Codebase list bitseq / run/7d219c91-43d8-423e-9c96-3015cb23a4dd/main estimateExpression.cpp
run/7d219c91-43d8-423e-9c96-3015cb23a4dd/main

Tree @run/7d219c91-43d8-423e-9c96-3015cb23a4dd/main (Download .tar.gz)

estimateExpression.cpp @run/7d219c91-43d8-423e-9c96-3015cb23a4dd/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#include<algorithm>
#include<ctime>
#include<cmath>
#ifdef _OPENMP
#include<omp.h>
#endif
#include<sstream>

#include "ArgumentParser.h"
#include "CollapsedSampler.h"
#include "FileHeader.h"
#include "GibbsSampler.h"
#include "misc.h"
#include "MyTimer.h"
#include "Sampler.h"
#include "TagAlignments.h"
#include "TranscriptInfo.h"
#include "transposeFiles.h"

#include "common.h"

#define DEBUG(x)
#define FF first
#define SS second

//#define LOG_NEED
//#define LOG_RHAT
TranscriptInfo trInfo;

long  M;//, mAll; // M : number of transcripts (include transcript 0 ~ Noise)
//long N, 
long Nunmap; // N: number of read, un-mappable read, mappable reads

vector<string> samplesFileNames;
string failedMessage;

void clearDataEE(){
   samplesFileNames.clear();
}

TagAlignments* readData(const ArgumentParser &args) {//{{{
   long i,j,num,tid;
   double prb;
   long Ntotal=0,Nmap=0,probM=0;
   string readId,strand,blank;
   ifstream inFile;
   MyTimer timer;
   TagAlignments *alignments = new TagAlignments(false);

   // Read alignment probabilities {{{
   inFile.open(args.args()[0].c_str());
   FileHeader fh(&inFile);
   ns_fileHeader::AlignmentFileType format;
   if((!fh.probHeader(&Nmap,&Ntotal,&probM,&format)) || (Nmap ==0)){//{{{
      error("Prob file header read failed.\n");
      return NULL;
   }//}}}
   // Use number of transcripts from prob file if it is higher.
   if(probM>M)M = probM;
   message("N mapped: %ld\n",Nmap);
   messageF("N total:  %ld\n",Ntotal);
   if(args.verb())message("Reading alignments.\n");
   if(Ntotal>Nmap)Nunmap=Ntotal-Nmap;
   else Nunmap=1; //no valid count file assume only one not aligned properly
   alignments->init(Nmap,0,M);
   long mod=10000;
   long bad = 0;
   timer.start();
   for(i = 0; i < Nmap; i++) {
      inFile>>readId>>num;
      if(format==ns_fileHeader::OLD_FORMAT)inFile>>blank;
      if(!inFile.good())break;
     //    message("%s %ld\n",(readId).c_str(),num);
      for(j = 0; j < num; j++) {
         if(format == ns_fileHeader::OLD_FORMAT)inFile>>tid>>strand>>prb;
         else inFile>>tid>>prb;
         if(inFile.fail()){
            inFile.clear();
            // ignore other read's alignments
            j=num;
            // this read goes to noise assigning
            tid=0;
            // 10 means either 10 or exp(10), but should be still be large enough
            prb=10;
            bad++;
         }
         switch(format){
            case ns_fileHeader::OLD_FORMAT:
               if(tid!=0) prb /= trInfo.L(tid-1);
            case ns_fileHeader::NEW_FORMAT:
               alignments->pushAlignment(tid, prb);
               break;
            case ns_fileHeader::LOG_FORMAT:
               alignments->pushAlignmentL(tid, prb);
         } 
      }
      // ignore rest of line
      inFile.ignore(10000000,'\n');

      alignments->pushRead();
   
