Package list python-pauvre / debian/latest pauvre / custommargin.py
debian/latest

Tree @debian/latest (Download .tar.gz)

custommargin.py @debian/latestraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# pauvre - just a pore PhD student's plotting package
# Copyright (c) 2016-2017 Darrin T. Schultz. All rights reserved.
#
# This file is part of pauvre.
#
# pauvre is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pauvre is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pauvre.  If not, see <http://www.gnu.org/licenses/>.

import ast
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.patches as mplpatches
from matplotlib.colors import LinearSegmentedColormap
import numpy as np
import pandas as pd
import os.path as opath
from sys import stderr
from pauvre.functions import print_images
from pauvre.marginplot import generate_panel
from pauvre.stats import stats
import pauvre.rcparams as rc
import sys
import logging

# logging
logger = logging.getLogger('pauvre')

def _generate_histogram_bin_patches(panel, bins, bin_values, horizontal=True):
    """This helper method generates the histogram that is added to the panel.

    In this case, horizontal = True applies to the mean quality histogram.
    So, horizontal = False only applies to the length histogram.
    """
    l_width = 0.0
    f_color = (0.5, 0.5, 0.5)
    e_color = (0, 0, 0)
    if horizontal:
        for step in np.arange(0, len(bin_values), 1):
            left = bins[step]
            bottom = 0
            width = bins[step + 1] - bins[step]
            height = bin_values[step]
            hist_rectangle = mplpatches.Rectangle((left, bottom), width, height,
                                                  linewidth=l_width,
                                                  facecolor=f_color,
                                                  edgecolor=e_color)
            panel.add_patch(hist_rectangle)
    else:
        for step in np.arange(0, len(bin_values), 1):
            left = 0
            bottom = bins[step]
            width = bin_values[step]
            height = bins[step + 1] - bins[step]

            hist_rectangle = mplpatches.Rectangle((left, bottom), width, height,
                                                  linewidth=l_width,
                                                  facecolor=f_color,
                                                  edgecolor=e_color)
            panel.add_patch(hist_rectangle)


def generate_histogram(panel, data_list, min_plot_val, max_plot_val,
                       bin_interval, hist_horizontal=True,
                       left_spine=True, bottom_spine=True,
                       top_spine=False, right_spine=False, x_label=None,
                       y_label=None):

    bins = np.arange(0, max_plot_val, bin_interval)

    bin_values, bins2 = np.histogram(data_list, bins)

    # hist_horizontal is used for quality
    if hist_horizontal:
        panel.set_xlim([min_plot_val, max_plot_val])
        panel.set_ylim([0, max(bin_values * 1.1)])
    # and hist_horizontal == Fale is for read length
    else:
        panel.set_xlim([0, max(bin_values * 1.1)])
        panel.set_ylim([min_plot_val, max_plot_val])

    # Generate histogram bin patches, depending on whether we're plotting
    # vertically or horizontally
    _generate_histogram_bin_patches(panel, bins, bin_values, hist_horizontal)

    panel.spines['left'].set_visible(left_spine)
    panel.spines['bottom'].set_visible(bottom_spine)
    panel.spines['top'].set_visible(top_spine)
    panel.spines['right'].set_visible(right_spine)

    if y_label is not None:
        panel.set_ylabel(y_label)
    if x_label is not None:
        panel.set_xlabel(x_label)

def generate_square_map(panel, data_frame, plot_min_y, plot_min_x,
                      plot_max_y, plot_max_x, color,
                      xcol, ycol, **kwargs):
    """This generates the heatmap panels using squares. Everything is
    quantized by ints.
    """
    panel.set_xlim([plot_min_x, plot_max_x])
    panel.set_ylim([plot_min_y, plot_max_y])
    tempdf = data_frame[[xcol, ycol]]
    data_frame = tempdf.astype(int)

    querystring = "{}<={} and {}<={}".format(plot_min_y, ycol, plot_min_x, xcol)
    print(" - Filtering squares with {}".format(querystring))
    square_this = data_frame.query(querystring)

