
TECkit Binary Format Page 1 of 11
Jonathan Kew June 02, 2006 Rev: 13

TECkit Binary Format
Version 3

Jonathan Kew
SIL Non-Roman Script Initiative (NRSI)

Introduction
The following description is based on the “SILtec Binary Format” document written by
Martin Hosken for an earlier mapping file format. This data format is designed to provide an
appropriate low-level conversion model and file format for the conversion of data from a byte
encoding to Unicode and from Unicode to bytes. The model is designed to be easy to
implement and to run fairly quickly.

This data format deliberately favours speed and ease of processing over compactness of data.
If many mapping descriptions are to be stored, it may be worth applying compression to the
stored mapping files; 75% or better compression may often be obtained with typical
algorithms.

The description is in two parts: the file format and a processing model for the file format. The
latter is important because the binary file is purely a parameterisation of a conversion
processing engine and without an understanding of the processing model of that engine, the
semantics of the information in the binary file can only be guessed at.

File Format
A conversion file provides a description of the conversion between two encodings. It may
hold tables to describe one or both directions of that conversion. Each table has its own type,
allowing the addition of further types with time.

Basic Data Types

The basic data types used in this description are:

Name Length (in bits) Description

Char 8 Signed 8-bit number

UInt8 or Byte 8 Unsigned 8-bit number

SInt16 16 Signed 16-bit number

UInt16 16 Unsigned 16-bit number

UInt24 24 Unsigned 24-bit number

SInt32 32 Signed 32-bit number

UInt32 32 Unsigned 32-bit number

Basic data types

All numbers are stored in big-endian format, that is with the most significant byte occurring
earliest in the file. All other types used are references to other data structures described in this
document. Arrays are indicated through the use of [] with the number of elements either

TECkit Binary Format Page 2 of 11
Jonathan Kew June 02, 2006 Rev: 13

entered as a name from the structure being defined, an explicit number, or if the [] are empty,
in the description for that structure entry.

Storing Unicode

Unicode values can take a number of forms: UTF-8, UTF-16, UTF-32. In this binary file
format Unicode values are always stored directly as Unicode Scalar Values, which are
numbers in the range 0x0000 – 0x10FFFF. As all numbers are big-endian, this amounts to
saying that Unicode values are stored as UTF32BE. However, as the high 11 bits of a UTF32
value are always zero, these bit positions are in some cases used for other flags, effectively
“overlapping” the unused high bits of the Unicode value (if viewed as a 32-bit integer).

File Header

A description file consists of a header and two sequences of conversion tables, one for
“forward” conversion and the other for “reverse” conversion. By convention, a legacy byte
encoding is considered the “source” and Unicode the “target” of a mapping description;
therefore, “forward” conversion maps the legacy encoding to Unicode, and “reverse”
conversion maps Unicode back to the legacy encoding. However, the same mapping file
format can support other applications, including text transduction entirely within either the
legacy (byte) space or Unicode.

Name Type Description

type UInt32 4 byte identifier:
'qMap' (0x714d6170) or
'zQmp' (0x7a516d70)

version UInt32 16.16 versioning. This version: 0x00030000

headerLength UInt32 Length of this header

formFlagsLHS UInt32 Flags describing “source” encoding (LHS of forward
mapping)

formFlagsRHS UInt32 Flags describing “target” encoding (RHS of forward
mapping)

numNames UInt32 Number of entries in the names list

numFwdTables UInt32 Number of tables in forward mapping pipeline

numRevTables UInt32 Number of tables in reverse mapping pipeline

nameOffsets UInt32[numNames] Offset from start of file to each NameRec

fwdBase UInt32[numFwdTables] Offset from start of file to beginning of each table in the
forward pipeline

revBase UInt32[numRevTables] Offset from start of file to beginning of each table in the
reverse pipeline

names NameRec[numNames] Name records identifying and describing the mapping

FileHeader

The 4 byte ‘type’ identifier is included to aid file format identification, as is the version,
which consists of two 16-bit values: the first is the major version and the second the minor
version.

