Package list squeezelite / debian/1.8-3.1 dsd.c
debian/1.8-3.1

Tree @debian/1.8-3.1 (Download .tar.gz)

dsd.c @debian/1.8-3.1raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/* 
 *  Squeezelite - lightweight headless squeezebox emulator
 *
 *  (c) Adrian Smith 2012-2015, triode1@btinternet.com
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

// dsd support

#include "squeezelite.h"

#if DSD

// use dsd2pcm from Sebastian Gesemann for conversion to pcm:
#include "./dsd2pcm/dsd2pcm.h"

extern log_level loglevel;

extern struct buffer *streambuf;
extern struct buffer *outputbuf;
extern struct streamstate stream;
extern struct outputstate output;
extern struct decodestate decode;
extern struct processstate process;

#define LOCK_S   mutex_lock(streambuf->mutex)
#define UNLOCK_S mutex_unlock(streambuf->mutex)
#define LOCK_O   mutex_lock(outputbuf->mutex)
#define UNLOCK_O mutex_unlock(outputbuf->mutex)
#if PROCESS
#define LOCK_O_direct   if (decode.direct) mutex_lock(outputbuf->mutex)
#define UNLOCK_O_direct if (decode.direct) mutex_unlock(outputbuf->mutex)
#define LOCK_O_not_direct   if (!decode.direct) mutex_lock(outputbuf->mutex)
#define UNLOCK_O_not_direct if (!decode.direct) mutex_unlock(outputbuf->mutex)
#define IF_DIRECT(x)    if (decode.direct) { x }
#define IF_PROCESS(x)   if (!decode.direct) { x }
#else
#define LOCK_O_direct   mutex_lock(outputbuf->mutex)
#define UNLOCK_O_direct mutex_unlock(outputbuf->mutex)
#define LOCK_O_not_direct
#define UNLOCK_O_not_direct
#define IF_DIRECT(x)    { x }
#define IF_PROCESS(x)
#endif

#define BLOCK 4096 // expected size of dsd block
#define BLOCK_FRAMES BLOCK * BYTES_PER_FRAME
#define WRAP_BUF_SIZE 16

typedef enum { UNKNOWN=0, DSF, DSDIFF } dsd_type;

static bool dop = false; // local copy of output.has_dop to avoid holding output lock

struct dsd {
	dsd_type type;
	u32_t consume;
	u32_t sample_rate;
	u32_t channels;
	u64_t sample_bytes;
	u32_t block_size;
	bool  lsb_first;
	dsd2pcm_ctx *dsd2pcm_ctx[2];
	float *transfer[2];
};

static struct dsd *d;

static u64_t unpack64be(const u8_t *p) {
	return 
		(u64_t)p[0] << 56 | (u64_t)p[1] << 48 | (u64_t)p[2] << 40 | (u64_t)p[3] << 32 |
		(u64_t)p[4] << 24 | (u64_t)p[5] << 16 |	(u64_t)p[6] << 8 | (u64_t)p[7];
}

static u64_t unpack64le(const u8_t *p) {
	return
		(u64_t)p[7] << 56 | (u64_t)p[6] << 48 | (u64_t)p[5] << 40 | (u64_t)p[4] << 32 |
		(u64_t)p[3] << 24 | (u64_t)p[2] << 16 |	(u64_t)p[1] << 8 | (u64_t)p[0];
}

static u32_t unpack32le(const u8_t *p) {
	return
		(u32_t)p[3] << 24 | (u32_t)p[2] << 16 |	(u32_t)p[1] << 8 | (u32_t)p[0];
}

static int _read_header(void) {
	unsigned bytes = min(_buf_used(streambuf), _buf_cont_read(streambuf));
	s32_t consume;

	if (!d->type && bytes >= 4) {
		if (!memcmp(streambuf->readp, "FRM8", 4)) {
			d->type = DSDIFF;
		} else if (!memcmp(streambuf->readp, "DSD ", 4)) {
			d->type = DSF;
		} else {
			LOG_WARN("bad type");
			return -1;
		}
	}

	while (bytes >= 16) {
		char id[5];
		u64_t len = d->type == DSDIFF ? unpack64be(streambuf->readp + 4) : unpack64le(streambuf->readp + 4);
		memcpy(id, streambuf->readp, 4);
		id[4] = '\0';
		consume = 0;

