Codebase list openssl / 40e48e5
Elliptic curve scalar multiplication with timing attack defenses Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com> Co-authored-by: Cesar Pereida Garcia <cesar.pereidagarcia@tut.fi> Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6009) Billy Brumley authored 6 years ago Matt Caswell committed 6 years ago
2 changed file(s) with 195 addition(s) and 0 deletion(s). Raw diff Collapse all Expand all
737737 t = (a->top ^ b->top) & condition;
738738 a->top ^= t;
739739 b->top ^= t;
740
741 t = (a->neg ^ b->neg) & condition;
742 a->neg ^= t;
743 b->neg ^= t;
744
745 /*
746 * cannot just arbitrarily swap flags.
747 * The way a->d is allocated etc.
748 * BN_FLG_MALLOCED, BN_FLG_STATIC_DATA, ...
749 */
750 t = (a->flags ^ b->flags) & condition & BN_FLG_CONSTTIME;
751 a->flags ^= t;
752 b->flags ^= t;
740753
741754 #define BN_CONSTTIME_SWAP(ind) \
742755 do { \
100100 OPENSSL_free(pre);
101101 }
102102
103 #define EC_POINT_set_flags(P, flags) do { \
104 BN_set_flags((P)->X, (flags)); \
105 BN_set_flags((P)->Y, (flags)); \
106 BN_set_flags((P)->Z, (flags)); \
107 } while(0)
108
109 /*
110 * This functions computes (in constant time) a point multiplication over the
111 * EC group.
112 *
113 * It performs either a fixed scalar point multiplication
114 * (scalar * generator)
115 * when point is NULL, or a generic scalar point multiplication
116 * (scalar * point)
117 * when point is not NULL.
118 *
119 * scalar should be in the range [0,n) otherwise all constant time bets are off.
120 *
121 * NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
122 * which of course are not constant time themselves.
123 *
124 * The product is stored in r.
125 *
126 * Returns 1 on success, 0 otherwise.
127 */
128 static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
129 const EC_POINT *point, BN_CTX *ctx)
130 {
131 int i, order_bits, group_top, kbit, pbit, Z_is_one, ret;
132 ret = 0;
133 EC_POINT *s = NULL;
134 BIGNUM *k = NULL;
135 BIGNUM *lambda = NULL;
136 BN_CTX *new_ctx = NULL;
137
138 if (ctx == NULL)
139 if ((ctx = new_ctx = BN_CTX_secure_new()) == NULL)
140 return 0;
141
142 if ((group->order == NULL) || (group->field == NULL))
143 goto err;
144
145 order_bits = BN_num_bits(group->order);
146
147 s = EC_POINT_new(group);
148 if (s == NULL)
149 goto err;
150
151 if (point == NULL) {
152 if (group->generator == NULL)
153 goto err;
154 if (!EC_POINT_copy(s, group->generator))
155 goto err;
156 } else {
157 if (!EC_POINT_copy(s, point))
158 goto err;
159 }
160
161 EC_POINT_set_flags(s, BN_FLG_CONSTTIME);
162
163 BN_CTX_start(ctx);
164 lambda = BN_CTX_get(ctx);
165 k = BN_CTX_get(ctx);
166 if (k == NULL)
167 goto err;
168
169 /*
170 * Group orders are often on a word boundary.
171 * So when we pad the scalar, some timing diff might
172 * pop if it needs to be expanded due to carries.
173 * So expand ahead of time.
174 */
175 group_top = bn_get_top(group->order);
176 if ((bn_wexpand(k, group_top + 1) == NULL)
177 || (bn_wexpand(lambda, group_top + 1) == NULL))
178 goto err;
179
180 if (!BN_copy(k, scalar))
181 goto err;
182
183 BN_set_flags(k, BN_FLG_CONSTTIME);
184
185 if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) {
186 /*
187 * this is an unusual input, and we don't guarantee
188 * constant-timeness
189 */
190 if(!BN_nnmod(k, k, group->order, ctx))
191 goto err;
192 }
193
194 if (!BN_add(lambda, k, group->order))
195 goto err;
196 BN_set_flags(lambda, BN_FLG_CONSTTIME);
197 if (!BN_add(k, lambda, group->order))
198 goto err;
199 /*
200 * lambda := scalar + order
201 * k := scalar + 2*order
202 */
203 kbit = BN_is_bit_set(lambda, order_bits);
204 BN_consttime_swap(kbit, k, lambda, group_top + 1);
205
206 group_top = bn_get_top(group->field);
207 if ((bn_wexpand(s->X, group_top) == NULL)
208 || (bn_wexpand(s->Y, group_top) == NULL)
209 || (bn_wexpand(s->Z, group_top) == NULL)
210 || (bn_wexpand(r->X, group_top) == NULL)
211 || (bn_wexpand(r->Y, group_top) == NULL)
212 || (bn_wexpand(r->Z, group_top) == NULL))
213 goto err;
214
215 /* top bit is a 1, in a fixed pos */
216 if (!EC_POINT_copy(r, s))
217 goto err;
218
219 EC_POINT_set_flags(r, BN_FLG_CONSTTIME);
220
221 if (!EC_POINT_dbl(group, s, s, ctx))
222 goto err;
223
224 pbit = 0;
225
226 #define EC_POINT_CSWAP(c, a, b, w, t) do { \
227 BN_consttime_swap(c, (a)->X, (b)->X, w); \
228 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
229 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
230 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
231 (a)->Z_is_one ^= (t); \
232 (b)->Z_is_one ^= (t); \
233 } while(0)
234
235 for (i = order_bits - 1; i >= 0; i--) {
236 kbit = BN_is_bit_set(k, i) ^ pbit;
237 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
238 if (!EC_POINT_add(group, s, r, s, ctx))
239 goto err;
240 if (!EC_POINT_dbl(group, r, r, ctx))
241 goto err;
242 /*
243 * pbit logic merges this cswap with that of the
244 * next iteration
245 */
246 pbit ^= kbit;
247 }
248 /* one final cswap to move the right value into r */
249 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
250 #undef EC_POINT_CSWAP
251
252 ret = 1;
253
254 err:
255 EC_POINT_free(s);
256 BN_CTX_end(ctx);
257 BN_CTX_free(new_ctx);
258
259 return ret;
260 }
261 #undef EC_POINT_set_flags
262
103263 /*
104264 * TODO: table should be optimised for the wNAF-based implementation,
105265 * sometimes smaller windows will give better performance (thus the
125285 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
126286 BN_CTX *ctx)
127287 {
288 if ((scalar != NULL) && (num == 0)) {
289 /* In this case we want to compute scalar * GeneratorPoint:
290 * this codepath is reached most prominently by (ephemeral) key
291 * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
292 * ECDH keygen/first half), where the scalar is always secret.
293 * This is why we ignore if BN_FLG_CONSTTIME is actually set and we
294 * always call the constant time version.
295 */
296 return ec_mul_consttime(group, r, scalar, NULL, ctx);
297 }
298
299 if ((scalar == NULL) && (num == 1)) {
300 /* In this case we want to compute scalar * GenericPoint:
301 * this codepath is reached most prominently by the second half of
302 * ECDH, where the secret scalar is multiplied by the peer's public
303 * point.
304 * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
305 * actually set and we always call the constant time version.
306 */
307 return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
308 }
309
128310 BN_CTX *new_ctx = NULL;
129311 const EC_POINT *generator = NULL;
130312 EC_POINT *tmp = NULL;