Codebase list tigr-glimmer / 3e814cdb-e004-4d37-9919-46690da6c39e/main SimpleMake / long-orfs.cc
3e814cdb-e004-4d37-9919-46690da6c39e/main

Tree @3e814cdb-e004-4d37-9919-46690da6c39e/main (Download .tar.gz)

long-orfs.cc @3e814cdb-e004-4d37-9919-46690da6c39e/mainraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
//  A. L. Delcher
//
//  File:  long-orfs.cc
//
//  Last Modified:  1 Aug 2005
//
//  This program finds sufficiently long, non-overlapping reading
//  frames in the file named on the command line.  Optionally,
//  entropy distance can be used to filter the selected orfs.
//
//  Copyright (c) 2006 University of Maryland Center for Bioinformatics
//  & Computational Biology



#include  "long-orfs.hh"



// External variables

extern int  Verbose;
extern int  Global_Debug_Flag;


// Global variables

static double  Entropy_Cutoff = 1.0;
  // Genes with entropy distance score not below this
  // are eliminated before overlaps are considered
static const char  * Fasta_Header;
  // Header on first line of fasta input file
static bool  Fixed_Min_Len = false;
  // If set true by the -f option, then the specified
  // or default minimum length gene will be used.
static vector <Codon_t>  Fwd_Start_Pattern;
  // Bit patterns representing possible forward start codons
static vector <Codon_t>  Fwd_Stop_Pattern;
  // Bit patterns representing possible forward stop codons
static int  Genbank_Xlate_Code = 0;
  // Holds the Genbank translation table number that determines
  // stop codons and codon translation.
static bool  Genome_Is_Circular = DEFAULT_GENOME_IS_CIRCULAR;
  // If true, input sequences are assumed to be circularly connected
  // so genes will be allowed to wrap around the end
static char  * Ignore_File_Name = NULL;
  // Name of file containing list of regions that cannot be included
  // in gene predictions
static vector <Range_t>  Ignore_Region;
  // List of regions to be skipped
static int  Min_Gene_Len = DEFAULT_MIN_GENE_LEN;
  // Shortest (in nucleotides) gene that will be considered for scoring
static int  Max_Olap_Bases = DEFAULT_MAX_OLAP_BASES;
  // Overlaps of this many or fewer bases are allowed between adjacent
  // genes
static double  Neg_Entropy_Profile [20] = DEFAULT_NEG_ENTROPY_PROF;
  // Entropy distribution of amino-acids in non-genes
static bool  Optimize_Total_Len = false;
  // If set true by the -L option, then minimum gene length
  // that optimizes the total length of genes (instead of their
  // number) will be used.  Not compatible with -f option.
static char  * Output_Filename = NULL;
  // Name of file to which output is sent
static double  Pos_Entropy_Profile [20]  = DEFAULT_POS_ENTROPY_PROF;
  // Entropy distribution of amino-acids in genes
static bool  Print_Output_Header = true;
  // Determines if header information is printed before the
  // list of gene coordinates in the output file
static vector <Codon_t>  Rev_Start_Pattern;
  // Bit patterns representing possible reverse start codons
static vector <Codon_t>  Rev_Stop_Pattern;
  // Bit patterns representing possible reverse stop codons
static string  Sequence;
  // The input sequence to be scored.
static char  * Sequence_File_Name = NULL;
  // Name of the input sequence file
static int  Sequence_Len;
  // Length of genomic sequence string being processed.
static vector <const char *>  Start_Codon;
  // Sequences assumed to be start codons
static vector <const char *>  Stop_Codon;
  // Sequences assumed to be stop codons
static string  Tag;
  // The fasta-header lines of the sequence in  Sequence
static bool  Use_Entropy_Filter = false;
  // If set true by the -t option, then use the
  //  Entropy_Cutoff  value to filter orfs before
  // checking for overlaps
static bool  Without_Stops = false;
  // If set true by the -w option, then output
  // coordinates will *NOT* include the stop codon



int  main
    (int argc, char * argv [])

  {
   try
     {
      FILE  * sequence_fp, * output_fp;
      vector <Orf_t>  orf_list;
      vector <Orf_Interval_t>  interval;
      string  hdr;
      time_t  now;
      int  optimal_len, total_len;
      int  i;

      now = time (NULL);
      cerr << "Starting at " << ctime (& now) << endl;

      Verbose = 0;

      Parse_Command_Line (argc, argv);

      if  (Ignore_File_Name != NULL)
          Get_Ignore_Regions ();

      Set_Start_And_Stop_Codons ();

      if  (strcmp (Output_Filename, "-") == 0)
          output_fp = stdout;
        else
          output_fp = File_Open (Output_Filename, "w", __FILE__, __LINE__);

      Echo_General_Settings (stderr);
      if  (Print_Output_Header)
          Echo_General_Settings (output_fp);

      sequence_fp = File_Open (Sequence_File_Name, "r", __FILE__, __LINE__);

      if  (! Fasta_Read (sequence_fp, Sequence, hdr))
          SIMPLE_THROW ("ERROR:  Failed to read input sequence");

      Sequence_Len = Sequence . length ();
      for  (i = 0;  i < Sequence_Len;  i ++)
        Sequence [i]  = Filter (tolower (Sequence [i]));

      Fasta_Header = hdr . c_str ();

      Find_Orfs (orf_list);

      if  (Use_Entropy_Filter)
          Entropy_Filter (orf_list, Entropy_Cutoff);

      if  (orf_list . size () == 0)
          SIMPLE_THROW ("ERROR:  No valid orfs found below entropy cutoff");

      Get_Intervals (interval, orf_list);

      if  (! Fixed_Min_Len)
          {
           optimal_len = Find_Optimal_Len (interval);
           Remove_Shorter (interval, optimal_len);
           Min_Gene_Len = optimal_len;
          }

      Eliminate_Overlapping (interval, Max_Olap_Bases);

      Echo_Specific_Settings (stderr, Sequence_Len);
      if  (Print_Output_Header)
          Echo_Specific_Settings (output_fp, Sequence_Len);

      Output_Orfs (output_fp, interval, total_len);

      fprintf (stderr, "Number of genes = %d\n", int (interval . size ()));
      fprintf (stderr, "Total bases = %d\n", total_len);

      fclose (sequence_fp);
      fclose (output_fp);
     }
   catch (std :: exception & e)
     {
      cerr << "** Standard Exception **" << endl;
      cerr << e << endl;
      exit (EXIT_FAILURE);
     }

   return  0;
  }



static void  Echo_General_Settings
    (FILE * fp)

//  Output values of global variables and parameter settings
//  to  fp .

