Package list prokka / fresh-snapshots/main
fresh-snapshots/main

Tree @fresh-snapshots/main (Download .tar.gz)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
[![Build Status](https://travis-ci.org/tseemann/prokka.svg?branch=master)](https://travis-ci.org/tseemann/prokka)
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
[![DOI:10.1093/bioinformatics/btu153](https://zenodo.org/badge/DOI/10.1093/bioinformatics/btu153.svg)](https://doi.org/10.1093/bioinformatics/btu153)
![Don't judge me](https://img.shields.io/badge/Language-Perl_5-steelblue.svg)

# Prokka: rapid prokaryotic genome annotation  

## Introduction

Whole genome annotation is the process of identifying features of interest
in a set of genomic DNA sequences, and labelling them with useful
information. Prokka is a software tool to annotate bacterial, archaeal and
viral genomes quickly and produce standards-compliant output files.

## Installation

### Bioconda
If you use [Conda](https://conda.io/docs/install/quick.html)
you can use the [Bioconda channel](https://bioconda.github.io/):
```
conda install -c conda-forge -c bioconda -c defaults prokka
```

### Brew
If you are using the [MacOS Brew](http://brew.sh/) 
or [LinuxBrew](http://brew.sh/linuxbrew/) packaging system:
```
brew install brewsci/bio/prokka
```

### Docker
Maintained by https://hub.docker.com/u/staphb
```

docker pull staphb/prokka:latest
docker run staphb/prokka:latest prokka -h
```

### Singularity
```
singularity build prokka.sif docker://staphb/prokka:latest
singularity exec prokka.sif prokka -h
```

### Ubuntu/Debian/Mint
```
sudo apt-get install libdatetime-perl libxml-simple-perl libdigest-md5-perl git default-jre bioperl
sudo cpan Bio::Perl
git clone https://github.com/tseemann/prokka.git $HOME/prokka
$HOME/prokka/bin/prokka --setupdb
```

### Centos/Fedora/RHEL
```
sudo yum install git perl-Time-Piece perl-XML-Simple perl-Digest-MD5 perl-App-cpanminus git java perl-CPAN perl-Module-Build
sudo cpanm Bio::Perl
git clone https://github.com/tseemann/prokka.git $HOME/prokka
$HOME/prokka/bin/prokka --setupdb
```

### MacOS
```
sudo cpan Time::Piece XML::Simple Digest::MD5 Bio::Perl
git clone https://github.com/tseemann/prokka.git $HOME/prokka
$HOME/prokka/bin/prokka --setupdb
```

## Test

* Type `prokka` and it should output its help screen.
* Type `prokka --version` and you should see an output like `prokka 1.x`
* Type `prokka --listdb` and it will show you what databases it has installed to use.

## Invoking Prokka

### Beginner
```
# Vanilla (but with free toppings)
% prokka contigs.fa

# Look for a folder called PROKKA_yyyymmdd (today's date) and look at stats
% cat PROKKA_yyyymmdd/*.txt
```

### Moderate
```
# Choose the names of the output files
% prokka --outdir mydir --prefix mygenome contigs.fa

# Visualize it in Artemis
% art mydir/mygenome.gff
```

### Specialist
```
# Have curated genomes I want to use to annotate from
% prokka --proteins MG1655.gbk --outdir mutant --prefix K12_mut contigs.fa

# Look at tabular features
% less -S mutant/K12_mut.tsv
```

### Expert
```
# It's not just for bacteria, people
% prokka --kingdom Archaea --outdir mydir --genus Pyrococcus --locustag PYCC

# Search for your favourite gene
% exonerate --bestn 1 zetatoxin.fasta mydir/PYCC_06072012.faa | less
```

### Wizard
```
# Watch and learn
% prokka --outdir mydir --locustag EHEC --proteins NewToxins.faa --evalue 0.001 --gram neg --addgenes contigs.fa

# Check to see if anything went really wrong
% less mydir/EHEC_06072012.err

# Add final details using Sequin
% sequin mydir/EHEC_0607201.sqn
```

### NCBI Genbank submitter
```
# Register your BioProject (e.g. PRJNA123456) and your locus_tag prefix (e.g. EHEC) first!
% prokka --compliant --centre UoN --outdir PRJNA123456 --locustag EHEC --prefix EHEC-Chr1 contigs.fa

# Check to see if anything went really wrong
% less PRJNA123456/EHEC-Chr1.err

# Add final details using Sequin
% sequin PRJNA123456/EHEC-Chr1.sqn
```