      R_INTERUPT;
      if(args.verb() && (i % mod == 0) && (i>0)){
         message("  %ld ",i);
         timer.split();
         mod*=10;
      }
   }
   if(bad>0)warning("Main: %ld reads' alignment information were corrupted.\n",bad);
   inFile.close();
   long Nhits,NreadsReal;
   alignments->finalizeRead(&M, &NreadsReal, &Nhits);
   // If the transcript info is initialized, check that the number of transcripts has not changed.
   // The number can't be smaller as it starts off with trInfo->M
   if((trInfo.isOK())&&(M > trInfo.getM() + 1)){
      if(args.getS("outputType") == "rpkm"){
         error("Main: Number of transcripts in .prob file is higher than in the .tr file (%ld %ld)!\n",M,trInfo.getM() + 1);
         delete alignments;
         return NULL;
      }else{
         warning("Main: Number of transcripts in .prob file is higher than in the .tr file (%ld %ld)!\n   This can cause problems later on!\n",M,trInfo.getM() + 1);
      }
   }
   //}}}
   if(i<Nmap)message("Read only %ld reads.\n",NreadsReal);
   message("All alignments: %ld\n",Nhits);
   messageF("Isoforms: %ld\n",M);
   Nmap = NreadsReal;
   return alignments;
   /* {{{ remapping isoforms to ignore those without any hits
   M = mAll;
   M = isoformsHit;
   isoformMap.assign(M);
   for(i=0,j=0;i<mAll;i++)
      if(readInIsoform[i]!=-1){
         readInIsoform[i]=j;
         isoformMap[j]=i;
         j++;
      }
   for(i=0;i<Sof(alignments);i++){
      alignments[i].setTrId( readInIsoform[ alignments[i].getTrId() ] );
   }
   }}}*/
}//}}}

void MCMC(TagAlignments *alignments,gibbsParameters &gPar,ArgumentParser &args){//{{{
   // Declarations: {{{
   DEBUG(message("Declarations:\n"));
   long i,j,samplesHave=0,totalSamples=0,samplesN,chainsN,samplesSave,seed;
   pairD rMean,tmpA,tmpV,sumNorms;
   double rH1,rH2;
   ofstream meansFile;
   ofstream *samplesFile = new ofstream[gPar.chainsN()];
   MyTimer timer;
   bool quitNext = false;
   vector<pairD> betwVar(M),withVar(M),s2j(M),totAverage(M),av,var;
   vector<pair<pairD,long> > rHat2(M);
   // }}}
   // Names: {{{
   stringstream sstr;
   #ifdef LOG_RHAT
      sstr.str("");
      sstr<<args.getS("outFilePrefix")<<".rhatLog";
      string rhatLogFile = sstr.str();
   #endif
   #ifdef LOG_NEED
      sstr.str("");
      sstr<<args.getS("outFilePrefix")<<".effLog";
      string effLogFile = sstr.str();
   #endif
   // }}}
   // Init: {{{
   DEBUG(message("Initialization:\n"));
   samplesN=gPar.samplesN();
   chainsN=gPar.chainsN();
   samplesSave=(gPar.samplesSave()-1)/chainsN+1;

   vector<Sampler*> samplers(chainsN);
   if( ! args.flag("gibbs")){
      for(j=0;j<chainsN;j++)
         samplers[j] = new CollapsedSampler;
   }else{
      for(j=0;j<chainsN;j++)
         samplers[j] = new GibbsSampler;
   }

