Package list python-pauvre / 48fb3a80-4788-469c-af50-f9b58e8a05bb/main pauvre / synplot.py
48fb3a80-4788-469c-af50-f9b58e8a05bb/main

Tree @48fb3a80-4788-469c-af50-f9b58e8a05bb/main (Download .tar.gz)

synplot.py @48fb3a80-4788-469c-af50-f9b58e8a05bb/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# pauvre - just a pore plotting package
# Copyright (c) 2016-2018 Darrin T. Schultz. All rights reserved.
#
# This file is part of pauvre.
#
# pauvre is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pauvre is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pauvre.  If not, see <http://www.gnu.org/licenses/>.

# TODO
# import the pauvre rcParams
# Cleanup everything

import pandas as pd
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
import numpy as np
import os
import pauvre.rcparams as rc
from pauvre.functions import GFFParse, print_images, timestamp
from pauvre import gfftools
from pauvre.lsi.lsi import intersection
import progressbar
import platform
import sys
import time
import warnings

# for the shuffling algorithm
from itertools import product

# Biopython stuff
from Bio import SeqIO
import Bio.SubsMat.MatrixInfo as MI

# following this tutorial to install helvetica
# https://github.com/olgabot/sciencemeetproductivity.tumblr.com/blob/master/posts/2012/11/how-to-set-helvetica-as-the-default-sans-serif-font-in.md
global hfont
hfont = {'fontname':'Helvetica'}

import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap, Normalize
import matplotlib.patches as patches

def shuffle_optimize_gffs(args, GFFs):
    """This function takes in a list of GFF objects and reshuffles the
    individual files such that the resulting sequence of GFF files has
    the minimum number of intersections when plotting synteny

    if args.optimum_order, then the program will find the global minimum
    arrangement using the first GFF file as the anchor.

    if not args.optimum_order, then the program will find the local minimum
    shuffle between every input pair of GFF files to plot in the best way possible
    given the input order.