### European Nucleotide Archive (ENA) submitter

```
# Register your BioProject (e.g. PRJEB12345) and your locus_tag (e.g. EHEC) prefix first!
% prokka --compliant --centre UoN --outdir PRJEB12345 --locustag EHEC --prefix EHEC-Chr1 contigs.fa

# Check to see if anything went really wrong
% less PRJNA123456/EHEC-Chr1.err

# Install and run Sanger Pathogen group's Prokka GFF3 to EMBL converter
# available from https://github.com/sanger-pathogens/gff3toembl
# Find the closest NCBI taxonomy id (e.g. 562 for Escherichia coli)
% gff3_to_embl -i "Submitter, A." \
    -m "Escherichia coli EHEC annotated using Prokka." \
    -g linear -c PROK -n 11 -f PRJEB12345/EHEC-Chr1.embl \
    "Escherichia coli" 562 PRJEB12345 "Escherichia coli strain EHEC" PRJEB12345/EHEC-Chr1.gff

# Download and run the latest EMBL validator prior to submitting the EMBL flat file
# from http://central.maven.org/maven2/uk/ac/ebi/ena/sequence/embl-api-validator/
# which at the time of writing is v1.1.129
% curl -L -O http://central.maven.org/maven2/uk/ac/ebi/ena/sequence/embl-api-validator/1.1.129/embl-api-validator-1.1.129.jar
% java -jar embl-api-validator-1.1.129.jar -r PRJEB12345/EHEC-Chr1.embl

# Compress the file ready to upload to ENA, and calculate MD5 checksum
% gzip PRJEB12345/EHEC-Chr1.embl
% md5sum PRJEB12345/EHEC-Chr1.embl.gz
```

### Crazy Person
```
# No stinking Perl script is going to control me
% prokka \
        --outdir $HOME/genomes/Ec_POO247 --force \
        --prefix Ec_POO247 --addgenes --locustag ECPOOp \
        --increment 10 --gffver 2 --centre CDC  --compliant \
        --genus Escherichia --species coli --strain POO247 --plasmid pECPOO247 \
        --kingdom Bacteria --gcode 11 --usegenus \
        --proteins /opt/prokka/db/trusted/Ecocyc-17.6 \
        --evalue 1e-9 --rfam \
        plasmid-closed.fna
```

## Output Files

| Extension | Description |
| --------- | ----------- |
| .gff | This is the master annotation in GFF3 format, containing both sequences and annotations. It can be viewed directly in Artemis or IGV. |
| .gbk | This is a standard Genbank file derived from the master .gff. If the input to prokka was a multi-FASTA, then this will be a multi-Genbank, with one record for each sequence. |
| .fna | Nucleotide FASTA file of the input contig sequences. |
| .faa | Protein FASTA file of the translated CDS sequences. |
| .ffn | Nucleotide FASTA file of all the prediction transcripts (CDS, rRNA, tRNA, tmRNA, misc_RNA) |
| .sqn | An ASN1 format "Sequin" file for submission to Genbank. It needs to be edited to set the correct taxonomy, authors, related publication etc. |
| .fsa | Nucleotide FASTA file of the input contig sequences, used by "tbl2asn" to create the .sqn file. It is mostly the same as the .fna file, but with extra Sequin tags in the sequence description lines. |
| .tbl | Feature Table file, used by "tbl2asn" to create the .sqn file. |
| .err | Unacceptable annotations - the NCBI discrepancy report. |
| .log | Contains all the output that Prokka produced during its run. This is a record of what settings you used, even if the --quiet option was enabled. |
| .txt | Statistics relating to the annotated features found. |
| .tsv | Tab-separated file of all features: locus_tag,ftype,len_bp,gene,EC_number,COG,product |