If the type field contains 'zQmp', this mapping file has been compressed with zlib; in this
case, the remaining header fields are not present. Instead, the second longword (where the
version field should be) is used to hold the size in bytes of the uncompressed file, and the
compressed data follows. Uncompressing the data will yield a standard mapping file
(including the original type and version fields).

TECkit Binary Format Page 3 of 11
Jonathan Kew June 02, 2006 Rev: 13

The header length is included for the benefit of software that may wish to read file headers
only (e.g., to access names). Note that the name list is considered to be part of the file header,
not a separate table.

The source and target encodings each have a longword containing flags that describe features
of the encoding. The following flag bits are currently defined:

Name Value Description

kFlags_ExpectsNormC 0x00000001 expects fully composed (NFC) text

kFlags_ExpectsNormD 0x00000002 expects fully decomposed (NFD) text

kFlags_GeneratesNormC 0x00000004 generates fully composed text

kFlags_GeneratesNormD 0x00000008 generates fully decomposed text

kFlags_VisualOrder 0x00008000 deals with visually rather than logically ordered text

kFlags_Unicode 0x00010000 this is Unicode rather than a byte (legacy) encoding

Table header flags

If one of the “expects…” flags is set for the source side of a mapping, and the encoding on
this side is Unicode, the processing engine is required to normalize the data to the appropriate
Unicode normalization form before applying the mapping rules. This allows mapping authors
to work entirely in terms of one preferred normalization form.

The “generates…” flags allow the mapping author to declare which normalization form, if
any, is produced as output. However, there is no guarantee of the accuracy of these flags, and
therefore processes that require a particular normalization form should perform (or explicitly
request) a normalization operation after the mapping has been completed.

The header contains offsets (all from the start of the file) to each of the name records and to
each table in the forward and reverse mapping pipelines. Name records contain UTF8-
encoded strings identifying and describing the encoding and mapping table. There may be an
arbitrary number of name strings, identified by 16-bit ids; as a bare minimum, the LHS and
RHS Name strings should be included in all files.

Name Type Description

nameID UInt16 name ID for this string

nameLength UInt16 length of name string in bytes

data Byte[nameLength] the name string

reserved Byte[0 or 1] zero padding to a 16-bit boundary

NameRec

The following name ID values are defined at this time; more may be defined in the future
should the need arise.

TECkit Binary Format Page 4 of 11
Jonathan Kew June 02, 2006 Rev: 13

Name Value Description

kNameID_LHS_Name 0 “source” or LHS encoding name

kNameID_RHS_Name 1 “target” or RHS encoding name (Unicode, in the normal
application of this format for legacy/Unicode conversion)

kNameID_LHS_Description 2 LHS encoding description

kNameID_RHS_Description 3 RHS encoding description

kNameID_Version 4 version of the mapping description

kNameID_Contact 5 contact information (e.g., a mailto: URL) for the mapping
author or maintainer

kNameID_RegAuthority 6 organization responsible for the encoding

kNameID_RegName 7 name and version of the mapping, as known to that authority

kNameID_Copyright 8 copyright information

Name ID values

The rest of the file contains the conversion tables for the forward and reverse mapping
pipelines. Each table starts on a 4-byte boundary; zero pad bytes are added where necessary to
ensure this.

Each pipeline consists of a chain of any number of conversion tables. A table may operate
entirely in the “byte” (legacy) encoding space, mapping byte values (or sequences) to new
byte values (or sequences); entirely in the Unicode space, mapping Unicodes to other
Unicodes; or it may function as an interface between the two encoding spaces, mapping bytes
to Unicodes or vice versa. There are thus four possible varieties of table, depending on the
input and output encoding spaces. The output of each table in the chain becomes the input to
the next table, and therefore the output encoding space of each table must match the input of
its successor.

Conversion Tables

The conversion tables, no matter which code space(s) they operate in, share a common
format. The format is designed to allow one-to-one mappings to be executed very efficiently,
while also allowing many-to-many mappings and the added complexity of pre and post
environment contextual constraints.

