Codebase list mozc / 7306a9d converter / nbest_generator.cc
7306a9d

Tree @7306a9d (Download .tar.gz)

nbest_generator.cc @7306a9draw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// Copyright 2010-2012, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "converter/nbest_generator.h"

#include <string>

#include "base/base.h"
#include "base/singleton.h"
#include "converter/candidate_filter.h"
#include "converter/connector_interface.h"
#include "converter/lattice.h"
#include "converter/segmenter_interface.h"
#include "converter/segmenter.h"
#include "converter/segments.h"
#include "dictionary/pos_matcher.h"

namespace mozc {

const int kFreeListSize = 512;
const int kCostDiff     = 3453;

NBestGenerator::NBestGenerator()
    : freelist_(kFreeListSize), filter_(NULL),
      begin_node_(NULL), end_node_(NULL),
      connector_(ConnectorFactory::GetConnector()),
      segmenter_(Singleton<Segmenter>::get()),
      lattice_(NULL),
      viterbi_result_checked_(false),
      is_prediction_(false) {}

NBestGenerator::NBestGenerator(const SegmenterInterface *segmenter)
    : freelist_(kFreeListSize), filter_(NULL),
      begin_node_(NULL), end_node_(NULL),
      connector_(ConnectorFactory::GetConnector()),
      segmenter_(segmenter),
      lattice_(NULL),
      viterbi_result_checked_(false),
      is_prediction_(false) {}

NBestGenerator::~NBestGenerator() {}

void NBestGenerator::Init(const Node *begin_node, const Node *end_node,
                          const Lattice *lattice,
                          bool is_prediction) {
  Reset();

  begin_node_ = begin_node;
  end_node_ = end_node;
  lattice_ = lattice;
  is_prediction_ = is_prediction;

  if (lattice_ == NULL || !lattice_->has_lattice()) {
    LOG(ERROR) << "lattice is not available";
    return;
  }

  for (Node *node = lattice_->begin_nodes(end_node_->begin_pos);
       node != NULL; node = node->bnext) {
    if (node == end_node_ ||
        (node->lid != end_node_->lid &&
         node->cost - end_node_->cost <= kCostDiff &&
         node->prev != end_node_->prev)) {
      QueueElement *eos = freelist_.Alloc();
      DCHECK(eos);
      eos->node = node;
      eos->next = NULL;
      eos->fx = node->cost;
      eos->gx = 0;
      eos->structure_gx = 0;
      eos->w_gx = 0;
      agenda_->push(eos);
    }
  }
}

void NBestGenerator::Reset() {
  agenda_.reset(new Agenda);
  filter_.reset(new CandidateFilter);
  freelist_.Free();
  viterbi_result_checked_ = false;
  is_prediction_ = false;
}

void NBestGenerator::MakeCandidate(Segment::Candidate *candidate,
                                   int32 cost, int32 structure_cost,
                                   int32 wcost,
                                   const vector<const Node *> nodes) const {
  CHECK(!nodes.empty());

  bool has_constrained_node = false;
  bool is_functional = false;

  candidate->Init();
  candidate->lid = nodes.front()->lid;
  candidate->rid = nodes.back()->rid;
  candidate->cost = cost;
  candidate->structure_cost = structure_cost;
  candidate->wcost = wcost;

  for (size_t i = 0; i < nodes.size(); ++i) {
    const Node *node = nodes[i];
    DCHECK(node != NULL);
    if (node->constrained_prev != NULL ||
        (node->next != NULL &&
         node->next->constrained_prev == node)) {
      has_constrained_node = true;
    }
    if (!is_functional && !POSMatcher::IsFunctional(node->lid)) {
      candidate->content_value += node->value;
      candidate->content_key += node->key;
    } else {
      is_functional = true;
    }

    candidate->key += node->key;
    candidate->value += node->value;
    if (node->attributes & Node::SPELLING_CORRECTION) {
      candidate->attributes |= Segment::Candidate::SPELLING_CORRECTION;
    }
    if (node->attributes & Node::NO_VARIANTS_EXPANSION) {
      candidate->attributes |= Segment::Candidate::NO_VARIANTS_EXPANSION;
    }
    if (node->attributes & Node::USER_DICTIONARY) {
      candidate->attributes |= Segment::Candidate::USER_DICTIONARY;
    }
  }

  if (candidate->content_value.empty() ||
      candidate->content_key.empty()) {
    candidate->content_value = candidate->value;
    candidate->content_key = candidate->key;
  }

