
The TECkit Language Page 1 of 11
Jonathan Kew March 29, 2004 Rev: 18

The TECkit Language
Mapping byte encodings to Unicode

Jonathan Kew
SIL Non-Roman Script Initiative (NRSI)

Abstract

TECkit is a toolkit for encoding conversions, primarily intended for
converting data between 8-bit legacy encodings and Unicode. This document
presents the mapping description language supported by the TECkit mapping
table compiler.

Introduction
The TECkit package is based on a compiled binary mapping file that contains the tables
needed to map between a legacy (byte) encoding and Unicode. The package includes a
mapping compiler that allows such mapping tables to be built from fairly simple text
descriptions.

The TECkit language is built around simple mapping rules where a legacy character code on
the left-hand side of the rule is mapped to or from a Unicode character on the right-hand side.
From this basic structure, mapping rules can be extended by the use of character sequences
rather than single characters on either side; by the addition of contextual constraints
(environments) determining when a rule should apply; and by the use of character classes,
optional and repeatable elements, grouping and alternation to express more complex patterns
to be matched and processed.

The TECkit package, including the mapping description language, can also be applied to text
processing operations entirely dealing with legacy-encoded data or purely Unicode data.
Examples include conversion between “logical” and “presentation-form” versions of legacy
data, or transliteration of Unicode between different scripts.

Overall file structure and conventions
A TECkit description file is strictly line-oriented; every statement is confined to a single
logical line. To allow long rules to be broken across several lines, for easier editing, the
compiler interprets a final backslash (\) as a “continuation character”; however, only quite
complex mappings are likely to need rules that cannot readily be expressed in a single source
line.

The semicolon (;) introduces a comment that continues to the end of the (physical) line; the
compiler ignores everything following a semicolon (unless it is in a quoted string).

Built-in keywords in the TECkit mapping language are not case-sensitive; the compiler will
accept any mixture of upper and lower case. This also applies to Unicode character names (of
which more later). However, the names of character classes (also described later) defined in
the file itself are case-sensitive, and must be used in a consistent form.

TECkit mapping source files may be created as either byte-encoded or Unicode text. The
compiler recognizes Unicode source files by looking for an initial Byte Order Mark or

The TECkit Language Page 2 of 11
Jonathan Kew March 29, 2004 Rev: 18

encoding signature, and accepts any of the standard Unicode encoding forms (UTF-8, UTF-
16, UTF-32, either big- or little-endian). UTF-16/UTF-32 files with no BOM are also
recognized automatically. (To compile UTF-8 source that lacks an encoding signature, the –u
flag must be specified on the compiler command line.)

Note: the current version of the TECkit Mapping Editor application does not handle
mapping descriptions written as Unicode text; it is strictly an 8-bit editing
environment. Unicode mapping source must be edited in a Unicode-capable editor
and compiled with the command-line compiler.

Where “strings” are called for, these may be either single- or double-quoted. There is no
mechanism to “escape” quote marks embedded in the string; therefore, a single-quoted string
can contain double-quote characters, and vice versa, but it is not possible to include both
single and double quotes in the same quoted string.

Byte (legacy) character codes are expressed as decimal numbers (no special marking needed)
or as hexadecimal (prefixed by “0x”).

Unicode character codes (USVs) are expressed either numerically or using Unicode character
names, converted into unique “identifiers” by replacing spaces and hyphens with underscores.
The compiler “knows” the complete set of Unicode 4.0 character names, with the exception
of the algorithmically-derived names for CJK characters. The preferred form for USVs is to
write “U+xxxx”, where xxxx represents four to six hexadecimal digits (although normal
decimal or hex numbers are also permitted).

Characters may also be expressed as quoted literals. If the mapping source is byte-encoded
text, then quoted literals may be used only for byte values; and if the mapping source is
Unicode text, then they may be used only for Unicode character values. (It is never legal to
use quoted literals on both the byte and Unicode sides of the mapping.)

A complete TECkit mapping description consists of a header section followed by one or more
mapping passes. Passes may operate entirely within the byte encoding world, entirely in
Unicode, or may bridge the byte/Unicode barrier. The simplest legacy/Unicode mapping
descriptions will contain just one byte/Unicode pass, but for some complex mappings it may
be necessary to perform pre- and/or post-processing such as character reordering in other
passes. The LHS code space of each pass must correspond to the RHS code space of the pass
before it.