    returns a list of GFF files from which the user can calculate plotting coordinates
    """
    # we use the first-input gff as the topmost sequence,
    #  and then find the best synteny match for the remaining sequences
    shuffled_gffs = []
    if args.optimum_order:
        firstgff = GFFs[0]
        # save the first gff file unadultered
        shuffled_gffs.append(firstgff)
        nextgffs = GFFs[1:]
        while len(nextgffs) > 0:
            obs_list = []
            for i in range(len(nextgffs)):
                # every observation will be stored here as a tuple.
                #  zeroth element is the num intersections with the current gff
                #  first element is the index of nextgffs
                #  second element is the GFF object
                shuffles = nextgffs[i].shuffle()
                for k in range(len(shuffles)):
                    shuf = shuffles[k]
                    coords = firstgff.couple(shuf, this_y = 0, other_y = 1)
                    num_inters = len(intersection(coords))
                    obs_list.append((num_inters, i, shuf))
                    #print(obs_list[-1])
            intersections, gffixs, shufs = zip(*obs_list)
            # get the index of the shuffled gff with the least number of
            #  intersections to the current one against which we are comparing
            #print("intersections", intersections)
            selected_ix = intersections.index(min(intersections))
            # save this gff to shuffled gffs to use later for plotting
            shuffled_gffs.append(shufs[selected_ix])
            # remove the origin of the shuffled gff from nextgffs
            del nextgffs[gffixs[selected_ix]]
            #print("global minimum was {} intersections".format(min(intersections)))
            # now update the firstgff to the latest shuffled one we collected
            firstgff = shufs[selected_ix]
    # plot the gff files in the order in which you input them,
    #  but shuffle them to the order with least intersections
    else:
        # first we need to find the best arrangement by finding the combinations
        #  that share the most unique genes
        genes_series = [GFFs[i].get_unique_genes() for i in range(len(GFFs))]
        combinations_indices = [0]
        remaining_indices = list(range(1, len(GFFs)))
        done = False
        biggest_intersection_index = -1
        biggest_intersection_value = 0
        current_remaining_indices_index = 0
        while not done:
            #get the len of the intersection
            #print("combinations_indices: {}".format(combinations_indices))
            #print("current_remaining_indices_index: {}".format(current_remaining_indices_index))
            #print("remaining_indices[current_remaining_indices_index]: {}".format(remaining_indices[current_remaining_indices_index]))
            #print("genes_series[remaining_indices[current_remaining_indices_index]]: {}".format(genes_series[remaining_indices[current_remaining_indices_index]]))
            this_intersection_value = len(genes_series[combinations_indices[-1]] &\
                                          genes_series[remaining_indices[current_remaining_indices_index]])
            if this_intersection_value > biggest_intersection_value:
                biggest_intersection_value = this_intersection_value
                biggest_intersection_index = current_remaining_indices_index
            if current_remaining_indices_index < len(remaining_indices)-1:
                current_remaining_indices_index += 1
            else:
                combinations_indices.append(remaining_indices[biggest_intersection_index])
                del remaining_indices[biggest_intersection_index]
                biggest_intersection_value = 0
                current_remaining_indices_index = 0
                biggest_intersection_index = -1
            if len(remaining_indices) == 0:
                done = True
        # The best order of genes with the most shared genes
        #I don't know if this is really that useful though since many species will overlap.
        # In a future implementation of this program it might be necessary to do sub-sorting of this list to get the lest number of line intersections
        print("The best gene combination is {}".format(combinations_indices))
        # now we rearrange the GFFs to the best order
        new_GFFs = [GFFs[i] for i in combinations_indices]
        # If we're adding another copy of the top one, add it here before shuffling
        if args.sandwich:
            new_GFFs.append(new_GFFs[0])
        shuffles = [new_GFFs[i].shuffle() for i in range(len(new_GFFs))]
        #print([len(shuffles[i]) for i in range(len(shuffles))])
        cumulative_least_shuffled_value = 999999999999999999999999999999999999
        bar = progressbar.ProgressBar()
        for combination in bar(list(product(*shuffles))):
            num_intersections = []
            #I have no idea what this list comprehension does anymore.
            first_genes = [str(combination[i].features[combination[i].features['featType'].isin(['gene', 'rRNA', 'CDS', 'tRNA'])]['name'].head(n=1)).split()[1] for i in range(len(combination))]
            # skip to the next iteration if all the genes aren't the same
            if args.start_with_aligned_genes and len(set(first_genes)) != 1:
                continue
            for i in range(len(new_GFFs) - 1):
                j = i + 1
                #figure out the best shuffle the next sequence
                coords = combination[i].couple(combination[j], this_y = i, other_y = j)
                num_intersections.append(len(intersection(coords)))
            if sum(num_intersections) < cumulative_least_shuffled_value:
                shuffled_gffs = combination
                cumulative_least_shuffled_value = sum(num_intersections)
                print("\nnew fewest global intersections: {}".format(sum(num_intersections)))
    return shuffled_gffs

def black_colormap():
    zeroone = np.linspace(0, 1, 100)
    colorrange = [(0,0,0,x) for x in zeroone]
    minblosum = min(MI.blosum62.values())
    maxblosum = max(MI.blosum62.values())
    colormap = {i: colorrange[int(translate(i, minblosum, maxblosum, 0, 99))]
                for i in range(minblosum, maxblosum + 1, 1)}
    return colormap

def translate(value, left_min, left_max, right_min, right_max):
    """This code maps values from the left range and interpolates to the
    corresponding range on the right. This is used to translate the amino acid
    substition matrix scores to a scale between 0 and 1 for making alphamaps.