		if (d->type == DSDIFF) {
			if (!strcmp(id, "FRM8")) {
				if (!memcmp(streambuf->readp + 12, "DSD ", 4)) {
					consume = 16; // read into
				} else {
					LOG_WARN("bad dsdiff FRM8");
					return -1;
				}
			}
			if (!strcmp(id, "PROP") && !memcmp(streambuf->readp + 12, "SND ", 4)) {
				consume = 16; // read into
			}
			if (!strcmp(id, "FVER")) {
				LOG_INFO("DSDIFF version: %u.%u.%u.%u", *(streambuf->readp + 12), *(streambuf->readp + 13),
					 *(streambuf->readp + 14), *(streambuf->readp + 15));
			}
			if (!strcmp(id, "FS  ")) {
				d->sample_rate = unpackN((void *)(streambuf->readp + 12));
				LOG_INFO("sample rate: %u", d->sample_rate);
			}
			if (!strcmp(id, "CHNL")) {
				d->channels = unpackn((void *)(streambuf->readp + 12));
				LOG_INFO("channels: %u", d->channels);
			}
			if (!strcmp(id, "DSD ")) {
				LOG_INFO("found dsd len: " FMT_u64, len);
				d->sample_bytes = len;
				_buf_inc_readp(streambuf, 12);
				bytes  -= 12;
				return 1; // got to the audio
			}
		}

		if (d->type == DSF) {
			if (!strcmp(id, "fmt ")) {
				if (bytes >= len && bytes >= 52) {
					u32_t version = unpack32le((void *)(streambuf->readp + 12));
					u32_t format  = unpack32le((void *)(streambuf->readp + 16));
					LOG_INFO("DSF version: %u format: %u", version, format);
					if (format != 0) {
						LOG_WARN("only support DSD raw format");
						return -1;
					}
					d->channels = unpack32le((void *)(streambuf->readp + 24));
					d->sample_rate = unpack32le((void *)(streambuf->readp + 28));
					d->lsb_first = (unpack32le((void *)(streambuf->readp + 32)) == 1);
					d->sample_bytes = unpack64le((void *)(streambuf->readp + 36)) / 8;
					d->block_size = unpack32le((void *)(streambuf->readp + 44));
					LOG_INFO("channels: %u", d->channels);
					LOG_INFO("sample rate: %u", d->sample_rate);
					LOG_INFO("lsb first: %u", d->lsb_first);
					LOG_INFO("sample bytes: " FMT_u64, d->sample_bytes);
					LOG_INFO("block size: %u", d->block_size);
				} else {
					consume = -1; // come back later
				}
			}
			if (!strcmp(id, "data")) {
				LOG_INFO("found dsd len: " FMT_u64, len);
				_buf_inc_readp(streambuf, 12);
				bytes  -= 12;
				return 1; // got to the audio
			}
		}

		// default to consuming whole chunk
		if (!consume) {
			consume = (s32_t)((d->type == DSDIFF) ? len + 12 : len);
		}

		if (bytes >= consume) {
			LOG_DEBUG("id: %s len: " FMT_u64 " consume: %d", id, len, consume);
			_buf_inc_readp(streambuf, consume);
			bytes  -= consume;
		} else if (consume > 0) {
			LOG_DEBUG("id: %s len: " FMT_u64 " consume: %d - partial consume: %u", id, len, consume, bytes);
			_buf_inc_readp(streambuf, bytes);
			d->consume = consume - bytes;
			break;
		} else {
			break;
		}
	}

	return 0;
}

static decode_state _decode_dsf(void) {

	// samples in streambuf are interleaved on block basis
	// we transfer whole blocks for all channels in one call and so itterate the while loop below to handle wraps
	
	unsigned bytes = _buf_used(streambuf);
	unsigned block_left = d->block_size;
	
	unsigned bytes_per_frame = dop ? 2 : 1;
	
	if (bytes < d->block_size * d->channels) {
		LOG_INFO("stream too short"); // this can occur when scanning the track
		return DECODE_COMPLETE;
	}
	
	IF_PROCESS(
		process.in_frames = 0;
	);

	while (block_left) {
		
		frames_t frames, out, count;
		unsigned bytes_read;
		
		u8_t *iptrl = (u8_t *)streambuf->readp;
		u8_t *iptrr = (u8_t *)streambuf->readp + d->block_size;
		u32_t *optr;
		
		if (iptrr >= streambuf->wrap) {
			iptrr -= streambuf->size;
		}
		
		bytes = min(block_left, min(streambuf->wrap - iptrl, streambuf->wrap - iptrr));