## Command line options

    General:
      --help            This help
      --version         Print version and exit
      --citation        Print citation for referencing Prokka
      --quiet           No screen output (default OFF)
      --debug           Debug mode: keep all temporary files (default OFF)
    Setup:
      --listdb          List all configured databases
      --setupdb         Index all installed databases
      --cleandb         Remove all database indices
      --depends         List all software dependencies
    Outputs:
      --outdir [X]      Output folder [auto] (default '')
      --force           Force overwriting existing output folder (default OFF)
      --prefix [X]      Filename output prefix [auto] (default '')
      --addgenes        Add 'gene' features for each 'CDS' feature (default OFF)
      --locustag [X]    Locus tag prefix (default 'PROKKA')
      --increment [N]   Locus tag counter increment (default '1')
      --gffver [N]      GFF version (default '3')
      --compliant       Force Genbank/ENA/DDJB compliance: --genes --mincontiglen 200 --centre XXX (default OFF)
      --centre [X]      Sequencing centre ID. (default '')
    Organism details:
      --genus [X]       Genus name (default 'Genus')
      --species [X]     Species name (default 'species')
      --strain [X]      Strain name (default 'strain')
      --plasmid [X]     Plasmid name or identifier (default '')
    Annotations:
      --kingdom [X]     Annotation mode: Archaea|Bacteria|Mitochondria|Viruses (default 'Bacteria')
      --gcode [N]       Genetic code / Translation table (set if --kingdom is set) (default '0')
      --prodigaltf [X]  Prodigal training file (default '')
      --gram [X]        Gram: -/neg +/pos (default '')
      --usegenus        Use genus-specific BLAST databases (needs --genus) (default OFF)
      --proteins [X]    Fasta file of trusted proteins to first annotate from (default '')
      --hmms [X]        Trusted HMM to first annotate from (default '')
      --metagenome      Improve gene predictions for highly fragmented genomes (default OFF)
      --rawproduct      Do not clean up /product annotation (default OFF)
    Computation:
      --fast            Fast mode - skip CDS /product searching (default OFF)
      --cpus [N]        Number of CPUs to use [0=all] (default '8')
      --mincontiglen [N] Minimum contig size [NCBI needs 200] (default '1')
      --evalue [n.n]    Similarity e-value cut-off (default '1e-06')
      --rfam            Enable searching for ncRNAs with Infernal+Rfam (SLOW!) (default '0')
      --norrna          Don't run rRNA search (default OFF)
      --notrna          Don't run tRNA search (default OFF)
      --rnammer         Prefer RNAmmer over Barrnap for rRNA prediction (default OFF)

### Option: --proteins

The `--proteins` option is recommended when you have good quality reference genomes
and want to ensure gene naming is consistent. Some species use specific terminology
which will be often lost if you rely on the default Swiss-Prot database included
with Prokka.

If you have Genbank or Protein FASTA file(s) that you want to annotate genes from
as the first priority, use the `--proteins myfile.gbk`. Please make sure it has a
recognisable file extension like `.gb` or `.gbk` or auto-detect will fail.   The
use of Genbank is recommended over FASTA, because it will provide `/gene` 
and `/EC_number` annotations that a typical `.faa` file will not provide, unless
you have specially formatted it for Prokka.

### Option: --prodigaltf

Instead of letting `prodigal` train its gene model on the contigs you
provide, you can pre-train it on some good closed reference genomes first
using the `prodigal -t` option. Once you've done that, provide `prokka`
the training file using the `--prodgialtf` option.

### Option: --rawproduct

Prokka annotates proteins by using sequence similarity to other proteins in its database,
or the databses the user provides via `--proteins`. By default, Prokka tries to "cleans" the
`/product` names to ensure they are compliant with Genbank/ENA conventions. 
Some of the main things it does is:

* set vague names to `hypothetical protein`
* consistifies terms like `possible`, `probable`, `predicted`, ... to `putative`
* removes EC, COG and locus_tag identifiers 

Full details can be found in the `cleanup_product()` function in the `prokka` script.
If you feel your annotations are being ruined, try using the `--rawproduct` option, 
and please [file an issue](https://github.com/tseemann/prokka/issues/) if you find
an example of where it is "behaving badly" and I will fix it.

## Databases

### The Core (BLAST+) Databases

Prokka uses a variety of databases when trying to assign function to the
predicted CDS features.  It takes a hierarchial approach to make it fast.  
A small, core set of well characterized proteins are first searched using
BLAST+.  This combination of small database and fast search typically
completes about 70% of the workload.  Then a series of slower but more
sensitive HMM databases are searched using HMMER3.

The three core databases, applied in order, are:

1. [ISfinder](https://isfinder.biotoul.fr/):
Only the tranposase (protein) sequences; the whole transposon is not annotated.

2. [NCBI Bacterial Antimicrobial Resistance Reference Gene Database](https://www.ncbi.nlm.nih.gov/bioproject/313047):
Antimicrobial resistance genes curated by NCBI.