The complete process of mapping from bytes to Unicode involves applying the mapping rules
from LHS to RHS from each pass, with the output of each pass becoming the input of the
next, in the order found in the description file. To map from Unicode to bytes, the rules are
used to map RHS to LHS, and the “pipeline” of passes is reversed, using the passes in the
opposite of the order found in the description. (This seems much easier to understand in
practice than it is to describe!)

Header information
The file begins with header information, which consists of a number of pieces of information
about the encoding and mapping, each specified by a keyword followed by a quoted string:

EncodingName a canonical name that uniquely identifies this mapping table from all
others; the recommended form is a three-part string:

SOURCE-NAME_ON_SOURCE-VERSION
where SOURCE is the name of the standards authority, product,
government, etc., that defined this encoding; NAME_ON_SOURCE is the
name most commonly used on that source to identify the encoding; and
VERSION is the version number (as encodings often lack explicit version
numbers, the year the encoding was introduced is a suggested value
here). The three parts of the name are separated with hyphens; non-
alphanumeric characters in the name should be replaced with
underscores.

The TECkit Language Page 3 of 11
Jonathan Kew March 29, 2004 Rev: 18

DescriptiveName a string that describes the mapping, to help users distinguish it from other
similar mappings or understand its purpose

Version the version of the mapping description; this should be incremented each
time the mapping is revised

Contact contact information for the person responsible for the mapping (a mailto:
URL would be a typical form for this)

RegistrationAuthority the organization responsible for the encoding

RegistrationName the name and version of the mapping, as recognized by that authority

Copyright copyright information

Header information

http://www.iana.org/assignments/character-sets lists “official” names for recognized
encodings. For “private” encodings a unique name should be constructed following a similar
pattern.

Only the encoding name is required; however, it is recommended that as many of the header
fields as are meaningful for any particular mapping should be included.

It is recommended that the header strings should be limited to ASCII characters; this applies
especially to the canonical name, which should be as “portable” as possible. If non-ASCII
characters are required in other fields (such as the description), they should be represented
using UTF-8. Note that if the mapping source is byte-encoded, the header strings are not
converted in any way; the literal bytes found in the source are put into the compiled table; it is
therefore the responsibility of the author to ensure that the strings represent valid UTF-8.

An alternative form of header should be used for mapping descriptions that do not represent
the mapping between a legacy byte encoding and Unicode (e.g., conversions between
different byte encodings, or transliterations entirely within Unicode). Instead of
EncodingName and DescriptiveName, the following four fields are used:

LHSName canonical name of the “source” encoding or left-hand side of the description

RHSName canonical name of the “target” encoding or right-hand side of the description

LHSDescription description for the left-hand side of the mapping

RHSDescription description for the right-hand side of the mapping

Header information for non-Byte/Unicode mappings

For the normal case of a mapping between a legacy byte encoding and Unicode,
EncodingName and DescriptiveName correspond to the LHSName and LHSDescription
fields (the keywords are synonymous), and the RHSName and RHSDescription fields are
filled in by the compiler with strings indicating Unicode as the RHS encoding.

Note that while we sometimes think of the left-hand side of the description as “source” and
the right-hand side as “target”, with the legacy encoding being the source and Unicode the
target of the mapping, TECkit descriptions and mapping tables are bi-directional, and thus
these roles can equally well be exchanged.

Finally, the file header can include “flags” that specify certain features of the encoding for
both the left- and right-hand sides of the mapping.

LHSFlags (list-of-flags) features of the LHS encoding

RHSFlags (list-of-flags) features of the RHS encoding

Header flags statements

For each side of the mapping, zero or more of the following flags can be specified:

ExpectsNFC input on this side of the mapping should be in fully-composed form

The TECkit Language Page 4 of 11
Jonathan Kew March 29, 2004 Rev: 18

ExpectsNFD input on this side of the mapping should be in fully-decomposed form

GeneratesNFC output on this side of the mapping is fully-composed

GeneratesNFD output on this side of the mapping is fully-decomposed

VisualOrder this side of the mapping deals with visual (rather than logical) text order

Encoding flags

The “expects” flags can be used to specify that Unicode input to this side of the mapping
should be normalized before it is presented to the actual mapping rules. By specifying a
normalization form for the Unicode side of a mapping description, the author can write
mapping rules assuming a particular canonical representation. The TECkit engine will take
care of normalizing the input text so that it matches the expectation of the rules.