  {
   fprintf (fp, "Sequence file = %s\n", Sequence_File_Name);
   fprintf (fp, "Excluded regions file = %s\n",
        Printable (Ignore_File_Name));

   fprintf (fp, "Circular genome = %s\n", Printable (Genome_Is_Circular));
   fprintf (fp, "Initial minimum gene length = %d bp\n", Min_Gene_Len);
   if  (Fixed_Min_Len)
       fprintf (fp, "Fixed minimum gene length\n");
     else
       fprintf (fp, "Determine optimal min gene length to maximize %s\n",
            Optimize_Total_Len ? "total bases" : "number of genes");
   fprintf (fp, "Maximum overlap bases = %d\n", Max_Olap_Bases);
   if  (Genbank_Xlate_Code != 0)
       fprintf (fp, "Translation table = %d\n", Genbank_Xlate_Code);
   fprintf (fp, "Start codons = ");
   Print_Comma_Separated_Strings (Start_Codon, fp);
   fputc ('\n', fp);
   fprintf (fp, "Stop codons = ");
   Print_Comma_Separated_Strings (Stop_Codon, fp);
   fputc ('\n', fp);

   return;
  }



static void  Echo_Specific_Settings
    (FILE * fp, int len)

//  Output values of variables an settings that depend on the
//  current input string, which has length  len .

  {
   fprintf (fp, "Sequence length = %d\n", len);
   fprintf (fp, "Final minimum gene length = %d\n", Min_Gene_Len);

   return;
  }



static void  Eliminate_Overlapping
    (vector <Orf_Interval_t> & interval, int max_olap)

//  Eliminate from  interval  entries that overlap other
//  entries by more than  max_olap .

  {
   vector <int>  highest;
   int  right_wrap;
   int  i, j, n;

   n = interval . size ();
   highest . resize (n);
     // highest [i]  will be the max hi value in interval [0 .. i]

   // set values in  highest and  right_wrap
   right_wrap = 0;
   for  (i = 0;  i < n;  i ++)
     {
      if  (i == 0)
          highest [i] = interval [i] . hi;
        else
          highest [i] = Max (highest [i - 1], interval [i] . hi);
      if  (Genome_Is_Circular)
          right_wrap = Max (right_wrap, interval [i] . hi - Sequence_Len);
     }

   highest [0] = interval [0] . hi;
   for  (i = 1;  i < n;  i ++)
     {
      for  (j = i - 1;  0 <= j;  j --)
        {
         if  (highest [j] <= interval [i] . lo + max_olap)
             break;  // can't sufficiently overlap j or anything before it

         if  (max_olap < Intersect_Size (interval [j] . lo, interval [j] . hi,
                interval [i] . lo, interval [i] . hi))
             interval [j] . deleted = interval [i] . deleted = true;
        }

      // also check any wraparounds
      if  (Genome_Is_Circular
             && interval [i] . lo + max_olap <= right_wrap)
          {
           for  (j = n - 1;  j > i && interval [i] . lo + max_olap
                      <= highest [j] - Sequence_Len;  j --)
             if  (max_olap < Intersect_Size (interval [i] . lo,
                    interval [i] . hi, interval [j] . lo - Sequence_Len,
                    interval [j] . hi - Sequence_Len))
                 interval [j] . deleted = interval [i] . deleted = true;
          }
     }

   // move non-deleted entries to the front of  interval
   for  (i = j = 0;  i < n;  i ++)
     if  (! interval [i] . deleted)
         {
          if  (i != j)
              interval [j] = interval [i];
          j ++;
         }

   interval . resize (j);

   return;
  }



static double  Entropy_Distance_Ratio
    (int start, int len, int fr)

//  Return the distance ratio for the entropy profile for the
//  gene starting at position  start  (in 1-based coordinates)
//  on global  Sequence with length  len  and in reading frame  fr .
//  The ratio is the distance to global  Pos_Entropy_Profile  over
//  the distance to global  Neg_Entropy_Profile .

  {
   string  buff;
   int  count [26] = {0};
   double  ep [20];
   double  pos_dist, neg_dist, ratio;
   char  aa;
   int  i;

   if  (fr > 0)
       Forward_Strand_Transfer (buff, Sequence, On_Seq_0 (start - 1), len);
     else
       Reverse_Strand_Transfer (buff, Sequence, On_Seq_0 (start - 1), len);

   for  (i = 0; i < len;  i += 3)
     {
      aa = Codon_Translation (buff . c_str () + i, Genbank_Xlate_Code);
      if  (aa != '*')
          count [aa - 'A'] ++;
     }
   Counts_To_Entropy_Profile (count, ep);

   pos_dist = neg_dist = 0.0;
   for  (i = 0;  i < 20;  i ++)
     {
      pos_dist += pow (ep [i] - Pos_Entropy_Profile [i], 2);
      neg_dist += pow (ep [i] - Neg_Entropy_Profile [i], 2);
     }

   pos_dist = sqrt (pos_dist);
   neg_dist = sqrt (neg_dist);
   if  (neg_dist == 0.0)
       {
        if  (pos_dist == 0.0)
            ratio = 1.0;
          else
            ratio = 1e3;
       }
     else
       ratio = pos_dist / neg_dist;

   return  ratio;
  }



static void  Entropy_Filter
    (vector <Orf_t> & orf_list, double cutoff)

//  Remove from  orf_list  all entries whose entropy distance
//  is  >= cutoff .