3. [UniProtKB (SwissProt)](https://www.uniprot.org/uniprot/?query=reviewed:yes): 
For each `--kingdom` we include curated proteins with evidence that
(i) from Bacteria (or Archaea or Viruses);
(ii) not be "Fragment" entries;
and (iii) have an evidence level ("PE") of 2 or lower, which
corresponds to experimental mRNA or proteomics evidence.

#### Making a Core Databases

If you want to modify these core databases, the included script
`prokka-uniprot_to_fasta_db`, along with the official `uniprot_sprot.dat`,
can be used to generate a new database to put in `/opt/prokka/db/kingdom/`. 
If you add new ones, the command `prokka --listdb` will show you whether it
has been detected properly.

#### The Genus Databases

:warning: This is no longer recommended. Please use `--proteins` instead.

If you enable `--usegenus` and also provide a Genus via `--genus` then it
will first use a BLAST database which is Genus specific.  Prokka comes with
a set of databases for the most common Bacterial genera; type prokka
`--listdb` to see what they are.

#### Adding a Genus Databases

If you have a set of Genbank files and want to create a new Genus database,
Prokka comes with a tool called `prokka-genbank_to_fasta_db` to help.  For
example, if you had four annotated "Coccus" genomes, you could do the
following:

```
% prokka-genbank_to_fasta_db Coccus1.gbk Coccus2.gbk Coccus3.gbk Coccus4.gbk > Coccus.faa
% cd-hit -i Coccus.faa -o Coccus -T 0 -M 0 -g 1 -s 0.8 -c 0.9
% rm -fv Coccus.faa Coccus.bak.clstr Coccus.clstr
% makeblastdb -dbtype prot -in Coccus
% mv Coccus.p* /path/to/prokka/db/genus/
```
 
### The HMM Databases

Prokka comes with a bunch of HMM libraries for HMMER3. They are mostly
Bacteria-specific.  They are searched after the core and genus databases. 
You can add more simply by putting them in `/opt/prokka/db/hmm`.  Type
`prokka --listdb` to confirm they are recognised.

### FASTA database format

Prokka understands two annotation tag formats, a plain one and a detailed one.

The plain one is a standard FASTA-like line with the ID after the `>` sign, and the protein `/product` 
after the ID (the "description" part of the line):
```
>SeqID product
```

The detailed one consists of a special encoded three-part description line. The parts are the `/EC_number`, 
the `/gene` code, then the `/product` - and they are separated by a special "~~~" sequence:
```
>SeqID EC_number~~~gene~~~product~~~COG
```

Here are some examples. Note that not all parts need to be present, but the "~~~" should still be there:
```
>YP_492693.1 2.1.1.48~~~ermC~~~rRNA adenine N-6-methyltransferase~~~COG1234
MNEKNIKHSQNFITSKHNIDKIMTNIRLNEHDNIFEIGSGKGHFTLELVQRCNFVTAIEI
DHKLCKTTENKLVDHDNFQVLNKDILQFKFPKNQSYKIFGNIPYNISTDIIRKIVF*
>YP_492697.1 ~~~traB~~~transfer complex protein TraB~~~
MIKKFSLTTVYVAFLSIVLSNITLGAENPGPKIEQGLQQVQTFLTGLIVAVGICAGVWIV
LKKLPGIDDPMVKNEMFRGVGMVLAGVAVGAALVWLVPWVYNLFQ*
>YP_492694.1 ~~~~~~transposase~~~
MNYFRYKQFNKDVITVAVGYYLRYALSYRDISEILRGRGVNVHHSTVYRWVQEYAPILYQ
QSINTAKNTLKGIECIYALYKKNRRSLQIYGFSPCHEISIMLAS*
```

The same description lines apply to HMM models, except the "NAME" and "DESC" fields are used:
```
NAME  PRK00001
ACC   PRK00001
DESC  2.1.1.48~~~ermC~~~rRNA adenine N-6-methyltransferase~~~COG1234
LENG  284
```    
    
## FAQ

* __Where does the name "Prokka" come from?__  
Prokka is a contraction of "prokaryotic annotation".  It's also relatively
unique within Google, and also rhymes with a native Australian marsupial
called the quokka.

* __Can I annotate by eukaryote genome with Prokka?__  
No.  Prokka is specifically designed for Bacteria, Archaea and Viruses.  It
can't handle multi-exon gene models; I would recommend using MAKER 2 for
that purpose.

