_findvallist($personstruct, 'name', 'phone');
         Example: ($name, $phone) = $personstruct->findvallist('name', 'phone');

    recursively searches tree for all elements in the list

    DEPRECATED

  DATA ACCESSOR METHODS

    these allow getting and setting of elements directly underneath the
    current one

   get (g)

           Title: get
         Synonym: g

            Args: element str
          Return: node[] or ANY
         Example: $name = $person->get('name');
         Example: @phone_nos = $person->get('phone_no');

    gets the value of the named sub-element

    if the sub-element is a non-terminal, will return a node(s) if the
    sub-element is a terminal (leaf) it will return the data value(s)

    the examples above would work on a data structure like this:

      [person => [ [name => 'fred'],
                   [phone_no => '1-800-111-2222'],
                   [phone_no => '1-415-555-5555']]]

    will return an array or single value depending on the context

    [equivalent to findval(), except that only direct children (as opposed
    to all descendents) are checked]

    paths can also be used, like this:

     @phones_nos = $struct->get('person/phone_no')

   sget (sg)

           Title: sget
         Synonym: sg

            Args: element str
          Return: ANY
         Example: $name = $person->sget('name');
         Example: $phone = $person->sget('phone_no');
         Example: $phone = $person->sget('department/person/name');

    as get but always returns a single value

    [equivalent to sfindval(), except that only direct children (as opposed
    to all descendents) are checked]

   getl (gl getlist)

           Title: gl
         Synonym: getl
         Synonym: getlist

            Args: element str[]
          Return: node[] or ANY[]
         Example: ($name, @phone) = $person->getl('name', 'phone_no');

    returns the data values for a list of sub-elements of a node

    [equivalent to findvallist(), except that only direct children (as
    opposed to all descendents) are checked]

   getn (gn getnode)

           Title: getn
         Synonym: gn
         Synonym: getnode

            Args: element str
          Return: node[]
         Example: $namestruct = $person->getn('name');
         Example: @pstructs = $person->getn('phone_no');

    as get but returns the whole node rather than just the data value

    [equivalent to findnode(), except that only direct children (as opposed
    to all descendents) are checked]

   sgetmap (sgm)

           Title: sgetmap
         Synonym: sgm

            Args: hash
          Return: hash
         Example: %h = $person->sgetmap('social-security-no'=>'id', 
                                        'name'              =>'label',
                                        'job'               =>0,
                                        'address'           =>'location');

    returns a hash of key/val pairs based on the values of the data values
    of the subnodes in the current element; keys are mapped according to the
    hash passed (a value of '' or 0 will map an identical key/val).

    no multivalued data elements are allowed

   set (s)

           Title: set
         Synonym: s

            Args: element str, datavalue ANY (list)
          Return: ANY
         Example: $person->set('name', 'fred');    # single val
         Example: $person->set('phone_no', $cellphone, $homephone);

    sets the data value of an element for any node. if the element is
    multivalued, all the old values will be replaced with the new ones
    specified.

    ordering will be preserved, unless the element specified does not exist,
    in which case, the new tag/value pair will be placed at the end.

    for example, if we have a stag node $person

      person:
        name: shuggy
        job:  bus driver

    if we do this

      $person->set('name', ());

    we will end up with

      person:
        job:  bus driver

    then if we do this

      $person->set('name', 'shuggy');

    the 'name' node will be placed as the last attribute

      person:
        job:  bus driver
        name: shuggy

    You can also use magic methods, for example

      $person->set_name('shuggy');
      $person->set_job('bus driver', 'poet');
      print $person->itext;

    will print

      person:
        name: shuggy
        job:  bus driver
        job:  poet

    note that if the datavalue is a non-terminal node as opposed to a
    primitive value, then you have to do it like this:

      $people  = Data::Stag->new(people=>[
                                          [person=>[[name=>'Sherlock Holmes']]],
                                          [person=>[[name=>'Moriarty']]],
                                         ]);
      $address = Data::Stag->new(address=>[
                                           [address_line=>"221B Baker Street"],
                                           [city=>"London"],
                                           [country=>"Great Britain"]]);
      ($person) = $people->qmatch('person', (name => "Sherlock Holmes"));
      $person->set("address", $address->data);

   unset (u)

           Title: unset
         Synonym: u

            Args: element str, datavalue ANY
          Return: ANY
         Example: $person->unset('name');
         Example: $person->unset('phone_no');

    prunes all nodes of the specified element from the current node

    You can use magic methods, like this

      $person->unset_name;
      $person->unset_phone_no;

   free

           Title: free
         Synonym: u

            Args: 
          Return: 
         Example: $person->free;

    removes all data from a node. If that node is a subnode of another node,
    it is removed altogether

    for instance, if we had the data below:

      <person>
        <name>fred</name>
        <address>
        ..
        </address>
      </person>

    and called

      $person->get_address->free

    then the person node would look like this:

      <person>
        <name>fred</name>
      </person>

   add (a)

           Title: add
         Synonym: a

            Args: element str, datavalues ANY[]
                  OR
                  Data::Stag
          Return: ANY
         Example: $person->add('phone_no', $cellphone, $homephone);
         Example: $person->add_phone_no('1-555-555-5555');
         Example: $dataset->add($person)

    adds a datavalue or list of datavalues. appends if already existing,
    creates new element value pairs if not already existing.

    if the argument is a stag node, it will add this node under the current
    one

   element (e name)

           Title: element
         Synonym: e
         Synonym: name

            Args:
          Return: element str
         Example: $element = $struct->element

    returns the element name of the current node.

    This is illustrated in the different representation formats below

    sxpr
          (element "data")

        or

          (element
           (sub_element "..."))

    xml
          <element>data</element>

        or

          <element>
            <sub_element>...</sub_element>
          </element>

    perl
          [element => $data ]

        or

          [element => [
                        [sub_element => "..." ]]]

    itext
          element: data

        or

          element:
            sub_element: ...

   kids (k children)

           Title: kids
         Synonym: k
         Synonym: children

            Args:
          Return: ANY or ANY[]
         Example: @nodes = $person->kids
         Example: $name = $namestruct->kids

    returns the data value(s) of the current node; if it is a terminal node,
    returns a single value which is the data. if it is non-terminal, returns
    an array of nodes

   addkid (ak addchild)

           Title: addkid
         Synonym: ak
         Synonym: addchild

            Args: kid node
          Return: ANY
         Example: $person->addkid('job', $job);

    adds a new child node to a non-terminal node, after all the existing
    child nodes

   subnodes

           Title: subnodes

            Args: 
          Return: ANY[]
         Example: @nodes = $person->subnodes

    returns the non-terminal data value(s) of the current node;

  QUERYING AND ADVANCED DATA MANIPULATION

   ijoin (j)

           Title: ijoin
         Synonym: j
         Synonym: ij

            Args: element str, key str, data Node
          Return: undef

    does a relational style inner join - see previous example in this doc

    key can either be a single node name that must be shared (analagous to
    SQL INNER JOIN .. USING), or a key1=key2 equivalence relation (analagous
    to SQL INNER JOIN ... ON)

   qmatch (qm)

           Title: qmatch
         Synonym: qm

            Args: return-element str, match-element str, match-value str
          Return: node[]
         Example: @persons = $s->qmatch('person', 'name', 'fred');
         Example: @persons = $s->qmatch('person', (job=>'bus driver'));

    queries the node tree for all elements that satisfy the specified
    key=val match - see previous example in this doc

    for those inclined to thinking relationally, this can be thought of as a
    query that returns a stag object:

      SELECT <return-element> FROM <stag-node> WHERE <match-element> = <match-value>

    this always returns an array; this means that calling in a scalar
    context will return the number of elements; for example

      $n = $s->qmatch('person', (name=>'fred'));

    the value of $n will be equal to the number of persons called fred

   tmatch (tm)

           Title: tmatch
         Synonym: tm

            Args: element str, value str
          Return: bool
         Example: @persons = grep {$_->tmatch('name', 'fred')} @persons

    returns true if the the value of the specified element matches - see
    previous example in this doc

   tmatchhash (tmh)

           Title: tmatchhash
         Synonym: tmh

            Args: match hashref
          Return: bool
         Example: @persons = grep {$_->tmatchhash({name=>'fred', hair_colour=>'green'})} @persons

    returns true if the node matches a set of constraints, specified as
    hash.

   tmatchnode (tmn)

           Title: tmatchnode
         Synonym: tmn

            Args: match node
          Return: bool
         Example: @persons = grep {$_->tmatchnode([person=>[[name=>'fred'], [hair_colour=>'green']]])} @persons

    returns true if the node matches a set of constraints, specified as node

   cmatch (cm)

           Title: cmatch
         Synonym: cm

            Args: element str, value str
          Return: bool
         Example: $n_freds = $personset->cmatch('name', 'fred');

    counts the number of matches

   where (w)