The “generates” flags allow the mapping author to declare which normalization form will be
produced by the mapping rules. However, as it can be difficult to ensure the accuracy of this,
TECkit does not “trust” this flag, but always explicitly normalizes the output if requested by
the application using the mapping.

These flags are ignored for byte encodings, as no standard normalization process is defined
for bytes, although they could be specified purely for informational purposes in the case of a
byte encoding that supports both composed and decomposed forms.

A typical example of the header information might be:
EncodingName "SIL-GREEK_BASIC-2002"
DescriptiveName "SIL Basic Greek (no precomposed display forms)"
Version "1"
Contact "mailto:nrsi@sil.org"
RegistrationAuthority "SIL International"
RegistrationName "SIL Basic Greek"
Copyright "(c)2002 SIL International"

LHSFlags ()
RHSFlags (ExpectsNFD GeneratesNFD)

Mapping passes
The heart of a mapping description is the series of mapping passes (just one, in simple cases)
that relate characters or sequences on the LHS to those on the RHS.

Each pass begins with a header line that declares the encoding space in which it operates:
pass(pass-type)

where pass-type is one of:
Byte
Unicode
Byte_Unicode
Unicode_Byte

The Unicode_Byte pass type is defined for completeness, but would not normally be used;
mapping from Unicode to bytes is accomplished by using the Byte_Unicode description “in
reverse”. Therefore, a description for the mapping between a legacy byte encoding and
Unicode will typically consist of zero or more Byte passes, one Byte_Unicode pass, and zero
or more Unicode passes.

There are also special “normalization pass” types that can be used in special cases. To create
a normalization pass, specify pass-type as one of:

NFC_fwd NFD_fwd
NFC_rev NFD_rev

The TECkit Language Page 5 of 11
Jonathan Kew March 29, 2004 Rev: 18

NFC NFD

As the names suggest, these apply the NFC or NFD Unicode normalization forms as part of
the forward, reverse, or both processing “pipelines”. Most mappings will not need to include
explicit normalization passes, as the ExpectsNFC or ExpectsNFD flag can be used to request
pre-normalization of Unicode data before any mapping rules are applied, and applications
using TECkit can explicitly request either NFC or NFD data when mapping to Unicode. The
only reason to use a normalization pass in a mapping description would be to ensure that data
is in a particular normalization form somewhere in the middle of a multi-pass Unicode
transduction.

For compatibility with the original TECkit 1.0 language (as supported by the prototype
TECkit release in 2000), in the case where the description requires just a single Byte_Unicode
pass, the pass line may be omitted altogether; if class definitions and mapping rules are found
with no pass line, an implicit pass(Byte_Unicode) is assumed.

Class definitions

Character classes may be used to make the mapping description more readable and concise;
suitable class definitions allow a single rule to express a whole set of related mappings. They
are typically used in contextual constraints or as elements of rules that reorder character
sequences.

Classes are defined with the ByteClass or UniClass statements, depending on the type of
characters they are to contain:

ByteClass [name] = (byteSequence)
UniClass [name] = (unicodeSequence)

Class names, always enclosed in square brackets, are “identifiers” that may contain letters,
digits, and the underscore character; they may not begin with a digit. Unlike the keywords of
the TECkit language, they are case-sensitive. The byte and Unicode sequences are space-
separated lists of character codes, similar to those used in mapping rules (see below), with the
addition of a “range” notation: two character codes separated by .. represent the complete set
of characters from the first to the second (inclusive). In byte classes, a quoted string may also
be used to represent a list of individual byte values.

Note that byte and Unicode classes are completely unrelated, and their names are in separate
“namespaces”. It may often be convenient to create corresponding classes of both types with
the same name:

ByteClass [control] = (0..31 127)
UniClass [control] = (U+0000..U+001f U+007f)
ByteClass [letter] = ('A'..'Z' 'a'..'z')
UniClass [letter] = (U+0041..U+005a U+0061..U+007a)

There is no automatic relationship between byte and Unicode classes of the same name,
however.