  // If result has constrained_node, set CONTEXT_SENSITIVE.
  // If a node has constrained node, the node is generated by
  //  a) compound node and resegmented via personal name resegmentation
  //  b) compound-based reranking.
  if (has_constrained_node) {
    candidate->attributes |= Segment::Candidate::CONTEXT_SENSITIVE;
  }
}

bool NBestGenerator::Next(Segment::Candidate *candidate,
                          Segments::RequestType request_type) {
  if (lattice_ == NULL || !lattice_->has_lattice()) {
    LOG(ERROR) << "Must create lattice in advance";
    return false;
  }

  // |cost| and |structure_cost| are calculated as follows:
  //
  // Example:
  // |left_node| => |node1| => |node2| => |node3| => |right_node|.
  // |node1| .. |node2| consists of a candidate.
  //
  // cost = (left_node->cost - begin_node_->cost) +
  //        trans(left_node, node1) + node1->wcost +
  //        trans(node1,     node2) + node2->wcost +
  //        trans(node2,     node3) + node3->wcost +
  //        trans(node3, rigt_node) +
  //        (right_node->cost - end_node_->cost)
  // structure_cost = trans(node1, node2) + trans(node2, node3);
  // wcost = node1->wcost +
  //        trans(node1,     node2) + node2->wcost +
  //        trans(node2,     node3) + node3->wcost
  //
  // Here (left_node->cost - begin_node_->cost) and
  //      (right_node->cost - end_node->cost) act as an approximation
  // of marginalized costs of the candidate |node1| .. |node3|.
  // "marginalized cost" means that how likely the left_node or right_node
  // are selected by taking the all paths encoded in the lattice.
  // These approximated costs are exactly 0 when taking Viterbi-best
  // path.

  // Insert Viterbi best result here to make sure that
  // the top result is Viterbi best result.
  if (!viterbi_result_checked_) {
    vector<const Node *> nodes;
    int total_wcost = 0;
    for (const Node *node = begin_node_->next;
         node != end_node_; node = node->next) {
      nodes.push_back(node);
      if (node != begin_node_->next) {
        total_wcost += node->wcost;
      }
    }
    DCHECK(!nodes.empty());

    const int cost = end_node_->cost -
        begin_node_->cost - end_node_->wcost;
    const int structure_cost = end_node_->prev->cost -
        begin_node_->next->cost - total_wcost;
    const int wcost = end_node_->prev->cost -
        begin_node_->next->cost + begin_node_->next->wcost;

    MakeCandidate(candidate, cost, structure_cost, wcost, nodes);
    if (request_type == Segments::SUGGESTION) {
      candidate->attributes |= Segment::Candidate::REALTIME_CONVERSION;
    }

    // Use CandiadteFilter so that filter is initialized with the
    // Viterbi-best path.
    viterbi_result_checked_ = true;
    switch (filter_->FilterCandidate(candidate, nodes)) {
      case CandidateFilter::GOOD_CANDIDATE:
        return true;
      case CandidateFilter::STOP_ENUMERATION:
        return false;
        // Viterbi best result was tried to be inserted but reverted.
      case CandidateFilter::BAD_CANDIDATE:
      default:
        // do nothing
        break;
    }
  }

  const int KMaxTrial = 500;
  int num_trials = 0;

  while (!agenda_->empty()) {
    const QueueElement *top = agenda_->top();
    DCHECK(top);
    agenda_->pop();
    const Node *rnode = top->node;
    CHECK(rnode);

    if (num_trials++ > KMaxTrial) {   // too many trials
      VLOG(2) <<  "too many trials: " << num_trials;
      return false;
    }

    // reached to the goal.
    if (rnode->end_pos == begin_node_->end_pos) {
      vector<const Node *> nodes;
      for (const QueueElement *elm = top->next;
           elm->next != NULL; elm = elm->next) {
        nodes.push_back(elm->node);
      }
      CHECK(!nodes.empty());

      MakeCandidate(candidate, top->gx, top->structure_gx, top->w_gx, nodes);

      switch (filter_->FilterCandidate(candidate, nodes)) {
        case CandidateFilter::GOOD_CANDIDATE:
          return true;
        case CandidateFilter::STOP_ENUMERATION:
          return false;
        case CandidateFilter::BAD_CANDIDATE:
        default:
          break;
          // do nothing
      }
    } else {
      const QueueElement *best_left_elm = NULL;
      const bool is_right_edge = rnode->begin_pos == end_node_->begin_pos;
      const bool is_left_edge = rnode->begin_pos == begin_node_->end_pos;

      for (Node *lnode = lattice_->end_nodes(rnode->begin_pos);
           lnode != NULL; lnode = lnode->enext) {
        // is_edge is true if current lnode/rnode has same boundary as
        // begin/end node regardless of its value.
        DCHECK(!(is_right_edge && is_left_edge));

        const bool is_edge = (is_right_edge || is_left_edge);