           Title: where
         Synonym: w

            Args: element str, test CODE
          Return: Node[]
         Example: @rich_persons = $data->where('person', sub {shift->get_salary > 100000});

    the tree is queried for all elements of the specified type that satisfy
    the coderef (must return a boolean)

      my @rich_dog_or_cat_owners =
        $data->where('person',
                     sub {my $p = shift;
                          $p->get_salary > 100000 &&
                          $p->where('pet',
                                    sub {shift->get_type =~ /(dog|cat)/})});

   iterate (i)

           Title: iterate
         Synonym: i

            Args: CODE
          Return: Node[]
         Example: $data->iterate(sub {
                                     my $stag = shift;
                                     my $parent = shift;
                                     if ($stag->element eq 'pet') {
                                         $parent->set_pet_name($stag->get_name);
                                     }
                                 });

    iterates through whole tree calling the specified subroutine.

    the first arg passed to the subroutine is the stag node representing the
    tree at that point; the second arg is for the parent.

    for instance, the example code above would turn this

      (person
       (name "jim")
       (pet
        (name "fluffy")))

    into this

      (person
       (name "jim")
       (pet_name "fluffy")
       (pet
        (name "fluffy")))

  MISCELLANEOUS METHODS

   duplicate (d)

           Title: duplicate
         Synonym: d

            Args:
          Return: Node
         Example: $node2 = $node->duplicate;

    does a deep copy of a stag structure

   isanode

           Title: isanode

            Args:
          Return: bool
         Example: if (stag_isanode($node)) { ... }

   hash

           Title: hash

            Args:
          Return: hash
         Example: $h = $node->hash;

    turns a tree into a hash. all data values will be arrayrefs

   pairs

           Title: pairs

    turns a tree into a hash. all data values will be scalar (IMPORTANT:
    this means duplicate values will be lost)

   write

           Title: write

            Args: filename str, format str[optional]
          Return:
         Example: $node->write("myfile.xml");
         Example: $node->write("myfile", "itext");

    will try and guess the format from the extension if not specified

   xml

           Title: xml

            Args: filename str, format str[optional]
          Return:
         Example: $node->write("myfile.xml");
         Example: $node->write("myfile", "itext");

            Args:
          Return: xml str
         Example: print $node->xml;

  XML METHODS

   sax

           Title: sax

            Args: saxhandler SAX-CLASS
          Return:
         Example: $node->sax($mysaxhandler);

    turns a tree into a series of SAX events

   xpath (xp tree2xpath)

           Title: xpath
         Synonym: xp
         Synonym: tree2xpath

            Args:
          Return: xpath object
         Example: $xp = $node->xpath; $q = $xp->find($xpathquerystr);

   xpquery (xpq xpathquery)

           Title: xpquery
         Synonym: xpq
         Synonym: xpathquery

            Args: xpathquery str
          Return: Node[]
         Example: @nodes = $node->xqp($xpathquerystr);

STAG SCRIPTS
    The following scripts come with the stag module

    stag-autoschema.pl
        writes the implicit stag-schema for a stag file

    stag-db.pl
        persistent storage and retrieval for stag data (xml, sxpr, itext)

    stag-diff.pl
        finds the difference between two stag files

    stag-drawtree.pl
        draws a stag file (xml, itext, sxpr) as a PNG diagram

    stag-filter.pl
        filters a stag file (xml, itext, sxpr) for nodes of interest

    stag-findsubtree.pl
        finds nodes in a stag file

    stag-flatten.pl
        turns stag data into a flat table

    stag-grep.pl
        filters a stag file (xml, itext, sxpr) for nodes of interest

    stag-handle.pl
        streams a stag file through a handler into a writer

    stag-join.pl
        joins two stag files together based around common key

    stag-mogrify.pl
        mangle stag files

    stag-parse.pl
        parses a file and fires events (e.g. sxpr to xml)

    stag-query.pl
        aggregare queries

    stag-split.pl
        splits a stag file (xml, itext, sxpr) into multiple files

    stag-splitter.pl
        splits a stag file into multiple files

    stag-view.pl
        draws an expandable Tk tree diagram showing stag data

    To get more documentation, type

      stag_<script> -h

BUGS
    none known so far, possibly quite a few undocumented features!

    Not a bug, but the underlying default datastructure of nested arrays is
    more heavyweight than it needs to be. More lightweight implementations
    are possible. Some time I will write a C implementation.

WEBSITE
    http://stag.sourceforge.net

WEBSITE
    http://stag.sourceforge.net

AUTHOR
    Chris Mungall <cjm AT fruitfly DOT org>

COPYRIGHT
    Copyright (c) 2004 Chris Mungall

    This module is free software. You may distribute this module under the
    same terms as perl itself