    I don't know if this works if the directionality of the ranges are swapped.
      IE [5, -10] mapped to [0, 1]

    args:
      <value> - the value in [<left_min>:<left_max>] to scale between
                 [<right_min>:<right_max>]
      <left_min> - the 'min' of the left (source) range
      <left_max> - the 'max' of the left (source) range
      <right_min> - the 'min' of the right (target) range
      <right_max>   the 'max' of the right (target) range

    output:
      the <value>(float) scaled between <right_min> and <right_max>
    """
    # Figure out how 'wide' each range is
    left_span = left_max - left_min
    right_span = right_max - right_min

    # Convert the left range into a 0-1 range (float)
    value_scaled = float(value - left_min) / float(left_span)

    # Convert the 0-1 range into a value in the right range.
    return right_min + (value_scaled * right_span)

def _samplename_warning(samplename, filename):
    warnings.warn("""
         There is a sample in your fasta alignments that
         does not match the samplenames from the gff filenames. Please
         rename this samplename to not contain any spaces or underscores.
         IE for sample 'NC016', '>NC_016_-_ND6' will not work but
         '>NC016_-_ND6' will work.

         Erroneous name: {}
                   File: {}""".format(samplename, os.path.basename(filename)))

def _samplelength_warning(samplename, genename, featType, gfflen, alnlen):
    raise Warning("""The length of the protein alignment isn't the same as the
         length in the GFF file for the sample. Maybe you used a sequence in the
         alignment that is different from the annotation source? Check if the
         stop codons are deleted/inserted from either the GFF or alignment. The
         protein alignment length should be 3 less than the gff length if the
         stop codons were included in the gff annotation.

         Another possibility is that the RNA that is generating this error has
         post-transcriptional modifications that complete the stop codon. In
         this case, you can fudge the stop position in the gff file (increase
         the value by one or two) to make the plotting script run.

         Sample name: {}
           feat type: {}
           gene name: {}
          gff length: {}
          aln length: {}""".format(samplename, featType, genename, gfflen, alnlen))

def _nosample_warning(samplename, alngenename, gffnames):
    raise Warning("""One of the gff files doesn't contain a sequence that the
         alignment file indicates should be present. Either the alignment file
         is misnamed or the sequence name in the GFF file is not what you
         intended.

           Sample name: {}
         aln gene name: {}
             gff names: {}""".format(samplename, alngenename, gffnames))