  {
   int  i, j, n;

   n = orf_list . size ();
   for  (i = j = 0;  i < n;  i ++)
     {
      double  score;
      int  frame, len, start, stop;

      stop = orf_list [i] . Get_Stop_Position ();
      len = orf_list [i] . Get_Gene_Len ();
      frame = orf_list [i] . Get_Frame ();
      if  (frame > 0)
          start = On_Seq_1 (stop - len);
        else
          start = On_Seq_1 (stop + len + 2);
      score = Entropy_Distance_Ratio (start, len, frame);
      if  (score < cutoff)
          {
           if  (i != j)
               orf_list [j] = orf_list [i];
           j ++;
          }
     }

   orf_list . resize (j);

   return;
  }



static int  Find_Optimal_Len
    (const vector <Orf_Interval_t> & interval)

//  Find the length  L  such that considering only entries in
//   interval  L  or longer and eliminating from them any that
//  overlap others (by more than  Max_Olap_Bases ) either the sum of
//  the interval lengths or the number of intervals is maximum.
//  Return the optimal value of  L .

  {
   vector <Range_t>  range_list;
   Range_t  new_range;
   int  left_wrap;
     // max positions any interval extends left of zero
   int  right_wrap;
     // max positions any interval extends right of  Sequence_Len
   vector <int>  highest;
   priority_queue <int, vector <int>, greater <int> >  pq;
   int  opt_bases_len, opt_total_bases, total_bases;
     // these will determine the gene length that maximizes the sum
     // of non-overlapping gene lengths
   int  opt_count_len, opt_count, count;
     // these will determine the gene length that maximizes the number
     // of non-overlapping genes
   int  i, j, n;

   n = interval . size ();
   if  (n == 0)
       return  Min_Gene_Len;  // nothing to do; return the existing value

   highest . resize (n);
     // highest [i]  will be the max hi value in interval [0 .. i]

   // set values in  highest ,  left_wrap  and  right_wrap
   // first value determines  left_wrap  since  interval  is sorted
   // ascending by  lo  value
   if  (Genome_Is_Circular && interval [0] . lo < 0)
       left_wrap = -1 * interval [0] . lo;
     else
       left_wrap = 0;
   right_wrap = 0;
   for  (i = 0;  i < n;  i ++)
     {
      if  (i == 0)
          highest [i] = interval [i] . hi;
        else
          highest [i] = Max (highest [i - 1], interval [i] . hi);
      if  (Genome_Is_Circular)
          right_wrap = Max (right_wrap, interval [i] . hi - Sequence_Len);
     }

   for  (i = 0;  i < n;  i ++)
     {
      int  i_len, longest = Min_Gene_Len - 1;

      // first, for every entry, find the longest orf it overlaps
      // entries in  interval  must already be sorted
      // first look for overlaps on the left
      for  (j = i - 1;  0 <= j;  j --)
        {
         if  (highest [j] <= interval [i] . lo + Max_Olap_Bases)
             break;  // can't sufficiently overlap j or anything before it

         if  (Max_Olap_Bases < Intersect_Size (interval [j] . lo, interval [j] . hi,
                interval [i] . lo, interval [i] . hi))
             longest = Max (longest, interval [j] . hi - interval [j] . lo);
        }
      // also check any wraparounds
      if  (Genome_Is_Circular
             && interval [i] . lo + Max_Olap_Bases <= right_wrap)
          {
           for  (j = n - 1;  j > i && interval [i] . lo + Max_Olap_Bases
                      <= highest [j] - Sequence_Len;  j --)
             if  (Max_Olap_Bases < Intersect_Size (interval [i] . lo,
                    interval [i] . hi, interval [j] . lo - Sequence_Len,
                    interval [j] . hi - Sequence_Len))
                 longest = Max (longest, interval [j] . hi - interval [j] . lo);
          }

      // now look for overlaps on the right
      for  (j = i + 1;  j < n;  j ++)
        {
         if  (interval [i] . hi <= interval [j] . lo + Max_Olap_Bases)
             break;  // can't sufficiently overlap j or anything after it

         if  (Max_Olap_Bases < Intersect_Size (interval [j] . lo, interval [j] . hi,
                interval [i] . lo, interval [i] . hi))
             longest = Max (longest, interval [j] . hi - interval [j] . lo);
        }
      // check wraparounds
      if  (Genome_Is_Circular
             && Sequence_Len - interval [i] . hi + Max_Olap_Bases <= left_wrap)
          {
           for  (j = 0;  j < i && Sequence_Len + interval [j] . lo
                      <= interval [i] . hi - Max_Olap_Bases;  j ++)
             if  (Max_Olap_Bases < Intersect_Size (interval [i] . lo,
                    interval [i] . hi, interval [j] . lo + Sequence_Len,
                    interval [j] . hi + Sequence_Len))
                 longest = Max (longest, interval [j] . hi - interval [j] . lo);
          }

      i_len = interval [i] . hi - interval [i] . lo;

      if  (longest < i_len)
          { // in this case setting the min gene length to a value
            // from  longest + 1 .. i_len  inclusive will get the i_len
            // bases included.  Any smaller value and i_len will be
            // excluded because of it's overlap with longest, and any
            // larger value and i_len will be excluded because it's
            // too short itself.  We'll keep track of this in  range_list
           
           new_range . lo = longest + 1;
           new_range . hi = i_len;
           range_list . push_back (new_range);
          }
        else
          ;  // do nothing--can never include orf i's bases
     }

   // we can now get the optimum length from the entries in  range_list
   // first we sort by lo

   sort (range_list . begin (), range_list . end (), Range_Cmp);

   // For a minimum gene length of  m = range_list [i] . lo  the total
   // bases is the sum of entries  range_list [0 .. i] . hi  that
   // are >= m.  We compute these by scanning  range_list  entries in
   // order and using a priority queue to subtract out  hi  entries that
   // are too small.  As we're going, we keep track of the  lo  entry
   // that achieved the maximum total bases.  There is never any point
   // in choosing a minimum gene length that is not equal to a value
   // of  range_list [i] . lo  because any higher value could cause
   //  range_list [] . hi  values to drop out.