In passes that operate in a single code space (either Byte or Unicode), only one kind of class
is relevant, and the keyword Class may be used instead of the specific form.

Defaults for unmapped characters

In single-codespace passes, any characters not explicitly matched by mapping rules will be
output unchanged. However, this cannot happen in passes that cross the byte/Unicode barrier,
as In this case default values are specified:

ByteDefault '*'
UniDefault U+003f

These statements within a Byte_Unicode pass would cause unmapped byte values to become
question marks (U+003F) when mapping to Unicode, and unmapped Unicode values to
become asterisks when mapping to bytes. The default defaults are 0x3f (question mark) on

The TECkit Language Page 6 of 11
Jonathan Kew March 29, 2004 Rev: 18

the byte side, and U+FFFC (replacement character) on the Unicode side, which will often be
suitable. Note that if the pass specifies a mapping for each individual byte value from 0-255,
the Unicode default will never be used.

Mapping rules

The actual mapping between a byte encoding and Unicode is expressed as a list of mapping
rules. A mapping description actually contains two complete sets of mapping rules, one set
that match characters in the byte encoding and generate Unicode, and the other that match
Unicode characters and generate bytes. However, in most cases it is simplest to express both
mappings at once, using bi-directional rules where either side of the rule can act as “match”
with the other being “replacement”.

The general form of a mapping rule is:
lhsSeq [/ lhsContext] operator rhsSeq [/ rhsContext]

Here, operator indicates whether this rule is to be used only when mapping from the left-hand
side to the right, from the right-hand side to the left, or (the most common case) in both
directions:

<> bidirectional mapping rule
> unidirectional LHS-to-RHS rule
< unidirectional RHS-to-LHS rule

The lhsSeq and rhsSeq parts of the rule are simple lists of character codes. These may be
expressed as decimal numbers or as hexadecimal (prefixed with 0x). In byte sequences, literal
characters and sequences (quoted strings) are also allowed; these are enclosed in single or
double quote marks. In Unicode sequences, characters may also be listed by their Unicode
character names as found in http://www.unicode.org/Public/UNIDATA/UnicodeData.txt,
with all non-alphanumeric characters in the names (primarily spaces) converted to
underscores; thus, for example, thai_character_ko_kai (not case sensitive) may be used
instead of 0x0E01 to make the mapping description file more self-documenting.

During the mapping operation, whichever of lhsSeq or rhsSeq corresponds to the input side of
the rule can be considered a “match string”, with the other being its “replacement”. The
context associated with the match string, if any, acts as a constraint on the application of the
rule. (Any context associated with the replacement is irrelevant; it would be used when
mapping in the other direction.)

Character class references may be used in the match and replacement sequences, although for
clarity it may be better to list each individual character mapping. If a class is used on the
replacement side of a rule, it must correspond to a class on the match side, and the resulting
rules will map each character in the match class to the equivalent character in the replacement
class. (The classes must contain the same number of characters.) Item tags (see below) may
be used to associate the replacement class item with its corresponding match item; in the
absence of such tags, items are matched by position within the match and replacement strings.

For contextually constrained mappings, the lhsContext and rhsContext parts of the mapping
rule are used. These use a “slash … underscore” notation that may be familiar from other
tools or from aspects of linguistics:

/ preContextSeq _ postContextSeq

The match and replace strings and the pre- and post-contexts may be simple sequences of
character codes, or may be more complex expressions using the following “regular
expression” elements:

[cls] match any character from the class cls
. match any single character
match beginning or end of input text
^item ‘not item’: match anything except the given item (applies to single items only;

negated groups are not supported)

The TECkit Language Page 7 of 11
Jonathan Kew March 29, 2004 Rev: 18

(...) grouping (for optionality or repeat counts)
| alternation (within group): match either preceding or following sequence
{a,b} match preceding item minimum a times, maximum b (0 ≤ a ≤ b ≤ 15)
? match preceding item 0 or 1 times
* match preceding item 0 to 15 times
+ match preceding item 1 to 15 times
=tag tag preceding item for match/replacement association
@tag (only on RHS, and only in single-codespace passes) duplicate the tagged item

(including groups) from LHS; typically used to implement reordering

A couple of notes on the use of regular expressions and context constraints:

• Repeat counts (or optionality) may be applied to parenthesized groups as well as to
individual items.