TECkit Binary Format Page 5 of 11
Jonathan Kew June 02, 2006 Rev: 13

Name Type Description

type UInt32 4-byte identifier for table type:
 0x422D3E42 (‘B->B’) byte/byte mapping
 0x422D3E55 (‘B->U’) byte/Unicode mapping
 0x552D3E42 (‘U->B’) Unicode/byte mapping
 0x552D3E55 (‘U->U’) Unicode/Unicode mapping
 0x4E464320 ('NFC ') apply NFC normalization to Unicode data
 0x4E464320 ('NFD ‘) apply NFD normalization to Unicode data

version UInt32 16.16 version
 current version: 0x00030000

length UInt32 total length of this table

flags UInt32 flags specifying optional features of the table:
 0x00000001: Unicode characters >0xffff supported
 0x00000002: DBCS support (B->x tables only)

pageBase UInt32 offset from start of table to page table (U->x tables) or dbcsPage table
(B->x tables with dbcs support)

lookupBase UInt32 offset from start of table to lookup table(s)

matchClassBase UInt32 offset from start of table to match class definitions

repClassBase UInt32 offset from start of table to replacement class definitions

stringListBase UInt32 offset from start of table to string rule lists

stringRuleData UInt32 offset from start of table to string rule data block

maxMatch UInt8 maximum number of input characters matched by a rule

maxPre UInt8 maximum number of input characters matched by pre environment

maxPost UInt8 maximum number of input characters matched by post environment

maxOutput UInt8 maximum number of output characters generated by a rule

replacementChar UInt32 replacement for unmapped characters

TableHeader

The TableHeader contains a ‘type’ field similar to that in the FileHeader. If the type is a
normalization table (NFC or NFD), then no further fields are present; the table simply
represents a normalization operation to be performed on the Unicode data. Otherwise, for
actual mapping tables, the TableHeader is a fixed length header, with type and version
information in the same form as for a file header.

Flags for optional features
• Supplementary character support: If the flag bit indicating support for supplementary-

plane Unicode characters is set, several parts of the table are affected:

• If the input to the table is Unicode, the plane-mapping tables are included (see below),
enabling characters >0x00ffff to be mapped; without this flag, all characters >0x00ffff
would map to the default value.

• Unicode match and/or replacement classes contain 32-bit Unicode scalar values;
without this flag, they contain 16-bit values and can thus only contain BMP characters.

(This flag is meaningless in a B->B table.)

• DBCS support: this flag indicates that a dbcsPage table is present, enabling direct lookup
of double-byte characters. Note that the double byte character set support in this version
of the mapping table is limited: two-byte characters cannot be used in classes or as
negated elements in string rules.

TECkit Binary Format Page 6 of 11
Jonathan Kew June 02, 2006 Rev: 13

Class Definitions
Within match strings (and environments) it is possible to make reference to a class of codes.
The classes are referenced by class number, and defined in the match and replacement class
definition sections of the table. The class elements may be 8, 16, or 32-bit values, depending
on the subtable type and whether the class is defined for the match or replacement side. In
byte space, classes always have 8-bit values; in Unicode space, 16 or 32 bits are used
depending on the supplementary-plane flag in the subtable header.

Name Type Description

ClsOffset UInt32[number of classes] Offset relative to start of Class table to each
class definition

ClassDefns ClassDefinition[number of classes] The class definitions

ClassTable

Name Type Description

NumElements UInt32 Number of elements in the class

Elements ElementType[numElements] The elements of the class in rising numeric
order (where ElementType is UInt8, UInt16, or
UInt32; see text)

ClassDefinition

Lookup Table
The lookup table provides mapping information for each possible code input. The exact
format of the lookup table depends whether the input to the subtable consists of bytes or
Unicodes, but in all cases the function is to map each input code to a Lookup value.

Byte lookup table

The table consists of an array of 256 lookups. If the DBCS support flag is set in the subtable
header, then this table consists of a two-layer table. The DBCSpage array maps the first byte
to an index into an array of 256-entry Lookup arrays, and the next byte is used as an index
into the Lookup array. If the value of an entry in the DBCSpage array is 0, then it indicates
the single byte situation (since few double byte character sets are double byte for all their
values), whereby the first byte itself is re-used as the index into the first Lookup array, and
only one code is consumed rather than two.