   n = range_list . size ();
   if  (n == 0)
       return  Min_Gene_Len;
          // nothing to do; return the existing value
          // can only happen if max overlap gene of every gene is the same
          // size as the gene itself--not very likely

   opt_bases_len = opt_total_bases = total_bases = 0;
   opt_count_len = opt_count = count = 0;
   
   for  (i = 0;  i < n;  i ++)
     {
      total_bases += range_list [i] . hi;
      count ++;
      while  (! pq . empty () && pq . top () < range_list [i] . lo)
        {
         total_bases -= pq . top ();
         count --;
         pq . pop ();
        }
      if  (opt_total_bases < total_bases
             || (opt_total_bases == total_bases && opt_count < count))
          {
           opt_total_bases = total_bases;
           opt_bases_len = range_list [i] . lo;
          }
      if  (opt_count < count
             || (opt_count == count && opt_total_bases < total_bases))
          {
           opt_count = count;
           opt_count_len = range_list [i] . lo;
          }
      pq . push (range_list [i] . hi);
     }

   if  (Optimize_Total_Len)
       return  Max (opt_bases_len, Min_Gene_Len);
     else
       return  Max (opt_count_len, Min_Gene_Len);
  }



static void  Find_Orfs
    (vector <Orf_t> & orf_list)

//  Put in  orf_list  all sufficiently long orfs in global
//  string  Sequence .

  {
   Orf_t  orf;
   Codon_t  codon;

   // Positions stored in these are the first (i.e., lowest-subscript)
   // base of the codon, using positions starting at 1.
   int  first_fwd_start [3] = {INT_MAX, INT_MAX, INT_MAX};
   int  last_rev_start [3] = {0};
   int  prev_fwd_stop [3] = {0}, prev_rev_stop [3] = {0};
   int  first_fwd_stop [3] = {0};
        // Used for wraparound in circular genomes
   int  ignore_start, ignore_stop;
        // indicate next beginning and ending positions of next
        // region to be ignored
   int  ignore_ct;
        // number of ignore regions
   int  ignore_sub;
        // subscript of current ignore region
   bool  hit_ignore = false;
        // indicates if any ignore region has been reached yet
   bool  ignoring = false;
        // indicates current status of ignore region
   int  first_base = 1;
        // position of the first base in the current region being
        // processed
   int  frame, gene_len, orf_len;
        // frame subscripts are 0, 1, 2 for both forward and reverse
        // events.  The frame is based on the *LAST* (i.e., highest-subscript)
        // base of the codon, using positions starting at 0
   int  i, j, n;

   orf_list . clear ();
   n = Sequence_Len;

   if  (n < Min_Gene_Len)
       return;

   if  (Genome_Is_Circular)
       {
        // allow 2-base overhang to catch start and stop codons that
        // span the end of  Sequence
        n += 2;
        Sequence . push_back (Sequence [0]);
        Sequence . push_back (Sequence [1]);
       }
 
   if  (Ignore_Region . size () == 0)
       ignore_start = ignore_stop = INT_MAX;
     else
       {
        ignore_ct = Ignore_Region . size ();
        ignore_start = Ignore_Region [0] . lo;
        ignore_stop = Ignore_Region [0] . hi;
        ignore_sub = 0;
       }

   frame = 0;
   for  (i = 0;  i < n;  i ++)
     {
      if  (i == ignore_start)
          {
           Finish_Orfs (false, prev_rev_stop, last_rev_start, i, orf_list);
           hit_ignore = ignoring = true;
          }
      else if  (i == ignore_stop)
          {
           // reset saved positions to their initial values as if the
           // start of the genome
           for  (j = 0;  j < 3;  j ++)
             {
              first_fwd_start [j] = INT_MAX;
              last_rev_start [j] = 0;
              prev_fwd_stop [j] = 0;
              prev_rev_stop [j] = 0;
             }
           codon . Clear ();
           first_base = i + 1;
           ignoring = false;
           ignore_sub ++;
           if  (ignore_sub >= ignore_ct)
               ignore_start = ignore_stop = INT_MAX;
             else
               {
                ignore_start = Ignore_Region [ignore_sub] . lo;
                ignore_stop = Ignore_Region [ignore_sub] . hi;
               }
          }

      if  (! ignoring)
          {
           int  which;

           codon . Shift_In (Sequence [i]);

           if  (codon . Can_Be (Fwd_Start_Pattern, which)
                   && first_fwd_start [frame] == INT_MAX)
               first_fwd_start [frame] = i - 1;

           if  (codon . Can_Be (Rev_Start_Pattern, which))
               {
                last_rev_start [frame] = i - 1;
               }

           if  (codon . Must_Be (Fwd_Stop_Pattern, which))
               {
                if  (prev_fwd_stop [frame] == 0)
                    {
                     Handle_First_Forward_Stop (frame, i - 1, first_fwd_start [frame],
                          first_base, gene_len, orf_len,
                          Genome_Is_Circular && ! hit_ignore);
                     first_fwd_stop [frame] = i - 1;
                    }
                  else
                    {
                     gene_len = i - first_fwd_start [frame] - 1;
                     orf_len = i - prev_fwd_stop [frame] - 4;
                    }

                if  (gene_len >= Min_Gene_Len)
                    {
                     orf . Set_Stop_Position (i - 1);
                     orf . Set_Frame (1 + (frame + 1) % 3);
                     orf . Set_Gene_Len (gene_len);
                     orf . Set_Orf_Len (orf_len);
                     orf_list . push_back (orf);
                    }

                first_fwd_start [frame] = INT_MAX;
                prev_fwd_stop [frame] = i - 1;
               }

           if  (codon . Must_Be (Rev_Stop_Pattern, which))
               {
                if  (prev_rev_stop [frame] != 0)
                    {
                     gene_len = last_rev_start [frame] - prev_rev_stop [frame];

                     if  (gene_len >= Min_Gene_Len)
                         {
                          orf . Set_Stop_Position (prev_rev_stop [frame]);
                          orf . Set_Frame (-1 - (frame + 1) % 3);
                          orf . Set_Gene_Len (gene_len);
                          orf . Set_Orf_Len (i - prev_rev_stop [frame] - 4);
                          orf_list . push_back (orf);
                         }
                    }
                last_rev_start [frame] = 0;
                prev_rev_stop [frame] = i - 1;
               }
          }

      if  (frame == 2)
          frame = 0;
        else
          frame ++;
     }

   Finish_Orfs (Genome_Is_Circular, prev_rev_stop, last_rev_start,
        Sequence_Len, orf_list);

   if  (Genome_Is_Circular)
       Sequence . resize (Sequence_Len);

   return;
  }



static void  Finish_Orfs
    (bool use_wraparound, const int prev_rev_stop [3],
     const int last_rev_start [3], int last_position,
     vector <Orf_t> & orf_list)

//  Finish reverse-strand orfs because we've hit the end of the
//  genome (or hit an ignore region).  If  use-wraparound  is true,
//  then the orfs can wrap around the end of the (circular) genome;
//  otherwise, not.   prev_rev_stop  has the position of the last-seen
//  reverse stop codons in each frame, and  last_rev_start  has the
//  position of the last-seen reverse start codons in each frame.
//   last_position  is the last available sequence position to use.
//  Add any suitable orfs to  orf_list .