• It is meaningless to specify context on the replacement side of a unidirectional rule;
contextual constraints apply to the matching process on the input side of the conversion.

• The special ‘#’ code is only meaningful as the first item in the pre-context or the last item
in the post-context; in effect, there is an “end of text” pseudo-character before the first
real character of input, and one after the last, which can only match this code.

• A negated item is still a “concrete” item that matches a real character in the input (or the
“end of text” pseudo-character).

• No repeatable item can ever match more than 15 times; unlike standard regular
expressions, the star and plus operators have a fixed upper bound. (In principle, a
repeatable element within a repeatable group will permit a higher total number of
repetitions.)

Rules are tested from the most to the least specific, where a longer rule (counting the length
of context as well as the actual match string) is considered more specific than a shorter one. If
there are two equally long rules that could match at a particular place in the input, the first
one listed in the mapping description file will be used.

The maximum potential length of any pre-context (considering all repeat counts) in a pass,
plus the maximum potential match string, plus the maximum potential post-context, must not
exceed 255 characters. Similarly, the maximum output that can be generated from any rule is
limited to 255 characters. These limits are not expected to pose a problem for the type of
character mapping operation for which TECkit is designed. (It was never intended as a fully
general-purpose string processing language or engine.)

Macros

The TECkit compiler supports a simple macro facility; this may be used to define symbols
that act as “shorthand” for frequently-used fragments of a mapping description, such as
character classes that are needed in multiple passes, or sequences used in the context of
multiple rules.

A macro is defined with a line of the form:
Define name <arbitrary TECkit source>

Following such a line, anywhere name is found in the description, it is treated as representing
the specified source text. For example, if a number of diacritics have alternate forms in the
legacy encoding for use after narrow (“i-width”) characters, the reverse mappings from
Unicode will need contextual constraints that will be the same in each case. A suitable
definition makes this easy to express and maintain:

Define PRE_CTX_IWIDTH [iwidth] [lowerdia]* _
...
0xA1 <> combining_ring_above / PRE_CTX_IWIDTH
0xA2 <> combining_down_tack_below / PRE_CTX_IWIDTH
0xA3 <> combining_up_tack_below / PRE_CTX_IWIDTH

The TECkit Language Page 8 of 11
Jonathan Kew March 29, 2004 Rev: 18

This is particularly useful when the context is complex, perhaps involving several alternatives
or multiple repeatable items; suitably descriptive macro names may also serve to make the
mapping description more self-documenting.

Another use for macros is to provide symbolic names for byte values, or more convenient
names for Unicode characters. This can help make mapping descriptions more readable,
maintainable, and self-documenting.

Note that macros must be defined before they are used, including any use in the definition of
other macros; thus, it is legitimate to say:

Define NUL 0x00
Define DEL 0x7F
Define ASCII NUL..DEL
ByteClass[asc] = (ASCII)

But with the definitions rearranged so that NUL and DEL are not defined when they are used in
the definition of ASCII (even if they are defined subsequently), the result will be a compile-
time error:

Define ASCII NUL..DEL
Define NUL 0x00
Define DEL 0x7F
ByteClass[asc] = (ASCII)

This will generate an error on the ByteClass line, because the identifiers NUL and DEL found in
the expansion of ASCII will be considered undefined.

Examples

Windows code page 1252

A particularly simple mapping to describe is Windows code page 1252. This is an encoding
that has a simple, one-to-one mapping to and from Unicode:

EncodingName 'WINDOWS-1252'
DescriptiveName 'Windows code page 1252 (Latin-1)'

ByteDefault '?'
UniDefault replacement_character

ByteClass [ascii] = (0 .. 127)
UniClass [ascii] = (U+0000 .. U+007f)
ByteClass [latin1] = (0xa0 .. 0xff)
UniClass [latin1] = (U+00a0 .. U+00ff)

[ascii] <> [ascii]
[latin1] <> [latin1]

0x80 <> euro_sign
;0x81 undefined
0x82 <> single_low_9_quotation_mark
; ... mappings for 0x83 to 0x9d omitted for brevity
0x9e <> latin_small_letter_z_with_caron
0x9f <> latin_capital_letter_y_with_diaeresis

SIL Greek

A more complex example is mapping SIL Greek to Unicode. A complete SILGreek.map file
is included with TECkit as a sample of a TECkit description; some of the more interesting
fragments are shown here.