		IF_DIRECT(
			out = min(_buf_space(outputbuf), _buf_cont_write(outputbuf)) / BYTES_PER_FRAME;
			optr = (u32_t *)outputbuf->writep;
		);
		IF_PROCESS(
			out = process.max_in_frames - process.in_frames;
			optr = (u32_t *)(process.inbuf + process.in_frames * BYTES_PER_FRAME);
		);

		frames = min(bytes, d->sample_bytes) / bytes_per_frame;
		if (frames == 0) {
			if (dop && d->sample_bytes == 1 && bytes >= 2) {
				// 1 byte left add a byte of silence and play
				*(iptrl + 1) = *(iptrr + 1) = 0x69;
				frames = 1;
			} else {
				// should not get here due to wrapping m/2 for dop should never result in 0 as header len is always even
				LOG_INFO("frames got to zero");
				return DECODE_COMPLETE;
			}
		}

		frames = min(frames, out);
		frames = min(frames, BLOCK);
		bytes_read = frames * bytes_per_frame;
		
		count = frames;
		
		if (dop) {
			
			if (d->channels == 1) {
				if (d->lsb_first) {
					while (count--) {
						*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 16 | dsd2pcm_bitreverse[*(iptrl+1)] << 8;
						*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 16 | dsd2pcm_bitreverse[*(iptrl+1)] << 8;
						iptrl += 2;
					}
				} else {
					while (count--) {
						*(optr++) = *(iptrl) << 16 | *(iptrl+1) << 8;
						*(optr++) = *(iptrl) << 16 | *(iptrl+1) << 8;
						iptrl += 2;
					}
				}
			} else {
				if (d->lsb_first) {
					while (count--) {
						*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 16 | dsd2pcm_bitreverse[*(iptrl+1)] << 8;
						*(optr++) = dsd2pcm_bitreverse[*(iptrr)] << 16 | dsd2pcm_bitreverse[*(iptrr+1)] << 8;
						iptrl += 2;
						iptrr += 2;
					}
				} else {
					while (count--) {
						*(optr++) = *(iptrl) << 16 | *(iptrl+1) << 8;
						*(optr++) = *(iptrr) << 16 | *(iptrr+1) << 8;
						iptrl += 2;
						iptrr += 2;
					}
				}
			}
			
		} else {
			
			if (d->channels == 1) {
				float *iptrf = d->transfer[0];
				dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptrl, 1, d->lsb_first, iptrf, 1);
				while (count--) {
					double scaled = *iptrf++ * 0x7fffffff;
					if (scaled >  2147483647.0) scaled =  2147483647.0;
					if (scaled < -2147483648.0) scaled = -2147483648.0;
					*optr++ = (s32_t)scaled;
					*optr++ = (s32_t)scaled;
				}
			} else {
				float *iptrfl = d->transfer[0];
				float *iptrfr = d->transfer[1];
				dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptrl, 1, d->lsb_first, iptrfl, 1);
				dsd2pcm_translate(d->dsd2pcm_ctx[1], frames, iptrr, 1, d->lsb_first, iptrfr, 1);
				while (count--) {
					double scaledl = *iptrfl++ * 0x7fffffff;
					double scaledr = *iptrfr++ * 0x7fffffff;
					if (scaledl >  2147483647.0) scaledl =  2147483647.0;
					if (scaledl < -2147483648.0) scaledl = -2147483648.0;
					if (scaledr >  2147483647.0) scaledr =  2147483647.0;
					if (scaledr < -2147483648.0) scaledr = -2147483648.0;
					*optr++ = (s32_t)scaledl;
					*optr++ = (s32_t)scaledr;
				}
			}
			
		}
		
		_buf_inc_readp(streambuf, bytes_read);
		
		block_left -= bytes_read;
		
		if (d->sample_bytes > bytes_read) {
			d->sample_bytes -= bytes_read;
		} else {
			LOG_INFO("end of track samples");
			block_left = 0;
			d->sample_bytes = 0;
		}
		
		IF_DIRECT(
			_buf_inc_writep(outputbuf, frames * BYTES_PER_FRAME);
		);
		IF_PROCESS(
			process.in_frames += frames;
		);