  {
   Orf_t  orf;
   int  frame, gene_len, orf_len;

   for  (frame = 0;  frame < 3;  frame ++)
     {
      Handle_Last_Reverse_Stop (frame, prev_rev_stop, last_rev_start,
           gene_len, orf_len, use_wraparound, last_position);
      if  (gene_len >= Min_Gene_Len)
          {
           orf . Set_Stop_Position (prev_rev_stop [frame]);
           orf . Set_Frame (-1 - (frame + 1) % 3);
           orf . Set_Gene_Len (gene_len);
           orf . Set_Orf_Len (orf_len);
           orf_list . push_back (orf);
          }
     }

   return;
  }



static void  Get_Ignore_Regions
    (void)

//  Read the list of regions from the with name in global
//   Ignore_File_Name .  Sort them and coalesce overlapping regions.
//  Put the results in global  Ignore_Region .  The format for each
//  line of input is:
//     <lo>  <hi>  <rest of line ignored>  
//  where <lo> and <hi> are integer values.  The region specified
//  is bases <lo>..<hi> inclusive, where bases are numbered starting
//  at 1.  If <hi> is less than <lo> the values are silently swapped.
//  There is no provision for circularity.  If more than one sequence
//  is read in to be searched for genes, these regions will be used
//  to screen them *ALL*, which is very likely not at all what is
//  desired.  Blank lines and lines beginning with # are skipped.

  {
   FILE  * fp;
   char  line [MAX_LINE];
   Range_t  range;
   int  i, j, n, line_ct;

   fp = File_Open (Ignore_File_Name, "r", __FILE__, __LINE__);

   line_ct = 0;
   while  (fgets (line, MAX_LINE, fp) != NULL)
     {
      char  * p;
      int  a, b;

      line_ct ++;

      // set  p  to point to the first non-blank character on the line
      for  (p = line;  * p != '\0' && isspace (* p);  p ++)
        ;
      
      if  (* p == '\0' || * p == '#')
          continue;
      else if  (sscanf (line, "%d %d", & a, & b) == 2)
          {
           if  (a < b)
               {
                range . lo = a - 1;
                  // convert to 0-based between coordinates
                range . hi = b;
               }
             else
               {
                range . lo = b - 1;
                range . hi = a;
               }
           Ignore_Region . push_back (range);
          }
        else
          {
           fprintf (stderr, "ERROR:  Following line %d in file %s is bad--skipped:\n",
                line_ct, Ignore_File_Name);
           fputs (line, stderr);
           fputc ('\n', stderr);
          }
     }

   fclose (fp);

   // sort regions by lo value
   sort (Ignore_Region . begin (), Ignore_Region . end (), Range_Cmp);

   // combine overlapping regions and move them to the front of  Ignore_Region
   n = Ignore_Region . size ();

   if  (n <= 1)
       return;

   for  (i = 0, j = 1;  j < n;  j ++)
     if  (Ignore_Region [j] . lo < Ignore_Region [i] . hi)
         {  // overlap
          if  (Ignore_Region [i] . hi < Ignore_Region [j] . hi)
              Ignore_Region [i] . hi = Ignore_Region [j] . hi;
                 // j extends i to the right
         }
       else
         {
          i ++;
          if  (i != j)
              Ignore_Region [i] = Ignore_Region [j];
                // move j region down to front of list
         }

   Ignore_Region . resize (i + 1);

   return;
  }



static void  Get_Intervals
    (vector <Orf_Interval_t> & interval, const vector <Orf_t> & orf_list)

//  Populate  interval  with intervals corresponding to the entries
//  in  orf_list .  Intervals are in 0-based between coordinates and
//  are sorted by lo value then by hi.

  {
   Orf_Interval_t  new_int;
   int  i, n;

   interval . clear ();

   new_int . deleted = false;

   n = orf_list . size ();
   for  (i = 0;  i < n;  i ++)
     {
      int  frame, stop, len;

      frame = orf_list [i] . Get_Frame ();
      stop = orf_list [i] . Get_Stop_Position ();
      len = orf_list [i] . Get_Gene_Len ();
         // does not include the stop codon length
      if  (frame > 0)
          {
           new_int . hi = On_Seq_0 (stop - 1);
           new_int . lo = new_int . hi - len;
          }
        else
          {
           new_int . lo = On_Seq_0 (stop + 2);
           new_int . hi = new_int . lo + len;
          }
        //  new_int . lo  and  ol . hi  are the 0-based between coordinates
        //  of the coding portion of the gene
      new_int . frame = frame;
        // keep track of corresponding entry in  orf_list  so can delete
      interval . push_back (new_int);
     }

   sort (interval . begin (), interval . end (), Orf_Interval_Cmp);

   return;
  }



static void  Handle_First_Forward_Stop
     (int fr, int pos, int start_pos, int first_base, int & gene_len,
      int & orf_len, bool use_wraparound)

//  Handle the case of a forward stop codon, beginning at position
//   pos  in the global  Sequence  (counting starting at 1)  which
//  is in frame subscript  fr  (0, 1 or 2).   start_pos  is the
//  position of the first possible start codon in this frame, or else
//   INT_MAX  if none has been encountered yet.   first_base  is the
//  position of the first base in this region.  Set gene_len
//  to the length of longest possible gene for this orf.  If no gene
//  is possible (e.g., because there is no start codon), then set
//   gene_len  to  0 .  Set  orf_len  to the length of this orf.
//  If  use_wraparound  is true, allow orfs/genes to wrap around
//  through the front of the (circular) sequence.