    querystring = "{}<{} and {}<{}".format(ycol, plot_max_y, xcol, plot_max_x)
    print(" - Filtering squares with {}".format(querystring))
    square_this = square_this.query(querystring)

    counts = square_this.groupby([xcol, ycol]).size().reset_index(name='counts')
    for index, row in counts.iterrows():
        x_pos = row[xcol]
        y_pos = row[ycol]
        thiscolor = color(row["counts"]/(counts["counts"].max()))
        rectangle1=mplpatches.Rectangle((x_pos,y_pos),1,1,
                                        linewidth=0,\
                                        facecolor=thiscolor)
        panel.add_patch(rectangle1)

    all_counts = counts["counts"]
    return all_counts

def generate_heat_map(panel, data_frame, plot_min_y, plot_min_x,
                      plot_max_y, plot_max_x, color,
                      xcol, ycol, **kwargs):
    panel.set_xlim([plot_min_x, plot_max_x])
    panel.set_ylim([plot_min_y, plot_max_y])

    querystring = "{}<={} and {}<={}".format(plot_min_y, ycol, plot_min_x, xcol)
    print(" - Filtering hexmap with {}".format(querystring))
    hex_this = data_frame.query(querystring)

    querystring = "{}<{} and {}<{}".format(ycol, plot_max_y, xcol, plot_max_x)
    print(" - Filtering hexmap with {}".format(querystring))
    hex_this = hex_this.query(querystring)

    # This single line controls plotting the hex bins in the panel
    hex_vals = panel.hexbin(hex_this[xcol], hex_this[ycol], gridsize=49,
                            linewidths=0.0, cmap=color)
    for each in panel.spines:
        panel.spines[each].set_visible(False)

    counts = hex_vals.get_array()
    return counts

def generate_legend(panel, counts, color):
    # completely custom for more control
    panel.set_xlim([0, 1])
    panel.set_ylim([0, 1000])
    panel.set_yticks([int(x) for x in np.linspace(0, 1000, 6)])
    panel.set_yticklabels([int(x) for x in np.linspace(0, max(counts), 6)])
    for i in np.arange(0, 1001, 1):
        rgba = color(i / 1001)
        alpha = rgba[-1]
        facec = rgba[0:3]
        hist_rectangle = mplpatches.Rectangle((0, i), 1, 1,
                                              linewidth=0.0,
                                              facecolor=facec,
                                              edgecolor=(0, 0, 0),
                                              alpha=alpha)
        panel.add_patch(hist_rectangle)
    panel.spines['top'].set_visible(False)
    panel.spines['left'].set_visible(False)
    panel.spines['bottom'].set_visible(False)
    panel.yaxis.set_label_position("right")
    panel.set_ylabel('count')

def custommargin(df, **kwargs):
    rc.update_rcParams()

    # 250, 231, 34 light yellow
    # 67, 1, 85
    # R=np.linspace(65/255,1,101)
    # G=np.linspace(0/255, 231/255, 101)
    # B=np.linspace(85/255, 34/255, 101)
    # R=65/255, G=0/255, B=85/255
    Rf = 65 / 255
    Bf = 85 / 255
    pdict = {'red': ((0.0, Rf, Rf),
                     (1.0, Rf, Rf)),
             'green': ((0.0, 0.0, 0.0),
                       (1.0, 0.0, 0.0)),
             'blue': ((0.0, Bf, Bf),
                      (1.0, Bf, Bf)),
             'alpha': ((0.0, 0.0, 0.0),
                       (1.0, 1.0, 1.0))
             }
    # Now we will use this example to illustrate 3 ways of
    # handling custom colormaps.
    # First, the most direct and explicit:
    purple1 = LinearSegmentedColormap('Purple1', pdict)

    # set the figure dimensions
    fig_width = 1.61 * 3
    fig_height = 1 * 3
    fig = plt.figure(figsize=(fig_width, fig_height))

    # set the panel dimensions
    heat_map_panel_width = fig_width * 0.5
    heat_map_panel_height = heat_map_panel_width * 0.62