def get_alignments(args):
    """
    this reads in all the alignments from the fasta directory.
    """
    # This is a dict object with key as
    filelist = {os.path.splitext(x)[0]:os.path.join(os.path.abspath(args.aln_dir), x)
                   for x in os.listdir(args.aln_dir)
                   if os.path.splitext(x)[1]}
    print("file list is:")
    print(filelist)
    # one entry in seq_dict is:
    # {seqname: {"featType": featType,
    #            "seqs": {samplename: seq},
    #            "indices": {samplename: indices}}
    seqs_dict = {}
    # go through every gene in the genelist
    for genename in filelist:
        thisFeatType = ""
        seqs_list    = {}
        indices_list = {}
        #print("We found the following samplenames: {}".format(args.samplenames), file = sys.stderr)
        # this block handles reading in the fasta files to interpret the alignments
        for record in SeqIO.parse(filelist[genename], "fasta"):
            # get the sample name and make sure that the sample names match
            samplename = record.id.replace("_", " ").split()[0]
            #print("Looking at sample: {}".format(samplename), file=sys.stderr)
            if samplename not in args.samplenames:
                #if there's a sequence in the fasta that we did not specify
                # in the command, ignore that sequence
                _samplename_warning(samplename, filelist[genename])
            else:
                # first, get the sample features
                samplegff = args.samplenames[samplename].features
                featType = samplegff.loc[samplegff['name'] == genename, 'featType'].to_string().split()[1]
                # now we determine if this is a prot alignment or a nucleotide aln
                if featType in ['gene', 'CDS']:
                    final_seq = "".join([x*3 for x in record.seq])
                elif featType == 'rRNA':
                    final_seq = str(record.seq)
                # we now need to verify that the protein sequence is
                #  the length of the gene in the gff file. Do this by removing
                #  gaps in the alignment
                gfffilt = samplegff.loc[samplegff['name'] == genename, 'width']
                if len(gfffilt) == 0:
                    _nosample_warning(samplename, genename, list(samplegff['name']))
                gfflen = int(gfffilt)
                aln = final_seq.replace("-", "")
                alnlen = len(aln)
                if gfflen != alnlen:
                    _samplelength_warning(samplename, genename, featType, gfflen, alnlen)
                # If we've made it this far without any errors, then incorporate the
                #  indices for each index
                #print("start_index", start_index)
                final_indices = [-1] * len(final_seq)
                # up until the next for loop, here we are determining which
                #  direction to move in. Reverse sequences decrease from the start
                strand = samplegff.loc[samplegff['name'] == genename, 'strand'].to_string().split()[1]
                if strand == '+':
                    direction = 1
                    start_index = int(samplegff.loc[samplegff['name'] == genename, 'start'])
                elif strand == '-':
                    direction = -1
                    start_index = int(samplegff.loc[samplegff['name'] == genename, 'stop'])
                for i in range(len(final_indices)):
                    if final_seq[i] != '-':
                        final_indices[i] = start_index
                        start_index = start_index + (1 * direction)
                seqs_list[samplename] = final_seq
                if args.center_on:
                    center_coord = int(args.samplenames[samplename].features.loc[args.samplenames[samplename].features['name'] == args.center_on, 'center'])
                    indices_list[samplename] = np.array(final_indices) - center_coord
                else:
                    indices_list[samplename] = final_indices
                thisFeatType = featType
        seqs_dict[genename] = {"featType": thisFeatType,
                              "seqs": seqs_list,
                               "indices": indices_list}
    return seqs_dict


def plot_synteny(seq1, ind1, seq2, ind2, y1, y2,
                 featType, matrix, cm, seqname):
    """This function plots all the lines for each"""
    print("PLOTTING SYNTENY")
    myPatches = []
    colormap = {"COX1": '#c0d9ef',
                   "L": '#e8f1df',
                   "I": '#f7dedc',
                 "16S": '#ff2e00',
                 "12S": '#ffc239',
                 "cal": '#ffff54',
                "COX2": "#7fce66",
                 "ND2": "#00ae60",
                "COX3": "#00aeec",
                 "ND1": "#006fbb",
                   "*": "#ffffff",
                   "(": "#ded9c5",
                   "Q": "#ffc294",
                   "?": "#b5a2c4",
                 "ND4": "#968b5a",
                 "ND3": "#00fc65",
                "ND4L": "#00dcf0",
                 "ND6": "#ff994e",
                 "ND5": "#dc31e6",
                   "X": "#d8d8d8",
                   "G": "#abdce7",
                "CYTB": "#ff0059"}

    for i in range(len(seq1)):
        feat1 = seq1[i]
        feat2 = seq2[i]
        if feat1 != '-' and feat2 != '-':
            xs = []
            ys = []
            xs.append(ind1[i]) # top left
            ys.append(y1)
            xs.append(ind1[i] + 1) # top right
            ys.append(y1)
            xs.append(ind2[i] + 1) # bottom right
            ys.append(y2)
            xs.append(ind2[i]) #bottom left
            ys.append(y2)
            xs.append(ind1[i]) #top left
            ys.append(y1)
            alpha = 0.5
            if featType in ['CDS', 'gene']:
                try:
                    val = matrix[(feat1, feat2)]
                except:
                    val = matrix[(feat2, feat1)]
                color = cm[val]
                alpha = color[-1]
            elif featType == 'rRNA':
                if feat1 != feat2:
                    alpha=0
            color = colormap[seqname]
            stack1 = np.column_stack([xs, ys])
            myPatches.append(patches.Polygon(stack1, closed=True,
                                             color = color,
                                             alpha = alpha,
                                             lw=0))
    return myPatches

def synplot(args):
    rc.update_rcParams()
    print(args)
    GFFs = []
    for i in range(len(args.gff_paths)):
        gffpath = args.gff_paths[i]
        species = ""
        if args.gff_labels:
            species = args.gff_labels[i]
        GFFs.append(GFFParse(gffpath, args.stop_codons, species))