  {
   if  (use_wraparound)
       {
        Wrap_Through_Front (fr, pos, gene_len, orf_len);
        if  (gene_len == 0 && start_pos != INT_MAX)
            gene_len = pos - start_pos;
       }
     else
       {
        // assume the orf is entirely contained in  Sequence  no
        // matter whether the odd 1 or 2 bases at the front could be
        // a stop or not
        orf_len = pos - first_base;
        orf_len -= orf_len % 3;  // round down
        if  (start_pos == INT_MAX)
            gene_len = 0;
          else
            gene_len = pos - start_pos;
       }

   return;
  }



static void  Handle_Last_Reverse_Stop
     (int fr, const int prev_rev_stop [3], const int last_rev_start [3],
      int & gene_len, int & orf_len, bool use_wraparound, int last_position)

//  Set  orf_len  and  gene_len  to the length of the last orf, and longest
//  gene in it, resp., in reverse reading frame  fr .
//   prev_rev_stop  has the last stop position in  Sequence  in each
//  reverse reading frame, and  last_rev_start  has the corresponding
//  last start locations.    use_wraparound  indicates whether the
//  orfs are allowed to wrap around the end of the (circular) genome.
//   last_position  is the highest-numbered sequence position available

  {
   if  (prev_rev_stop [fr] == 0)
       {
        // no reverse stop in this frame at all
        gene_len = orf_len = 0;
        return;
       }

   if  (use_wraparound)
       {
        int  wrap_fr;
             // the frame at the front of the genome corresponding
             // to  fr
        wrap_fr = (3 + fr - (Sequence_Len % 3)) % 3;

        Wrap_Around_Back (wrap_fr, prev_rev_stop [fr], gene_len, orf_len);

        if  (gene_len == 0 && last_rev_start [fr] > 0)
            gene_len = last_rev_start [fr] - prev_rev_stop [fr];
       }
     else
       {
        orf_len = last_position - prev_rev_stop [fr] - 2;
             // round down to next multiple of 3
        orf_len -= orf_len % 3;

        if  (last_rev_start [fr] == 0)
            gene_len = 0;
          else
            gene_len = last_rev_start [fr] - prev_rev_stop [fr];
       }


   assert (orf_len % 3 == 0);
   assert (gene_len % 3 == 0);

   return;
  }



static int  Intersect_Size
    (int a, int b, int c, int d)

//  Return the number of bases by which region  a .. b  overlaps
//  region  c .. d .  All values are space-based coordinates.

  {
   if  (d <= a || b <= c)
       return  0;

   return  Min (b, d) - Max (a, c);
  }



static int  On_Seq_0
    (int i)

//  Return the subscript equivalent to  i  on a sequence of
//  length  Sequence_Len  (with subscripts starting at 0)
//  assuming circular wraparounds.

  {
   while  (i < 0)
     i += Sequence_Len;
   while  (Sequence_Len <= i)
     i -= Sequence_Len;

   return  i;
  }



static int  On_Seq_1
    (int i)

//  Return the subscript equivalent to  i  on a sequence of
//  length  Sequence_Len  (with subscripts starting at 1)
//  assuming circular wraparounds.

  {
   while  (i < 1)
     i += Sequence_Len;
   while  (Sequence_Len < i)
     i -= Sequence_Len;

   return  i;
  }



static void  Output_Orfs
    (FILE * fp, const vector <Orf_Interval_t> & interval, int & total_len)

//  Print the regions in  interval  to  fp  and set  total_len  to
//  the sum of their lengths.  Include in the output the frame and
//  entropy distance value of each region.

  {
   double  entropy_ratio;
   int  start, stop, len;
   int  i, n;

   if  (Print_Output_Header)
       fprintf (fp, "\nPutative Genes:\n");

   total_len = 0;

   n = interval . size ();
   for  (i = 0;  i < n;  i ++)
     {
      len = interval [i] . hi - interval [i] . lo;
      total_len += len;
         // does not include the stop codon length
      if  (interval [i] . frame > 0)
          {
           if  (Without_Stops)
               {
                stop = On_Seq_1 (interval [i] . hi);
                start = On_Seq_1 (stop - len + 1);
               }
             else
               {
                stop = On_Seq_1 (interval [i] . hi + 3);
                start = On_Seq_1 (stop - len - 2);
               }
          }
        else
          {
           if  (Without_Stops)
               {
                stop = On_Seq_1 (interval [i] . lo + 1);
                start = On_Seq_1 (stop + len - 1);
               }
             else
               {
                stop = On_Seq_1 (interval [i] . lo - 2);
                start = On_Seq_1 (stop + len + 2);
               }
          }
      entropy_ratio = Entropy_Distance_Ratio (start, len, interval [i] . frame);
      fprintf (fp, "%05d %7d %7d  %+2d  %6.3f\n", i + 1, start, stop,
           interval [i] . frame, entropy_ratio);
     }

   return;
  }



static void  Parse_Command_Line
    (int argc, char * argv [])

//  Get options and parameters from command line with  argc
//  arguments in  argv [0 .. (argc - 1)] .

  {
   char  * p, * q;
   bool  errflg = false;
   int  ch;

   optarg = NULL;