   timer.start();
   timer.start(1);
   if(args.isSet("seed"))seed=args.getL("seed");
   else seed = time(NULL);
   if(args.verbose)message("seed: %ld\n",seed);
   for(i=0;i<chainsN;i++){
      // Init samplers
      DEBUG(message("Sampler %ld init.\n",i);)
      samplers[i]->noSave();
      DEBUG(message("init\n");)
      samplers[i]->init(M, samplesN, samplesSave, Nunmap, alignments, gPar.beta(), gPar.dir(), seed);
      DEBUG(message("   seed: %ld\n",seed);)
      // sampler is initialized with 'seed' and then sets 'seed' to new random seed for the next sampler
   }
   // parallel block: 
   // make sure that all functions used are CONST and variables are being READ or private
   // private: samplesHave (or subCounter)
#ifdef BIOC_BUILD
   long samplesDo, subCounter;
   for(samplesHave=0;samplesHave<gPar.burnIn();samplesHave+=samplesDo){
      samplesDo = min(gPar.burnIn() - samplesHave, samplesAtOnce);
      #pragma omp parallel for private(subCounter)
      for(i=0;i<chainsN;i++){
         for(subCounter=0;subCounter<samplesDo; subCounter++){
           samplers[i]->sample();
         }
      }
      // Check for interrupt out of the parallel part.
      R_INTERUPT;
   }
#else
   #pragma omp parallel for private(samplesHave)
   for(i=0;i<chainsN;i++){
      DEBUG(message(" burn in\n");) 
      for(samplesHave=0;samplesHave<gPar.burnIn();samplesHave++){
         samplers[i]->sample();
      }
   }
#endif
   totalSamples = gPar.burnIn();
   message("Burn in: %ld DONE. ",gPar.burnIn());
   DEBUG(message(" reseting samplers after BurnIn\n"));
   for(i=0;i<chainsN;i++){
      samplers[i]->resetSampler(samplesN);
   }
   timer.split(0,'m');
   //}}}
   // Main sampling loop:
   while(1){
      timer.start();
      // Sample: {{{
      // parallel block:
      // make sure that all functions used are CONST and variables are being READ or private
      // private: samplesHave (or subCounter)
#ifdef BIOC_BUILD
      for(samplesHave=0;samplesHave<samplesN;samplesHave+=samplesDo){
         samplesDo = min(samplesN - samplesHave, samplesAtOnce);
         #pragma omp parallel for private(subCounter)
         for(i=0;i<chainsN;i++){
            for(subCounter=0;subCounter<samplesDo; subCounter++){
               samplers[i]->sample();
               samplers[i]->update();
            }
         }
         // Check for interrupt out of the parallel part.
         R_INTERUPT;
      }
#else
      #pragma omp parallel for private(samplesHave)
      for(i=0;i<chainsN;i++){
         for(samplesHave = 0;samplesHave<samplesN;samplesHave++){
            samplers[i]->sample();
            samplers[i]->update();
         }
      }
#endif
      totalSamples += samplesN;
      message("\nSampling DONE. ");
      timer.split(0,'m');
      //}}}
      // Check for change of parameters: {{{
      gPar.readParameters();
      // }}}
      // Compute convergence statistics {{{
      totAverage.assign(M,pairD(0,0));
      betwVar.assign(M,pairD(0,0));
      withVar.assign(M,pairD(0,0));
      // Norms for sums (used for variance and mean), should be same for all
      // samplers and all transcripts.
      sumNorms = samplers[0]->getSumNorms();
      samplesHave = (long)sumNorms.FF;
      for(i=0;i<M;i++){
         for(j=0;j<chainsN;j++){
            tmpA = samplers[j]->getAverage(i);
            tmpV = samplers[j]->getWithinVariance(i);
            totAverage[i].FF += tmpA.FF;
            totAverage[i].SS += tmpA.SS;
            withVar[i].FF += tmpV.FF;
            withVar[i].SS += tmpV.SS;
         }
         totAverage[i].FF /= chainsN;
         totAverage[i].SS /= chainsN;
         withVar[i].FF /= chainsN;
         withVar[i].SS /= chainsN;
         for(j=0;j<chainsN;j++){
            tmpA = samplers[j]->getAverage(i);
            betwVar[i].FF += (totAverage[i].FF - tmpA.FF)*(totAverage[i].FF - tmpA.FF);
            betwVar[i].SS += (totAverage[i].SS - tmpA.SS)*(totAverage[i].SS - tmpA.SS);
         }
         betwVar[i].FF /= (chainsN-1.0);
         betwVar[i].SS /= (chainsN-1.0);
      }
      for(i=0;i<M;i++){
         // betwVar[i] *= samplesHave / (chainsN - 1.0);
         rHat2[i].SS=i;
         if(withVar[i].FF == 0 ){