In order to deal with both Basic and Display versions of SIL Greek, the mapping is
implemented in several passes. First, a Byte pass maps the precomposed forms to equivalent
sequences, thus converting Display-encoded text to Basic encoding; however, it maintains the

The TECkit Language Page 9 of 11
Jonathan Kew March 29, 2004 Rev: 18

Display distinction between final and non-final sigma, and indeed maps the Basic sigma code
(which is non-final in Display text) to the final form where appropriate:

Pass(Byte)

; First we map precomposed "display" forms to their equivalent "basic"
; sequences while still in the Byte (SIL Greek legacy encoding) world,
; except that we maintain the final/non-final sigma distinction

Class [LTR] = ('a'..'u' 'w'..'z' 'A'..'U' 'W'..'Z' '`^_@"' "'" \
128..149 152..159 161..163 165..171 173..181 184..255)

; make sigma into final form if not followed by a letter
's' / _ ^[LTR] > 'v'

; This is copied directly from "GRCO-BA.CCT - Greek Composite to Basic
; conversion" and then the unidirectional '>' operators changed to
; bidirectional '<>', and non-ASCII characters replaced with hex codes
; (for clarity)

0xCF <> 'Hr'
0xBF <> 'hr'

0xAD 'A' <> 'HA' "'"
0xAE 'A' <> 'HA`'
0xAF 'A' <> 'HA^'
0xA9 'A' <> 'hA' "'"
0xAA 'A' <> 'hA`'
0xAB 'A' <> 'hA^'
...etc...

Next, the main Byte_Unicode pass maps the SIL Basic Greek codes to their Unicode
equivalents. This includes handling characters that are represented in SIL Greek as sequences
using the ‘|’ modifier code, but map to single Unicode characters. There are also some cases
where more than one Unicode character is mapped to the same SIL Greek code:

Pass(Byte_Unicode)

ByteDefault 183 ; 183 is "bullet" in the SIL Greek Display encoding
UniDefault replacement_character

; there are separate namespaces for Byte and Unicode classes,
; allowing us to use the same name for classes with corresponding content

ByteClass [CTL] = (0x00 .. 0x1f 0x7f)
UniClass [CTL] = (U+0000 .. U+001f U+007f)
[CTL] <> [CTL]

' ' <> space
'!' <> exclamation_mark
'"' <> combining_diaeresis
'#' <> no_break_space
'$' <> left_pointing_double_angle_quotation_mark
'%' <> right_pointing_double_angle_quotation_mark
'&' <> ampersand
"'" <> combining_acute_accent

... ...

';' < greek_ano_teleia ; greek semicolon
';' <> middle_dot ; canonical decomposition of greek semicolon

... ...

'?' < greek_question_mark
'?' <> semicolon ; canonical decomposition of grk question mark

... ...

The TECkit Language Page 10 of 11
Jonathan Kew March 29, 2004 Rev: 18

'@' <> modifier_letter_apostrophe
'A' <> greek_capital_letter_alpha
'B' <> greek_capital_letter_beta
'C' <> greek_capital_letter_chi

... ...

'|b' <> greek_beta_symbol ; curly beta
'|f' <> greek_small_letter_digamma ; digamma
'|G' <> greek_letter_digamma ; Digamma

Next, we deal with the fact that SIL Basic Greek and Unicode handle the Greek breathing
marks differently. In SIL Basic Greek, these are coded before the vowels to which they apply,
while in Unicode they follow the vowel. The situation is complicated by the fact that certain
vowel pairs are actually diphthongs, in which case the breathing has to “jump over” both
vowel characters. Moreover, if the second vowel of what would be a valid diphthong pair
carries a dieresis, this “breaks” the diphthong, and the breathing should be located after the
first vowel instead.