    # find the margins to center the panel in figure
    fig_left_margin = fig_bottom_margin = (1 / 6)

    # lengthPanel
    y_panel_width = (1 / 8)

    # the color Bar parameters
    legend_panel_width = (1 / 24)

    # define padding
    h_padding = 0.02
    v_padding = 0.05

    # Set whether to include y-axes in histograms
    print(" - Setting panel options.", file = sys.stderr)
    if kwargs["Y_AXES"]:
        y_bottom_spine = True
        y_bottom_tick = True
        y_bottom_label = True
        x_left_spine = True
        x_left_tick = True
        x_left_label = True
        x_y_label = 'Count'
    else:
        y_bottom_spine = False
        y_bottom_tick = False
        y_bottom_label = False
        x_left_spine = False
        x_left_tick = False
        x_left_label = False
        x_y_label = None

    panels = []

    # Quality histogram panel
    print(" - Generating the x-axis panel.", file = sys.stderr)
    x_panel_left = fig_left_margin + y_panel_width + h_padding
    x_panel_width = heat_map_panel_width / fig_width
    x_panel_height = y_panel_width * fig_width / fig_height
    x_panel = generate_panel(x_panel_left,
                                fig_bottom_margin,
                                x_panel_width,
                                x_panel_height,
                                left_tick_param=x_left_tick,
                                label_left_tick_param=x_left_label)
    panels.append(x_panel)

    # y histogram panel
    print(" - Generating the y-axis panel.", file = sys.stderr)
    y_panel_bottom = fig_bottom_margin + x_panel_height + v_padding
    y_panel_height = heat_map_panel_height / fig_height
    y_panel = generate_panel(fig_left_margin,
                                  y_panel_bottom,
                                  y_panel_width,
                                  y_panel_height,
                                  bottom_tick_param=y_bottom_tick,
                                  label_bottom_tick_param=y_bottom_label)
    panels.append(y_panel)

    # Heat map panel
    heat_map_panel_left = fig_left_margin + y_panel_width + h_padding
    heat_map_panel_bottom = fig_bottom_margin + x_panel_height + v_padding
    print(" - Generating the heat map panel.", file = sys.stderr)
    heat_map_panel = generate_panel(heat_map_panel_left,
                                    heat_map_panel_bottom,
                                    heat_map_panel_width / fig_width,
                                    heat_map_panel_height / fig_height,
                                    bottom_tick_param='off',
                                    label_bottom_tick_param='off',
                                    left_tick_param='off',
                                    label_left_tick_param='off')
    panels.append(heat_map_panel)
    heat_map_panel.set_title(kwargs["title"])

    # Legend panel
    print(" - Generating the legend panel.", file = sys.stderr)
    legend_panel_left = fig_left_margin + y_panel_width + \
        heat_map_panel_width / fig_width + h_padding
    legend_panel_bottom = fig_bottom_margin + x_panel_height + v_padding
    legend_panel_height = heat_map_panel_height / fig_height
    legend_panel = generate_panel(legend_panel_left, legend_panel_bottom,
                                  legend_panel_width, legend_panel_height,
                                  bottom_tick_param=False,
                                  label_bottom_tick_param=False,
                                  left_tick_param=False,
                                  label_left_tick_param=False,
                                  right_tick_param=True,
                                  label_right_tick_param=True)
    panels.append(legend_panel)

    #
    # Everything above this is just to set up the panels
    #
    ##################################################################

    # Set max and min viewing window for the xaxis
    if kwargs["plot_max_x"]:
        plot_max_x = kwargs["plot_max_x"]
    else:
        if kwargs["square"]:
            plot_max_x = df[kwargs["xcol"]].max()
        plot_max_x = max(np.ceil(df[kwargs["xcol"]]))
    plot_min_x = kwargs["plot_min_x"]

    # Set x bin sizes
    if kwargs["xbin"]:
        x_bin_interval = kwargs["xbin"]
    else:
        # again, this is just based on what looks good from experience
        x_bin_interval = 1

    # Generate x histogram
    print(" - Generating the x-axis histogram.", file = sys.stderr)
    generate_histogram(panel = x_panel,
                       data_list = df[kwargs['xcol']],
                       min_plot_val = plot_min_x,
                       max_plot_val = plot_max_x,
                       bin_interval = x_bin_interval,
                       hist_horizontal = True,
                       x_label=kwargs['xcol'],
                       y_label=x_y_label,
                       left_spine=x_left_spine)