    # find the optimum shuffling pattern
    # and add a list of samplenames to the args
    optGFFs = shuffle_optimize_gffs(args, GFFs)
    # Make a sandwich for a circular comparison
    setattr(args, 'samplenames', {gff.samplename:gff for gff in optGFFs})

    # now get the cms and normalize
    #cms, normalize = gen_colormaps()
    cm = black_colormap()

    ## and we get the protein alignment objects
    # {seqname: {"featType": featType,
    #            "seqs": {samplename: seq},
    #            "indices": {samplename: indices}}
    print("getting alignments")
    seqs_dict = get_alignments(args)
    print("done getting alignments")
    print("seqs_dict is:")
    print(seqs_dict)

    # set the figure dimensions
    if args.ratio:
        figWidth = args.ratio[0] + 1
        figHeight = args.ratio[1] + 1
        #set the panel dimensions
        panelWidth = args.ratio[0]
        panelHeight =  args.ratio[1]

    else:
        figWidth = 2.5*4
        figHeight = 5
        #set the panel dimensions
        panelWidth = 2.5 * 3
        panelHeight = 1.75

    figure = plt.figure(figsize=(figWidth,figHeight))


    #find the margins to center the panel in figure
    leftMargin = (figWidth - panelWidth)/2
    bottomMargin = ((figHeight - panelHeight)/2) + 0.25

    panel0=plt.axes([leftMargin/figWidth, #left
                     bottomMargin/figHeight,    #bottom
                     panelWidth/figWidth,   #width
                     panelHeight/figHeight])     #height
    panel0.tick_params(axis='both',which='both',\
                       bottom='on', labelbottom='off',\
                       left='off', labelleft='off', \
                       right='off', labelright='off',\
                       top='off', labeltop='off')
    #turn off some of the axes
    panel0.spines['top'].set_visible(False)
    panel0.spines['right'].set_visible(False)
    panel0.spines['left'].set_visible(False)

    # {seqname: {"featType": featType,
    #            "seqs": {samplename: seq},
    #            "indices": {samplename: indices}}
    allPatches = []
    for seqname in seqs_dict:
        #go through in order
        print(seqname)
        for i in range(0, len(optGFFs) - 1):
            samplei = optGFFs[i].samplename
            samplej = optGFFs[i+1].samplename
            if samplei in seqs_dict[seqname]["seqs"].keys() and\
               samplej in seqs_dict[seqname]["seqs"].keys():
                featType = seqs_dict[seqname]["featType"]
                seq1 = seqs_dict[seqname]["seqs"][samplei]
                ind1 = seqs_dict[seqname]["indices"][samplei]
                seq2 = seqs_dict[seqname]["seqs"][samplej]
                ind2 = seqs_dict[seqname]["indices"][samplej]
                # this is the top one, just leave it at the actual value since
                #  the base of the annotations start on the integer
                y1 = len(optGFFs) - 1 - i
                # this needs to be increased by the bar_thickness (0.9 * track_width in this case, or 0.09)
                y2 = len(optGFFs) - 2 - i
                myPatches = plot_synteny(seq1, ind1, seq2, ind2, y1, y2,
                                         featType, MI.blosum62, cm, seqname)
                for patch in myPatches:
                    allPatches.append(patch)