This is handled with a Unicode pass that matches breathing-vowel sequences in SIL Greek
order and rearranges them into the proper Unicode order:

Pass(Unicode)

; In Unicode space, reorder breathing/vowel sequences from SIL Basic to
Unicode order

Class [BR] = (combining_comma_above combining_reversed_comma_above)
Class [aeo] = (U+0391 U+0395 U+039f U+03b1 U+03b5 U+03bf)
Class [iu] = (U+0399 U+03a5 U+03b9 U+03c5)
Class [j] = (U+0397 U+03b7)
Class [u] = (U+03a5 U+03c5)
Class [i] = (U+0399 U+03b9)
Class [vowelrho]=(U+0391 U+0395 U+0399 U+039f U+03a5 U+0397 U+03a9 \

 U+03a1 U+03b1 U+03b5 U+03b9 U+03bf U+03c5 U+03b7 U+03c9 U+03c1)

[BR]=b [aeo]=v1 [iu]=v2 / _ combining_diaeresis \
<> @v1 @b @v2 / _ combining_diaeresis

[BR]=b [aeo]=v1 [iu]=v2 <> @v1 @v2 @b
[BR]=b [j]=v1 [u]=v2 / _ combining_diaeresis \

<> @v1 @b @v2 / _ combining_diaeresis
[BR]=b [j]=v1 [u]=v2 <> @v1 @v2 @b
[BR]=b [u]=v1 [i]=v2 / _ combining_diaeresis \

<> @v1 @b @v2 / _ combining_diaeresis
[BR]=b [u]=v1 [i]=v2 <> @v1 @v2 @b
[BR]=b [vowelrho]=v <> @v @b

In these rules, the breathing and vowels are tagged with b and v (or v1, v2) respectively, and
the replacement consists of the tagged items in a revised order. (Note that while these rules
are written and described primarily as if they are mapping from left to right, they are in fact
bidirectional rules that are used in both byte/Unicode and Unicode/byte processing.)

Finally, a second Unicode pass replaces sequences of letters and diacritics with precomposed
forms where possible. This pass was created by extracting the relevant canonical mappings
from the Unicode character database:

Pass(Unicode)

; Now map to/from the available precomposed letter/diacritic combinations
; in Unicode (these mappings are derived from the decomposition field in
; UnicodeData.txt, recursively applying decomposition to the components
; where relevant). It would be more efficient to do everything in a
; single Byte_Unicode pass, and for Greek this is not unreasonably
; complex, but these separate passes serve to illustrate (and test) the
; "pipeline" architecture.

U+0313 < U+0343 ; combining greek koronis
U+0308 U+0301 <> U+0344 ; combining greek dialytika tonos

The TECkit Language Page 11 of 11
Jonathan Kew March 29, 2004 Rev: 18

U+02B9 < U+0374 ; greek numeral sign
U+003B < U+037E ; greek question mark
U+00A8 U+0301 <> U+0385 ; greek dialytika tonos
U+0391 U+0301 <> U+0386 ; greek capital letter alpha with tonos
U+00B7 < U+0387 ; greek ano teleia
U+0395 U+0301 <> U+0388 ; greek capital letter epsilon with tonos
U+0397 U+0301 <> U+0389 ; greek capital letter eta with tonos
U+0399 U+0301 <> U+038A ; greek capital letter iota with tonos
U+039F U+0301 <> U+038C ; greek capital letter omicron with tonos
U+03A5 U+0301 <> U+038E ; greek capital letter upsilon with tonos
U+03A9 U+0301 <> U+038F ; greek capital letter omega with tonos
U+03B9 U+0308 U+0301 <> U+0390 ; ...etc...

Note that such a mapping is always described primarily in the byte→Unicode direction,
beginning with any Byte passes, then the Byte_Unicode pass, and finally any Unicode passes.
When mapping from Unicode back to the legacy byte encoding, the rules in each pass map
from RHS to LHS, and in addition the passes apply in the reverse order.

Byte-only and Unicode-only mappings

The TECkit system, while targeted primarily at byte/Unicode conversion, can also be applied
to other text mapping operations. A mapping description need not contain a Byte_Unicode
pass at all. If it contains only Byte passes, then both input and output are bytes; if it contains
only Unicode passes, both input and output are Unicode data.

For example, a slightly modified version of the first pass of the SIL Greek example mapping
could serve as a conversion between SIL Basic Greek and SIL Display Greek. (The only
change needed would be to the processing of final sigma.) Another application might be a
mapping to transliterate between Greek and Roman scripts in Unicode.