		LOG_SDEBUG("write %u frames", frames);
	}
	
	// skip the other channel blocks
	// the right channel has already been read and is guarenteed to be in streambuf so can be skipped immediately
	if (d->channels > 1) {
		_buf_inc_readp(streambuf, d->block_size);
	}
	if (d->channels > 2) {
		d->consume = d->block_size * (d->channels - 2);
	}

	return DECODE_RUNNING;
}

static decode_state _decode_dsdiff(void) {

	// samples in streambuf are interleaved on byte per channel
	// we process as little as necessary per call and only need to handle frames wrapping round streambuf

	unsigned bytes_per_frame, bytes_read;
	frames_t out, frames, count;
	u8_t *iptr;
	u32_t *optr;
	u8_t tmp[WRAP_BUF_SIZE];
	
	unsigned bytes = min(_buf_used(streambuf), _buf_cont_read(streambuf));
	
	IF_DIRECT(
		out = min(_buf_space(outputbuf), _buf_cont_write(outputbuf)) / BYTES_PER_FRAME;
	);
	IF_PROCESS(
		out = process.max_in_frames;
	);
	
	if (dop) {
		bytes_per_frame = d->channels * 2;
	} else {
		bytes_per_frame = d->channels;
		out = min(out, BLOCK);
	}
	
	frames = min(min(bytes, d->sample_bytes) / bytes_per_frame, out);
	bytes_read = frames * bytes_per_frame;
	
	iptr = (u8_t *)streambuf->readp;
	
	IF_DIRECT(
		optr = (u32_t *)outputbuf->writep;
	);
	IF_PROCESS(
		optr = (u32_t *)process.inbuf;
	);
	
	// handle wrap around end of streambuf and partial dop frame at end of stream
	if (!frames && bytes < bytes_per_frame) {
		memset(tmp, 0x69, WRAP_BUF_SIZE); // 0x69 = dsd silence
		memcpy(tmp, streambuf->readp, bytes);
		if (_buf_used(streambuf) > bytes_per_frame) {
			memcpy(tmp + bytes, streambuf->buf, bytes_per_frame - bytes);
			bytes_read = bytes_per_frame;
		} else {
			bytes_read = bytes;
		}
		iptr = tmp;
		frames = 1;
	}
	
	count = frames;
	
	if (dop) {
		
		if (d->channels == 1) {
			while (count--) {
				*(optr++) = *(iptr) << 16 | *(iptr+1) << 8;
				*(optr++) = *(iptr) << 16 | *(iptr+1) << 8;
				iptr += bytes_per_frame;
			}
		} else {
			while (count--) {
				*(optr++) = *(iptr  ) << 16 | *(iptr + d->channels)     << 8;
				*(optr++) = *(iptr+1) << 16 | *(iptr + d->channels + 1) << 8;
				iptr += bytes_per_frame;
			}
		}
		
	} else {
		
		if (d->channels == 1) {
			float *iptrf = d->transfer[0];
			dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptr, 1, 0, iptrf, 1);
			while (count--) {
				double scaled = *iptrf++ * 0x7fffffff;
				if (scaled >  2147483647.0) scaled =  2147483647.0;
				if (scaled < -2147483648.0) scaled = -2147483648.0;
				*optr++ = (s32_t)scaled;
				*optr++ = (s32_t)scaled;
			}
		} else {
			float *iptrfl = d->transfer[0];
			float *iptrfr = d->transfer[1];
			dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptr,     d->channels, 0, iptrfl, 1);
			dsd2pcm_translate(d->dsd2pcm_ctx[1], frames, iptr + 1, d->channels, 0, iptrfr, 1);
			while (count--) {
				double scaledl = *iptrfl++ * 0x7fffffff;
				double scaledr = *iptrfr++ * 0x7fffffff;
				if (scaledl >  2147483647.0) scaledl =  2147483647.0;
				if (scaledl < -2147483648.0) scaledl = -2147483648.0;
				if (scaledr >  2147483647.0) scaledr =  2147483647.0;
				if (scaledr < -2147483648.0) scaledr = -2147483648.0;
				*optr++ = (s32_t)scaledl;
				*optr++ = (s32_t)scaledr;
			}
		}

	}
	
	_buf_inc_readp(streambuf, bytes_read);
	
	if (d->sample_bytes > bytes_read) {
		d->sample_bytes -= bytes_read;
	} else {
		LOG_INFO("end of track samples");
		d->sample_bytes = 0;
	}
	