    #print("len allPatches", len(allPatches))
    # this bit plots the simplified lines in the centers
    ## first we plot all the lines from the centers of matching genes.
    ##  This is temporary. Or maybe it should be a feature
    #verts = []
    #for i in range(len(optGFFs) - 1):
    #    j = i + 1
    #    coords = optGFFs[i].couple(optGFFs[j], this_y = len(optGFFs) - i, other_y = len(optGFFs) - i - 1)
    #    for coord in coords:
    #        verts.append(coord)

    #for vert in verts:
    #    xxyy = list(zip(*vert))
    #    panel0.plot(xxyy[0], xxyy[1])
    # now we plot horizontal lines showing the length of the mitochondrial sequence
    maxseqlen = 0
    # this is a heuristic for trackwidth of what looks good in my experience
    track_multiplier = 0.08
    if args.ratio:
        track_width = track_multiplier * panelWidth
    else:
        #0.032 if only 3
        #0.062 if 6
        track_width = track_multiplier * panelWidth
    for i in range(len(optGFFs)):
        gff = optGFFs[i]
        #print(" - Plotting panels of {}".format(gff), file = sys.stderr)
        x_offset = 0
        #print("   - Detecting if centering is on.".format(gff), file = sys.stderr)
        if args.center_on:
            x_offset = -1 * int(gff.features.loc[gff.features['name'] == args.center_on, 'center'])
            gff = gfftools.x_offset_gff(gff, x_offset)
            #print("     - Centering is on.".format(gff), file = sys.stderr)
        #print("   - Plotting horizontal portions with gffplot_horizontal.".format(gff), file = sys.stderr)
        panel0, patches = gfftools.gffplot_horizontal(
            figure, panel0, args, gff,
            track_width = track_width,
            start_y = len(optGFFs) - i - 1 - ((0.9 * track_width)/2),
            x_offset = x_offset)
        #print("{} patches came out of gffplot_horizontal()".format(len(patches)))
        seq_name = gff.features['sequence'].unique()[0]
        if args.gff_labels:
            seq_name = "$\it{{{0}}}$".format(gff.species)
        panel0.text(0 + x_offset, len(optGFFs) - i - 1 + (0.18/2),
                    seq_name, fontsize = 12,
                    ha='left', va='bottom',
                    color = 'black',
                    zorder = 100)

        if gff.seqlen > maxseqlen:
            maxseqlen = gff.seqlen
        xs = (1 + x_offset, gff.seqlen + x_offset)
        #ys = [len(optGFFs) - i - 1 + (0.09/2)]*2
        ys = [len(optGFFs) - i - 1]*2

        #print("   - Plotting lines.".format(gff), file = sys.stderr)
        panel0.plot(xs, ys, color='black', zorder = -9)
        #print("   - Adding patches.".format(gff), file = sys.stderr)
        #print("Right before adding patches there are {} patches.".format(len(patches)))
        for i in range(len(patches)):
            patch = patches[i]
            allPatches.append(patch)
    for patch in allPatches:
        panel0.add_patch(patch)
    panel0.set_xlabel("position (bp)")

    #panel0.set_xlim([-15000, int(np.ceil(maxseqlen/1000)*1000)])
    panel0.set_ylim([ 0 - ( (track_width/2) * 1.1 ),
                      len(optGFFs) - 1 + ( (track_width/2) * 1.1 )])

    # This removes the text labels from the plot
    labels = [item.get_text() for item in panel0.get_xticklabels()]
    empty_string_labels = ['']*len(labels)
    print(" - Setting tick labels.".format(gff), file = sys.stderr)

    panel0.set_xticklabels(empty_string_labels)

    # Print image(s)
    print(" - Running print_images.".format(gff), file = sys.stderr)
    if args.BASENAME is None:
        file_base = "synteny"
    else:
        file_base = args.BASENAME
    print_images(
        base=file_base,
        image_formats=args.fileform,
        no_timestamp = args.no_timestamp,
        dpi=args.dpi,
        transparent=args.transparent)


def run(args):
    synplot(args)