Name Type Description

DBCSpage UInt8[256] Only present if DBCS support flag set

Lookups Lookup[256][] Lookup for each possible input code. One 256-element array is
present for each value from zero to the maximum DBCSpage
entry. In the absence of DBCS support, only a single 256-element
array is present.

LookupTable for tables with Byte input

Unicode lookup table

The lookup table for Unicode input works in two stages, using a “paged mapping” system to
map each Unicode character of interest to a 16-bit character index, which is then used for the
actual mapping to a Lookup.

There are two approaches to the mapping process. By default, each character is considered as
a single 16-bit Unicode value from the BMP. This type of table can only map characters from
the BMP; any supplementary-plane characters will map to default output values. When non-
BMP characters are to be mapped, the surrogate support flag must be set in the table header.

TECkit Binary Format Page 7 of 11
Jonathan Kew June 02, 2006 Rev: 13

Mapping from Unicode value to character index is a multi-stage process. First, if surrogate
support is enabled, there is a table mapping from the plane (BMP = 0, supplementary planes =
1-16) to the appropriate page table. To save having empty page tables, a plane mapping entry
of value 0xFF indicates that all codes in that plane should be mapped to the unknown
character specified in the conversion table header. If surrogate support is not enabled, then
there is no plane mapping table and there is only one page table.

At the point of having a pageMap index, there are 16-bits of unprocessed data left in the
character code. The most significant 8-bits of this remaining data is used to index into the
particular pageMap (either the single pageMap for non-surrogate support or the pageMap that
the appropriate planeMap indexes). The pageMap contains an index to a characterMap. The
least significant 8-bits are then used to index into the characterMap to lookup the particular
character index.

Name Type Description

PlaneMap* UInt8[17] Index into Page maps array. 0xFF indicates character index of
unknown for all characters in the plane

numPageMaps* UInt8 Number of 256-element arrays in PageMap

padding* UInt8[2] Reserved, padding to 4-byte boundary

PageMap UInt8[256][] Array of 256 element arrays. Each entry is an index into the
characterMap arrays. There are sufficient arrays of 256
elements in the pageMap to account for all the values in
planeMap (excluding 0xFF). If supplementary plane character
support is not enabled, there is a single 256-element array.

CharacterMap UInt16[256][] Array of 256 character index arrays. Each element maps from
the least significant 8 bits of a code to a character index. There
are sufficient of these 256 element arrays to account for all the
values in the pageMaps.

Lookups Lookup[] Lookup for each possible input code.

* field only present if supplementary-plane support bit set in conversion table header flags byte
LookupTable for tables with Unicode input

Whether the table input is bytes or Unicode characters, the LookupTable ultimately maps
each input character to a Lookup value that specifies how it should be mapped. Each lookup
is exactly 4 bytes long, but may be interpreted in several ways:

Name Type Description

type UInt8 type of Lookup:
0xFF: there is a string rule list for this character
0xFE: illegal DBCS trailing byte
0xFD: unmapped character: use default mapping
if ((type & 0xC0) == 0x80):

extended string rule list: add 256 * (type & 0x3F) to ruleCount
0x00-0x03:

direct lookup; type is number of output chars

ruleCount UInt8 number of string rules for this character

ruleIndex UInt16 index into stringList of start of rule list for this input character

Lookup showing interpretation of type field, and additional fields for string rule lookups

Name Type Description

type UInt8 count of output characters (0-3)

data UInt8[3] output byte values

Lookup for direct mapping with Byte output

TECkit Binary Format Page 8 of 11
Jonathan Kew June 02, 2006 Rev: 13

Name Type Description

type UInt8 count of output characters (0 or 1)

usv UInt24 Unicode scalar value

Lookup for direct mapping with Unicode output

If the type field is 0xFF, then ruleCount and ruleIndex describe a list of string rules that must
be tested at the current character. If type is 0xFE, this lookup represents an illegal DBCS
sequence; the mapping process should be restarted, treating the lead byte as a single-byte
value. If type is 0xFD, this is an unmapped character; for Byte-Byte or Unicode-Unicode
tables, the character will be copied to the output, and for tables mapping across the
Byte/Unicode boundary, the default output character will be generated.