        // is_boundary is true if there is a grammer-based boundary
        // between lnode and rnode
        const bool is_boundary = (lnode->node_type == Node::HIS_NODE ||
                                  segmenter_->IsBoundary(lnode, rnode,
                                                         is_prediction_));

        // is_valid_boudnary is true if the word connection from
        // lnode to rnode has a gramatically correct relation.
        const bool is_valid_boundary =
            (lnode->node_type == Node::CON_NODE ||
             rnode->node_type == Node::CON_NODE ||
             (rnode->attributes & Node::WEAK_CONNECTED) ||
             (is_edge && is_boundary) ||   // on the edge, have a boudnary.
             (!is_boundary && !is_edge));  // not on the edge, not the case.

        // is_valid_cost is true if the left node is valid
        // in terms of cost. if left_node is left edge, there
        // is a cost-based constraint.
        const bool is_valid_cost =
            (!is_left_edge ||
             (is_left_edge && (begin_node_->cost - lnode->cost) <= kCostDiff));

        // is_invalid_position is true if the lnode's location is invalid
        //  1.   |<-- begin_node_-->|
        //           |<--lnode-->|    <== exceeds begin_node.
        //  2.   |<-- begin_node_-->|
        //                      |<--lnode-->|  <== overlapped.
        const bool is_valid_position =
             !(lnode->end_pos < begin_node_->end_pos ||     // case(1)
               (lnode->begin_pos < begin_node_->end_pos &&  // case(2)
                begin_node_->end_pos < lnode->end_pos));

        // can_expand_more is true if we can expand candidates from
        // |rnode| to |lnode|.
        const bool can_expand_more  =
            (is_valid_boundary && is_valid_cost && is_valid_position);

        if (can_expand_more) {
          const int transition_cost = GetTransitionCost(lnode, rnode);

          // How likely the costs get increased after expanding rnode.
          int cost_diff = 0;
          int structure_cost_diff = 0;
          int wcost_diff = 0;

          if (is_right_edge) {
            // use |rnode->cost - end_node_->cost| is an approximation
            // of marginalized word cost.
            cost_diff = transition_cost + (rnode->cost - end_node_->cost);
            structure_cost_diff = 0;
            wcost_diff = 0;
          } else if (is_left_edge) {
            // use |lnode->cost - begin_node_->cost| is an approximation
            // of marginalized word cost.
            cost_diff = (lnode->cost - begin_node_->cost) +
                transition_cost + rnode->wcost;
            structure_cost_diff = 0;
            wcost_diff = rnode->wcost;
          } else {
            // use rnode->wcost.
            cost_diff = transition_cost + rnode->wcost;
            structure_cost_diff = transition_cost;
            wcost_diff = transition_cost + rnode->wcost;
          }

          if (rnode->attributes & Node::WEAK_CONNECTED) {
            const int kWeakConnectedPenalty = 3453;   // log prob of 1/1000
            cost_diff += kWeakConnectedPenalty;
            structure_cost_diff += kWeakConnectedPenalty / 2;
            wcost_diff += kWeakConnectedPenalty / 2;
          }

          QueueElement *elm = freelist_.Alloc();
          DCHECK(elm);

          elm->node = lnode;
          elm->gx = cost_diff + top->gx;
          elm->structure_gx = structure_cost_diff + top->structure_gx;
          elm->w_gx = wcost_diff + top->w_gx;

          // |lnode->cost| is heuristics function of A* search, h(x).
          // After Viterbi search, we already know an exact value of h(x).
          elm->fx = lnode->cost + elm->gx;
          elm->next = top;

          if (is_left_edge) {
            // We only need to only 1 left node here.
            // Even if expand all left nodes, all the |value| part should
            // be identical. Here, we simply user the best left edge node.
            // This hack reduces the number of redundant calls of pop().
            if (best_left_elm == NULL || best_left_elm->fx > elm->fx) {
              best_left_elm = elm;
            }
          } else {
            agenda_->push(elm);
          }
        }
      }

      if (best_left_elm != NULL) {
        agenda_->push(best_left_elm);
      }
    }
  }

  return false;
}

int NBestGenerator::GetTransitionCost(const Node *lnode,
                                      const Node *rnode) const {
  const int kInvalidPenaltyCost = 100000;
  if (rnode->constrained_prev != NULL && lnode != rnode->constrained_prev) {
    return kInvalidPenaltyCost;
  }
  return connector_->GetTransitionCost(lnode->rid, rnode->lid);
}
}  // namespace mozc