* __Why does Prokka keeps on crashing when it gets to tge "tbl2asn" stage?__  
It seems that the tbl2asn program from NCBI "expires" after 6-12 months, and
refuses to run.  Unfortunately you need to install a newer version which you
can download from [here](http://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/).

* __The hmmscan step seems to hang and do nothing?__      
The problem here is GNU Parallel.  It seems the Debian package for hmmer has
modified it to require the `--gnu` option to behave in the 'default' way. 
There is no clear reason for this.  The only way to restore normal behaviour
is to edit the prokka script and change `parallel` to `parallel --gnu`.

* __Why does prokka fail when it gets to hmmscan?__  
Unfortunately HMMER keeps changing its database format, and they aren't
upward compatible.  If you upgraded HMMER (from 3.0 to 3.1 say) then you
need to "re-press" the files.  This can be done as follows:
```
cd /path/to/prokka/db/hmm
mkdir new
for D in *.hmm ; do hmmconvert $D > new/$D ; done
cd new
for D in *.hmm ; do hmmpress $D ; done
mv * ..
rmdir new
```

* __Why can't I load Prokka .GBK files into Mauve?__  
Mauve uses BioJava to parse GenBank files, and it is very picky about Genbank files. 
It does not like long contig names,
like those from Velvet or Spades. One solution is to use `--centre XXX` 
in Prokka and it will rename all your contigs to be NCBI (and Mauve)
compliant. It does not like the ACCESSION and VERSION strings that Prokka
produces via the "tbl2asn" tool. The following Unix command will fix them:
`egrep -v '^(ACCESSION|VERSION)' prokka.gbk > mauve.gbk`

* __How can I make my GFF not have the contig sequences in it?__
```
sed '/^##FASTA/Q' prokka.gff > nosequence.gff
```

## Bugs

Submit problems or requests to the [Issue Tracker](https://github.com/tseemann/prokka/issues).

## Changes

* Read the [release notes](https://github.com/tseemann/prokka/releases)
* Read the [ChangeLog.txt](https://raw.githubusercontent.com/tseemann/prokka/master/doc/ChangeLog.txt)
* Look at the [Github commits](https://github.com/tseemann/prokka/commits/master)

## Citation

Seemann T.  
*Prokka: rapid prokaryotic genome annotation*  
**Bioinformatics** 2014 Jul 15;30(14):2068-9.
[PMID:24642063](http://www.ncbi.nlm.nih.gov/pubmed/24642063)  

## Dependencies

### Mandatory

* __BioPerl__  
Used for input/output of various file formats  
_Stajich et al, The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002 Oct;12(10):1611-8._

* __GNU Parallel__  
A shell tool for executing jobs in parallel using one or more computers  
_O. Tange, GNU Parallel - The Command-Line Power Tool, ;login: The USENIX Magazine, Feb 2011:42-47._

* __BLAST+__  
Used for similarity searching against protein sequence libraries  
_Camacho C et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009 Dec 15;10:421._

* __Prodigal__  
Finds protein-coding features (CDS)  
_Hyatt D et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010 Mar 8;11:119._

* __TBL2ASN__
Prepare sequence records for Genbank submission
[Tbl2asn home page](https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/)

### Recommended

* __Aragorn__  
Finds transfer RNA features (tRNA)  
_Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004 Jan 2;32(1):11-6._

* __Barrnap__  
Used to predict ribosomal RNA features (rRNA). My licence-free replacement for RNAmmmer.  
_Manuscript under preparation._

* __HMMER3__  
Used for similarity searching against protein family profiles  
_Finn RD et al. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37._

### Optional

* __minced__  
Finds CRISPR arrays
[Minced home page](https://github.com/ctSkennerton/minced)

* __RNAmmer__  
Finds ribosomal RNA features (rRNA)  
_Lagesen K et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100-8._

* __SignalP__  
Finds signal peptide features in CDS (sig_peptide)  
_Petersen TN et al. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011 Sep 29;8(10):785-6._

* __Infernal__  
Used for similarity searching against ncRNA family profiles  
_D. L. Kolbe, S. R. Eddy. Fast Filtering for RNA Homology Search. Bioinformatics, 27:3102-3109, 2011._

# Licence

[GPL v3](https://raw.githubusercontent.com/tseemann/prokka/master/doc/LICENSE.Prokka)

## Author

* Torsten Seemann
* Web: https://tseemann.github.io/
* Twitter: [@torstenseemann](https://twitter.com/torstenseemann)
* Blog: [The Genome Factory](https://thegenomefactory.blogspot.com/)