If the high two bits of the type field are 10 (binary), i.e., (type & 0xC0) == 0x80, then the
lookup refers to an “extended string rule list”. In this case, the lower 6 bits of the type field
are used to extend the ruleCount field from 8 to 14 bits, providing support for up to 16K rules
per initial character code.

Otherwise, the type field is interpreted as a count of output characters, and the remaining
three bytes of the Lookup are reinterpreted as a single USV or an array of three Bytes,
depending on the output code space. Thus, a single Unicode value (including supplementary-
plane values) or a sequence of up to three bytes may be mapped directly from the Lookup.

String Rule lists and data

Input characters that cannot be mapped directly in the Lookup end up pointing to a string rule
list—a list of StringRules that must be tested in order, looking for a match at the current
location. The table header includes an offset to the StringRuleLists array; Lookups in turn
contain indexes (not byte offsets!) into this array and counts of the number of rules for the
starting character concerned.

Name Type Description

ruleOffset UInt32[] offset from stringRuleData to the beginning of this string rule

StringRuleLists

All the string rules are concatenated into the StringRuleData area of the table, and pointed to
by the entries in the StringRuleLists array. A string rule is a variable-length structure:

Name Type Description

matchLength UInt8 count of elements in match string

postLength UInt8 count of elements in post-context

preLength UInt8 count of elements in pre-context

repLength UInt8 count of elements in replacement string

matchString MatchElem[matchLength] string (or regular expression) to match

postContext MatchElem[postLength] post-context (following environment)

preContext MatchElem[preLength] pre-context (preceding environment), stored in
reverse order

repString RepElem[repLength] replacement string

StringRule

Match elements

A string rule consists of the match string and environments to match and replace. Rules for
each input character are listed in priority order, starting with the longest potential match
string, and with the longest potential context where match string lengths are the same.

TECkit Binary Format Page 9 of 11
Jonathan Kew June 02, 2006 Rev: 13

The match and context strings consist of sequences of codes that are more than just
characters. Each code consists of four bytes, with various possible interpretations for different
types of match element.

Name Type Description

repeat UInt8 min and max repeat counts packed into high and low halves of the byte

type UInt8 negate flag and element type:
0x80: (flag bit) negate
0x40: (flag bit) non-literal
0x3F: (mask) match type if non-literal; see values below

variable UInt16 various interpretations depending on element type

MatchElem standard fields

The first byte of the MatchElem, flags.repeat, is always interpreted as a repeat count, except
in the case of OR and ENDGROUP elements, where it is ignored. It contains minimum and
maximum repeat counts, packed into the high and low halves of the byte. Thus, an element
can specify repeat counts in the range 0 to 15. (Unbounded repeat is not available.) An
element which must occur exactly once (the most common case in simple string rules) has a
value of 0x11 for this byte; an optional element which may occur zero or one times has a
value of 0x01.

The second byte, flags.type, specifies the type of match element. Its high bit is a negated flag,
indicating that the success or failure of the matching of this element must be reversed. The
next bit is a flag indicating whether the element contains a literal character code or is a
“special” element. If the NonLit bit is clear, then the element contains a single byte or USV
code (depending on the input code space) at value.byte.data or value.usv.data. If it is set, then
the remaining bits of flags.type contain the element type:

Name Value Description

Class 0x01 class match

BeginGroup 0x02 beginning of a group (bracketed sequence)

EndGroup 0x03 end of a group

OR 0x04 alternation (only permitted within group)

ANY 0x05 match any single character (not beginning or end of data)

EOS 0x06 match beginning or end of data

MatchElem (flags.type & 0x3F) values

For the different element types, the remaining bytes (three and four) of the MatchElem have
different interpretations:

Name Type Description

repeat UInt8 min and max repeat counts

type UInt8 negate flag and element type

dNext UInt8 offset to following OR or EndGroup element

dAfter UInt8 offset to element following the EndGroup that matches this BeginGroup