            rHat2[i].FF.FF = 0;
            rHat2[i].FF.SS = 0;
         } else {
            // First 'column' is Rhat of logit(theta).
            rHat2[i].FF.FF = (sumNorms.SS - 1.0) / sumNorms.SS + betwVar[i].SS / withVar[i].SS ;
            rHat2[i].FF.SS = (sumNorms.FF - 1.0) / sumNorms.FF + betwVar[i].FF / withVar[i].FF ;
               //betwVar[i] / ( samplesHave * withVar[i] );
         }
      }
      sort(rHat2.rbegin(),rHat2.rend());
      message("rHat (for %ld samples) \n",samplesN);
      rMean.FF=0;
      rMean.SS=0;
      message("    rHat   (rH theta|    tid | mean theta)\n");
      for(i=0;(i<10) && (i<M);i++){
         rH1 = sqrt(rHat2[i].FF.FF);
         rH2 = sqrt(rHat2[i].FF.SS);
         rMean.FF+=rH1;
         rMean.SS+=rH2;
//         message("   %lf (%lf | %ld | %lf|%lf|%lf)",rHat2[i].FF.FF,rHat2[i].FF.SS,rHat2[i].SS,totAverage[rHat2[i].SS].FF,withVar[rHat2[i].SS].FF,betwVar[rHat2[i].SS].FF/samplesHave);
         if((i<3) || args.verbose){
            message("   %7.4lf (%7.4lf | %6ld | %8.5lf)",rH1,rH2,rHat2[i].SS-1,totAverage[rHat2[i].SS].FF);
            message("\n");
         }
//                  message("   %lf",sqrt(rHat2[i].FF));
      }                  
      rMean.FF /= 10.0;
      rMean.SS /= 10.0;
      message("  Mean rHat of worst 10 transcripts: %lf\n",rMean.FF);
      if(args.flag("scaleReduction"))message("   (target: %.3lf)\n",gPar.targetScaleReduction());
      message("  Mean C0: (");
      for(j=0;j<chainsN;j++)message("%ld ",samplers[j]->getAverageC0());
      message("). Nunmap: %ld\n",Nunmap);
      if(args.flag("gibbs"))message("  Mean thetaAct (noise parameter)\n   %lf\n",totAverage[0].FF);
      messageF("\n");
      //}}}
      // Log rHat if necessary. {{{
      #ifdef LOG_RHAT
         ofstream rhatLog(rhatLogFile.c_str(), ofstream::app);
         rhatLog<<totalSamples<<" "<<(long)timer.getTime(1);
         for(i=1;i<M;i++){
            rhatLog<<" "<<sqrt(rHat2[i].FF.FF);
         }
         rhatLog<<endl;
         rhatLog.close();
      #endif
      // }}}
      // Increase sample size and start over: {{{
      if(quitNext){// Sampling iterations end {{{
         if(sqrt(rHat2[0].FF.FF) > gPar.targetScaleReduction()){
            message("WARNING: Following transcripts failed to converge entirely\n   (however the estimates might still be usable):\n");
            long countUncoverged=0;
            sstr.str("");
            sstr<<"# unconverged_transcripts: ";
            for(i=0;(i<M) && (sqrt(rHat2[i].FF.FF) > gPar.targetScaleReduction());i++){
               sstr<<rHat2[i].SS<<" ("<<sqrt(rHat2[i].FF.FF)<<") ";
               countUncoverged++;
               if(args.verbose)message("   %s( %ld , %lf )\n",(trInfo.trName(rHat2[i].SS-1)).c_str(),rHat2[i].SS-1,sqrt(rHat2[i].FF.FF));
            }
            sstr<<"\n";
            failedMessage=sstr.str();
            if(!args.verbose)message("   %ld transcripts (full list is in the output file)\n",countUncoverged);
         }
         // Close files and delete pointers.
         for(j=0;j<chainsN;j++){
            samplers[j]->noSave();
            samplesFile[j].close();
         }
         delete[] samplesFile;
         break;
      }//}}}
      if(! (args.flag("scaleReduction") || args.flag("MCMC_samplesDOmax"))){
         vector<double> needS(M,0);
         for(i=1;i<M;i++){
            // between variance was not multiplied by samplesHave===n
            // there is no chainsN in the denominator because samplesSave was already divided by chainsN
            // Use LOGIT(theta):
            needS[i] = samplesSave * sumNorms.SS/
                     ((sumNorms.SS-1.0)/sumNorms.SS*withVar[i].SS/betwVar[i].SS+1.0);
            //needS[i] = samplesSave * samplesHave/
            //         ((samplesHave-1.0)/samplesHave*withVar[i].FF/betwVar[i].FF+1.0);
         } 
         // log the number of effective samples, only when testing... //{{{
         #ifdef LOG_NEED
            ofstream effLog(effLogFile.c_str());
            for(i=1;i<M;i++){
               effLog<<needS[rHat2[i].SS]<<" "<<sqrt(rHat2[i].FF.FF)<<" "<<samplesHave*betwVar[rHat2[i].SS].FF<<" "<<withVar[rHat2[i].SS].FF<<" "<<rHat2[i].SS<<endl;