    # Set max and min viewing window for the y axis
    if kwargs["plot_max_y"]:
        plot_max_y = kwargs["plot_max_y"]
    else:
        if kwargs["square"]:
            plot_max_y = df[kwargs["ycol"]].max()
        else:
            plot_max_y = max(np.ceil(df[kwargs["ycol"]]))

    plot_min_y = kwargs["plot_min_y"]
    # Set y bin sizes
    if kwargs["ybin"]:
        y_bin_interval = kwargs["ybin"]
    else:
        y_bin_interval = 1

    # Generate y histogram
    print(" - Generating the y-axis histogram.", file = sys.stderr)
    generate_histogram(panel = y_panel,
                       data_list = df[kwargs['ycol']],
                       min_plot_val = plot_min_y,
                       max_plot_val = plot_max_y,
                       bin_interval = y_bin_interval,
                       hist_horizontal = False,
                       y_label = kwargs['ycol'],
                       bottom_spine = y_bottom_spine)

    # Generate heat map
    if kwargs["square"]:
        print(" - Generating the square heatmap.", file = sys.stderr)
        counts = generate_square_map(panel = heat_map_panel,
                                   data_frame = df,
                                   plot_min_y = plot_min_y,
                                   plot_min_x = plot_min_x,
                                   plot_max_y = plot_max_y,
                                   plot_max_x = plot_max_x,
                                   color = purple1,
                                   xcol = kwargs["xcol"],
                                   ycol = kwargs["ycol"])
    else:
        print(" - Generating the heatmap.", file = sys.stderr)
        counts = generate_heat_map(panel = heat_map_panel,
                                   data_frame = df,
                                   plot_min_y = plot_min_y,
                                   plot_min_x = plot_min_x,
                                   plot_max_y = plot_max_y,
                                   plot_max_x = plot_max_x,
                                   color = purple1,
                                   xcol = kwargs["xcol"],
                                   ycol = kwargs["ycol"])

    # Generate legend
    print(" - Generating the legend.", file = sys.stderr)
    generate_legend(legend_panel, counts, purple1)

    # inform the user of the plotting window if not quiet mode
    #if not kwargs["QUIET"]:
    #    print("""plotting in the following window:
    #    {0} <= Q-score (x-axis) <= {1}
    #    {2} <= length  (y-axis) <= {3}""".format(
    #        plot_min_x, plot_max_x, min_plot_val, max_plot_val),
    #        file=stderr)

    # Print image(s)
    if kwargs["output_base_name"] is None:
        file_base = "custommargin"
    else:
        file_base = kwargs["output_base_name"]

    print(" - Saving your images", file = sys.stderr)
    print_images(
        base =file_base,
        image_formats=kwargs["fileform"],
        dpi=kwargs["dpi"],
        no_timestamp = kwargs["no_timestamp"],
        transparent= kwargs["no_transparent"])

def run(args):
    print(args)
    if not opath.exists(args.input_file):
        raise IOError("The input file does not exist: {}".format(
            args.input_file))
    df = pd.read_csv(args.input_file, header='infer', sep='\t')
    # make sure that the column names that were specified are actually
    #  in the dataframe
    if args.xcol not in df.columns:
        raise IOError("""The x-column name that you specified, {}, is not in the
        dataframe column names: {}""".format(args.xcol, df.columns))
    if args.ycol not in df.columns:
        raise IOError("""The y-column name that you specified, {}, is not in the
        dataframe column names: {}""".format(args.ycol, df.columns))
    print(" - Successfully read csv file. Here are a few lines:",
          file = sys.stderr)
    print(df.head(), file = sys.stderr)
    print(" - Plotting {} on the x-axis".format(args.xcol),file=sys.stderr)
    print(df[args.xcol].head(), file = sys.stderr)
    print(" - Plotting {} on the y-axis".format(args.ycol),file=sys.stderr)
    print(df[args.ycol].head(), file = sys.stderr)
    custommargin(df=df.dropna(), **vars(args))