MatchElem for a BeginGroup element

TECkit Binary Format Page 10 of 11
Jonathan Kew June 02, 2006 Rev: 13

Name Type Description

repeat UInt8 min and max repeat counts

type UInt8 negate flag and element type

dNext UInt8 offset to following OR or EndGroup element (for OR only)

dStart UInt8 reverse offset to BeginGroup element

MatchElem for an OR or EndGroup element

Name Type Description

repeat UInt8 min and max repeat counts

type UInt8 negate flag and element type

classIndex UInt16 index of character class to match

MatchElem for a ClassMatch element

Name Type Description

repeat UInt8 min and max repeat counts

type UInt8 negate flag and element type

reserved UInt8 reserved (set to zero)

data UInt8 byte character to match

MatchElem for a literal code (byte input)

Name Type Description

repeat UInt8 min and max repeat counts

data UInt24 USV character to match (must mask with 0x001FFFFF)

MatchElem for a literal code (Unicode input)

Replacement elements

The replacement string in a StringRule is also made up of 4-byte elements, though these have
fewer variants than the elements of the match string and context. The first byte acts as a type
field identifying the particular kind of element. For literal character codes, no further
information besides the actual character to output is required:

Name Type Description

type UInt8 element type:
0x00: kRepElem_Literal

value UInt24 literal character code

RepElem (for literal elements)

For Class and Copy elements, there is a field giving the index (zero-based) of the
corresponding item in matchString. In the case of Class, this must be a Class match item, and
the output character will be member of the replacement class that corresponds (positionally,
within the class definition) to the matched member of the match class. Copy elements are
only valid in Byte-Byte or Unicode-Unicode tables, and may correspond to individual
elements of the match string or to BeginGroup elements, in which case the text matched by
the entire group is copied. Finally, the Unmapped element generates the table’s default
output.

TECkit Binary Format Page 11 of 11
Jonathan Kew June 02, 2006 Rev: 13

Name Type Description

type UInt8 element type:
0x01: kRepElem_Class
0x07: kRepElem_Copy
0x0F: kRepElem_Unmapped

matchIndex UInt8 index of corresponding item in matchString (for kRepElem_Class
and kRepElem_Copy)

repClass UInt16 replacement class index (only for kRepElem_Class)

RepElem (for non-literal elements)

Processing model

This section is intended to make explicit that which is implicitly assumed in the above
description. It is hoped that this section will answer the most common questions of an
implementer.

Conversion model

The presumed processing model for an engine supporting this binary format is not that it
should do in-place editing to convert one string into another, but that it create a new output
string by walking through the input string. Thus all tests, including pre-environments, will be
made on the input string, and previous output can make no difference to future tests. This
model may be described as a “match and generate” rather than a “match and replace” model.

Insertion rules
It is possible for the match string in a rule to be of zero length, or to match no input characters
because all elements have minimum repeat counts of zero. This represents an “insertion rule”
that generates output without consuming any input. Since no input is consumed, the same rule
would match again, ad infinitum.

To prevent this, we add the stipulation that once an insertion rule (any rule that matches
without consuming any input) has been executed at a particular point in the input, no further
insertion rules will apply there. Processing continues with the next rule in the list for the
current input character, but any insertion rule that would match is skipped.

Insertion rules with no following context constraint can be very inefficient to process, as they
must be tested at every character position. The format and engine are designed to work
efficiently for simple mappings by direct table lookup of the current input character, and this
is lost when unconstrained insertion rules are present.

It is unclear whether there is a significant need for insertion rules in real-life encoding
conversion scenarios, and at the time of writing the TECkit compiler will in fact refuse to
compile such tables. This issue can be considered further if examples showing a need for
insertions are found.

Default rules
It is possible that the Lookup for a character will point to a string rule list, but no match is
found as the rules are tested. In this case, the default output for the table (a copy of the input
character, or the default defined in the table header, depending whether the table is operating
in a single code space or across the byte/Unicode boundary) is generated, and a single input
character consumed.

This behavior also applies if no other rule matches after an insertion rule has been applied
(see above).