#if  ALLOW_LONG_OPTIONS
   int  option_index = 0;
   static struct option  long_options [] = {
        {"start_codons", 1, 0, 'A'},
        {"entropy", 1, 0, 'E'},
        {"fixed", 0, 0, 'f'},
        {"min_len", 1, 0, 'g'},
        {"help", 0, 0, 'h'},
        {"ignore", 1, 0, 'i'},
        {"linear", 0, 0, 'l'},
        {"length_opt", 0, 0, 'L'},
        {"no_header", 0, 0, 'n'},
        {"max_olap", 1, 0, 'o'},
        {"cutoff", 1, 0, 't'},
        {"without_stops", 0, 0, 'w'},
        {"trans_table", 1, 0, 'z'},
        {"stop_codons", 1, 0, 'Z'},
        {0, 0, 0, 0}
      };

   while  (! errflg && ((ch = getopt_long (argc, argv,
        "A:E:fg:hi:lno:t:wz:Z:",
        long_options, & option_index)) != EOF))
#else
   while  (! errflg && ((ch = getopt (argc, argv,
        "A:E:fg:hi:lno:t:wz:Z:")) != EOF))
#endif

     switch  (ch)
       {
        case  'A' :
          Start_Codon . clear ();
          for  (p = strtok (optarg, ",");  p != NULL;  p = strtok (NULL, ","))
            {
             q = strdup (p);
             Make_Lower_Case (q);
             Start_Codon . push_back (q);
            }
          break;

        case  'E' :
          Read_Entropy_Profiles (optarg, errflg);
          break;

        case  'f' :
          Fixed_Min_Len = true;
          break;

        case  'g' :
          Min_Gene_Len = strtol (optarg, & p, 10);
          if  (p == optarg || Min_Gene_Len <= 0)
              {
               fprintf (stderr, "ERROR:  Bad minimum gene length (-g option)\n"
                    "  value = \"%s\"", optarg);
               errflg = true;
              }
          break;

        case  'h' :
          errflg = true;
          break;

        case  'i' :
          Ignore_File_Name = optarg;
          break;

        case  'l' :
          Genome_Is_Circular = false;
          break;

        case  'L' :
          Optimize_Total_Len = true;
          break;

        case  'n' :
          Print_Output_Header = false;
          break;

        case  'o' :
          Max_Olap_Bases = strtol (optarg, & p, 10);
          if  (p == optarg || Max_Olap_Bases < 0)
              {
               fprintf (stderr, "ERROR:  Bad max overlap bases (-o option)\n"
                    "  value = \"%s\"", optarg);
               errflg = true;
              }
          break;

        case  't' :
          Entropy_Cutoff = strtod (optarg, & p);
          Use_Entropy_Filter = true;
          break;

        case  'w' :
          Without_Stops = true;
          break;

        case  'z' :
          Genbank_Xlate_Code = strtol (optarg, & p, 10);
          Set_Stop_Codons_By_Code (Stop_Codon, Genbank_Xlate_Code, errflg);
          break;

        case  'Z' :
          Stop_Codon . clear ();
          for  (p = strtok (optarg, ",");  p != NULL;  p = strtok (NULL, ","))
            {
             q = strdup (p);
             Make_Lower_Case (q);
             Stop_Codon . push_back (q);
            }
          break;

        case  '?' :
          fprintf (stderr, "Unrecognized option -%c\n", optopt);

        default :
          errflg = true;
       }

   if  (errflg)
       {
        Usage ();
        exit (EXIT_FAILURE);
       }

   if  (optind > argc - 2)
       {
        Usage ();
        exit (EXIT_FAILURE);
       }

   Sequence_File_Name = argv [optind ++];
   Output_Filename = argv [optind ++];

   return;
  }



static void  Print_Comma_Separated_Strings
    (const vector <const char *> & v, FILE * fp)

//  Print the strings in  v  to  fp .  Separate them by
//  commas with no spaces.

  {
   int  i, n;

   n = v . size ();

   if  (n == 0)
       return;

   fprintf (fp, "%s", v [0]);
   for  (i = 1;  i < n;  i ++)
     fprintf (fp, ",%s", v [i]);

   return;
  }



static void  Read_Entropy_Profiles
    (const char * fn, bool & errflg)

//  Read positive and negative entropy profiles from the
//  file name  fn .  If not successful, set  errflg  to  true .
//  Save the entropy profiles in globals  Pos_Entropy_Profile
//  and  Neg_Entropy_Profile .

  {
   FILE  * fp;
   char  line [MAX_LINE];
   int  i;

   fp = File_Open (fn, "r");
   fgets (line, MAX_LINE, fp);  // skip header line
   for  (i = 0;  i < 20;  i ++)
     if  (fscanf (fp, "%s %lf %lf\n", line, Pos_Entropy_Profile + i,
             Neg_Entropy_Profile + i) != 3)
         {
          errflg = true;
          return;
         }

   fclose (fp);

   return;
  }



static void  Remove_Shorter
    (vector <Orf_Interval_t> & interval, int len)

//  Remove from  interval  any entry shorter than  len .

  {
   int  i, j, n;

   n = interval . size ();
   for  (i = j = 0;  i < n;  i ++)
     if  (len <= interval [i] . hi - interval [i] . lo)
         {
          if  (i != j)
              interval [j] = interval [i];
          j ++;
         }

   interval . resize (j);

   return;
  }



static void  Set_Start_And_Stop_Codons
    (void)

//  Set globals  Start_Codon  and  Stop_Codon  to the sequences
//  that are allowed to be start and stop codons for genes.

  {
   Codon_t  codon;
   int  i, n;

   if  (Start_Codon . size () == 0)
       {
        n = sizeof (DEFAULT_START_CODON) / sizeof (char *);
        for  (i = 0;  i < n;  i ++)
          Start_Codon . push_back (DEFAULT_START_CODON [i]);
       }

   if  (Stop_Codon . size () == 0)
       {
        n = sizeof (DEFAULT_STOP_CODON) / sizeof (char *);
        for  (i = 0;  i < n;  i ++)
          Stop_Codon . push_back (DEFAULT_STOP_CODON [i]);
       }

   Fwd_Start_Pattern . clear ();
   Fwd_Stop_Pattern . clear ();
   Rev_Start_Pattern . clear ();
   Rev_Stop_Pattern . clear ();

   n = Start_Codon . size ();
   for  (i = 0;  i < n;  i ++)
     {
      codon . Set_From (Start_Codon [i]);
      Fwd_Start_Pattern . push_back (codon);
      codon . Reverse_Complement ();
      Rev_Start_Pattern . push_back (codon);
     }

   n = Stop_Codon . size ();
   for  (i = 0;  i < n;  i ++)
     {
      codon . Set_From (Stop_Codon [i]);
      Fwd_Stop_Pattern . push_back (codon);
      codon . Reverse_Complement ();
      Rev_Stop_Pattern . push_back (codon);
     }

   return;
  }



static void  Usage
    (void)

//  Print to stderr description of options and command line for
//  this program.