	IF_DIRECT(
		_buf_inc_writep(outputbuf, frames * BYTES_PER_FRAME);
			  );
	IF_PROCESS(
		process.in_frames = frames;
	);
	
	LOG_SDEBUG("write %u frames", frames);

	return DECODE_RUNNING;
}


static decode_state dsd_decode(void) {
	decode_state ret;

	LOCK_S;

	if ((stream.state <= DISCONNECT && !_buf_used(streambuf)) || (!decode.new_stream && d->sample_bytes == 0)) {
		UNLOCK_S;
		return DECODE_COMPLETE;
	}

	if (d->consume) {
		unsigned consume = min(d->consume, min(_buf_used(streambuf), _buf_cont_read(streambuf)));
		LOG_DEBUG("consume: %u of %u", consume, d->consume);
		_buf_inc_readp(streambuf, consume);
		d->consume -= consume;
		if (d->consume) {
			UNLOCK_S;
			return DECODE_RUNNING;
		}
	}

	if (decode.new_stream) {
		int r = _read_header();
		if (r < 1) {
			UNLOCK_S;
			return DECODE_ERROR;
		}
		if (r == 0) {
			UNLOCK_S;
			return DECODE_RUNNING;
		}
		// otherwise got to start of audio

		LOCK_O;

		LOG_INFO("setting track_start");
		output.track_start = outputbuf->writep;

		dop = output.has_dop;

		if (dop && d->sample_rate / 16 > output.supported_rates[0]) {
			LOG_INFO("DOP sample rate too high for device - converting to PCM");
			dop = false;
		}

		if (dop) {
			LOG_INFO("DOP output");
			output.next_dop = true;
			output.next_sample_rate = d->sample_rate / 16;
			output.fade = FADE_INACTIVE;
		} else {
			LOG_INFO("DSD to PCM output");
			output.next_dop = false;
			output.next_sample_rate = decode_newstream(d->sample_rate / 8, output.supported_rates);
			if (output.fade_mode) _checkfade(true);
		}
	
		decode.new_stream = false;

		UNLOCK_O;
	}

	LOCK_O_direct;

	switch (d->type) {
	case DSF:
		ret = _decode_dsf();
		break;
	case DSDIFF:
		ret = _decode_dsdiff();
		break;
	default:
		ret = DECODE_ERROR;
	}

	UNLOCK_O_direct;
	UNLOCK_S;

	return ret;
}

static void dsd_open(u8_t size, u8_t rate, u8_t chan, u8_t endianness) {
	d->type = UNKNOWN;

	if (!d->dsd2pcm_ctx[0]) {
		d->dsd2pcm_ctx[0] = dsd2pcm_init();
		d->dsd2pcm_ctx[1] = dsd2pcm_init();
	} else {
		dsd2pcm_reset(d->dsd2pcm_ctx[0]);
		dsd2pcm_reset(d->dsd2pcm_ctx[1]);
	}
	if (!d->transfer[1]) {
		d->transfer[0] = malloc(sizeof(float) * BLOCK);
		d->transfer[1] = malloc(sizeof(float) * BLOCK);
	}
}

static void dsd_close(void) {
	if (d->dsd2pcm_ctx[0]) {
		dsd2pcm_destroy(d->dsd2pcm_ctx[0]);
		dsd2pcm_destroy(d->dsd2pcm_ctx[1]);
		d->dsd2pcm_ctx[0] = NULL;
		d->dsd2pcm_ctx[1] = NULL;
	}
	if (d->transfer[0]) {
		free(d->transfer[0]);
		free(d->transfer[1]);
		d->transfer[0] = NULL;
		d->transfer[1] = NULL;
	}
}

struct codec *register_dsd(void) {
	static struct codec ret = { 
		'd',         // id
		"dsf,dff",   // types
		BLOCK * 2,   // min read
		BLOCK_FRAMES,// min space
		dsd_open,    // open
		dsd_close,   // close
		dsd_decode,  // decode
	};

	d = malloc(sizeof(struct dsd));
	if (!d) {
		return NULL;
	}

	memset(d, 0, sizeof(struct dsd));

	dsd2pcm_precalc();

	LOG_INFO("using dsd to decode dsf,dff");
	return &ret;
}

#endif // DSD