  {
   fprintf (stderr,
       "USAGE:  long-orfs [options] <sequence-file> <output-file>\n"
       "\n"
       "Read DNA sequence in <sequence-file> and find and output the\n"
       "coordinates of long, non-overlapping orfs in it.\n"
       "Output goes to file <output-file> or standard output if <output-file>\n"
       "is \"-\"\n"
       "\n"
       "Options:\n"
       " -A <codon-list>\n"
       " --start_codons <codon-list>\n"
       "    Use comma-separated list of codons as start codons\n"
       "    Sample format:  -A atg,gtg\n"
       " -E <filename>\n"
       " --entropy <filename>\n"
       "    Read entropy profiles from <filename>.  Format is one header\n"
       "    line, then 20 lines of 3 columns each.  Columns are amino acid,\n"
       "    positive entropy, negative entropy.  Rows must be in order\n"
       "    by amino acid code letter\n"
       " -f\n"
       " --fixed\n"
       "    Do *NOT* automatically determine the minimum gene length so as\n"
       "    to maximize the total length of output regions\n"
       " -g <n>\n"
       " --min_len <n>\n"
       "    Only genes with length >= <n> will be considered\n"
       " -h\n"
       " --help\n"
       "    Print this message\n"
       " -i <filename>\n"
       " --ignore <filename>\n"
       "    <filename> specifies regions of bases that are off \n"
       "    limits, so that no bases within that area will be examined\n"
       " -l\n"
       " --linear\n"
       "    Assume linear rather than circular genome, i.e., no wraparound\n"
       " -L\n"
       " --length_opt\n"
       "    Find and use the minimum gene length that maximizes the total\n"
       "    length of non-overlapping genes, instead of maximizing the\n"
       "    number of such genes\n"
       " -n\n"
       " --no_header\n"
       "    Do not include heading information in the output; only output\n"
       "    the orf-coordinate lines\n"
       " -o <n>\n"
       " --max_olap <n>\n"
       "    Set maximum overlap length to <n>.  Overlaps this short or shorter\n"
       "    are ignored.\n"
       " -t <x>\n"
       " --cutoff <x>\n"
       "    Only genes with entropy distance score less than <x> will be considered\n"
       " -w\n"
       " --without_stops\n"
       "    Do *NOT* include the stop codon in the output coordinates.\n"
       "    By default, it is included.\n"
       " -z <n>\n"
       " --trans_table <n>\n"
       "    Use Genbank translation table number <n> for stop codons\n"
       " -Z <codon-list>\n"
       " --stop_codons <codon-list>\n"
       "    Use comma-separated list of codons as stop codons\n"
       "    Sample format:  -Z tag,tga,taa\n"
       "\n");

   return;
  }



static void  Wrap_Around_Back
    (int wfr, int pos, int & gene_len, int & orf_len)

//  Set  orf_len  to the length of the complement-strand orf that
//  wraps around the end of the sequence in global  Sequence .  The
//  stop codon for the orf is at position  pos  (first base of codon
//  numbered starting at 1).   wfr  is the frame subscript of the
//  reading frame to use at the beginning of  Sequence  (i.e., it
//  allows for  Sequence_Len  not being a multiple of 3).  The
//  maximum possible orf length is  Sequence_Len - 3  rounded down
//  to the nearest multiple of 3.  Set  gene_len  to the longest
//  possible gene in that orf, looking only for starts that are completely
//  contained in the start of  Sequence .  If no starts are found,
//  set  gene_len  to  0  (even though there may be starts between
//   pos  and the end of  Sequence ).

  {
   Codon_t  codon;
   int  start_at, check_len, frame, orf_add, which;
   int  i;

   assert (pos > 0);
   check_len = pos - 1;

   start_at = -1;
   orf_add = 0;
     // this is the number of extra bases at the front of the sequence
     // to add to the orf at the back
   frame = 0;
   for  (i = 0;  i < check_len;  i ++)
     {
      codon . Shift_In (Sequence [i]);

      if  (frame == wfr)
          {
           if  (codon . Must_Be (Rev_Stop_Pattern, which))
               {
                orf_add = i - 2;
                break;
               }
             else
               orf_add = i + 1;
          }
      if  (frame == wfr && codon . Can_Be (Rev_Start_Pattern, which))
          start_at = i + 1;

      if  (frame == 2)
          frame = 0;
        else
          frame ++;
     }

   orf_len = orf_add + Sequence_Len - pos - 2;
   orf_len -= orf_len % 3;
   if  (start_at == -1)
       gene_len = 0;
     else
       gene_len = start_at + Sequence_Len - pos - 2;
   
   return;
  }



static void  Wrap_Through_Front
    (int fr, int pos, int & gene_len, int & orf_len)

//  Set  orf_len  to the length of the orf with forward frame subscript
//   fr  with stop codon at position  pos  that wraps around and begins
//  at the end of the sequence in global  Sequence .  Set  gene_len
//  to the longest possible gene in that orf.  Start looking at the
//  beginning of  Sequence  and assume there are no stops between
//  there and  pos .  If no starts are found, set  gene_len  to  0
//  (even though there may be starts between  0  and  pos in  Sequence ).

  {
   Codon_t  codon;
   int  start_at, check_len, which;
   int  i, j, s;

   assert (pos > 0);
   start_at = -1;
   s = (pos - 1) % 3;
   check_len = Sequence_Len + s - pos - 4;

   // Loop back to at most original stop codon.  Do not allow the
   // orf to overlap that stop codon.
   for  (i = 0;  i < check_len;  i += 3)
     {
      for  (j = 0;  j < 3;  j ++)
        {
         s --;
         if  (s < 0)
             s += Sequence_Len;
         codon . Reverse_Shift_In (Sequence [s]);
        }

      if  (codon . Must_Be (Fwd_Stop_Pattern, which))
          break;
      if  (codon . Can_Be (Fwd_Start_Pattern, which))
          start_at = i + 3;

     }

   orf_len = i + 3 * ((pos - 1) / 3);
   if  (start_at == -1)
       gene_len = 0;
     else
       gene_len = start_at + 3 * ((pos - 1) / 3);
   
   return;
  }