            }
            effLog.close();
         #endif
         //}}}
         sort(needS.begin(),needS.end());
         i = (long)(M*0.95)+1; // make at least 95% transcripts converged 
         /* samplesN -> now it will be samples needed PER chain in order to
          * generate samplesSave*chainsN effective samples.
          */
         samplesN = max((long)needS[i],samplesSave);
         quitNext = true;
      }else{
            // Prepare for producing samples if Rhat^2<target scale reduction
            // OR reached samplesNmax
            // OR produced too many samples (>500 000)
         if((totalSamples*chainsN < 5000000) && (rMean.FF > gPar.targetScaleReduction())){
            samplesN *= 2;
         }else{
            quitNext = true;
         }
         if((samplesN >= gPar.samplesNmax()) || args.flag("MCMC_samplesDOmax")){
            samplesN=gPar.samplesNmax();
            quitNext = true;
         }
      }
      // if next iteration is the last one, prepare the files and make samples write samples
      if(quitNext){ 
         messageF("Producing %ld final samples from each chain.\n",samplesN);
         // if samplesN<samplesSave, only samplesN samples will be saved
         if(samplesN<samplesSave){
            samplesSave = samplesN;
         }
         for(j=0;j<chainsN;j++){
            sstr.str("");
            sstr<<args.getS("outFilePrefix")<<"."<<args.getS("outputType")<<"S-"<<j;
            samplesFileNames.push_back(sstr.str());
            samplesFile[j].open(samplesFileNames[j].c_str());
            if(! samplesFile[j].is_open()){
               error("Main: Unable to open output file '%s'.\n",(sstr.str()).c_str());
            }else{
               samplesFile[j]<<"#\n# M "<<M-1<<"\n# N "<<samplesSave<<endl;
               samplers[j]->saveSamples(&samplesFile[j],trInfo.getShiftedLengths(true),args.getS("outputType"));
            }
         }
      }
      for(j=0;j<chainsN;j++){
         samplers[j]->resetSampler(samplesN);
      }
      samplesHave=0;
      //}}}
   }
   // Write means: {{{
   meansFile.open((args.getS("outFilePrefix")+".thetaMeans").c_str());
   if(meansFile.is_open()){
      meansFile<<"# T => Mrows \n# M "<<M-1<<endl;
      meansFile<<"# file containing the mean value of theta - relative abundace of fragments and counts\n"
                 "# (overall mean, overall counts, mean of saved samples, and mean from every chain are reported)\n"
                 "# columns:\n"
                 "# <transcriptID> <meanThetaOverall> <meanReadCountOverall> <meanThetaSaved> <varThetaOverall>";
      for(j=0;j<chainsN;j++)meansFile<<" <chain"<<j+1<<"mean>";
      meansFile<<endl;
      meansFile<<scientific;
      meansFile.precision(9);
      double sumSaved, thetaSqSum, thetaSum, sumNorm, tSS, tS, sN, thetaVar;
      for(i=0;i<M;i++){
         sumSaved=thetaSqSum=thetaSum=sumNorm=0;
         for(j=0;j<chainsN;j++){
            sumSaved+=samplers[j]->getAverage(i).SS;
            samplers[j]->getThetaSums(i, &tSS, &tS, &sN);
            thetaSqSum += tSS;
            thetaSum += tS;
            sumNorm += sN;
         }
         if(i==0){
            meansFile<<"#thetaAct:";
         }else{
            meansFile<<i;
         }
         thetaVar = thetaSqSum / (sumNorm - 1.0) -
                    thetaSum / (sumNorm - 1.0) * thetaSum / sumNorm;
         meansFile<<" "<<thetaSum/sumNorm<<" "<<(long)floor(thetaSum/sumNorm*alignments->getNreads()+0.5)<<" "<<sumSaved/chainsN<<" "<<thetaVar;
         for(j=0;j<chainsN;j++)
            meansFile<<" "<<samplers[j]->getAverage(i).FF;
         meansFile<<endl;
      }
      meansFile.close();
   }else{
      warning("Main: Unable to write thetaMeans into: %s\n",(args.getS("outFilePrefix")+".thetaMeans").c_str());
   }
   //}}}
   // Write thetaAct: {{{
   if(args.isSet("thetaActFileName")){
      ofstream actFile(args.getS("thetaActFileName").c_str());
      if(actFile.is_open()){
         actFile<<"# samples of thetaAct parameter (only generated when using gibbs sampling)\n";
         actFile<<"# N "<<chainsN*samplesSave<<endl;
         for(j=0;j<chainsN;j++){
            for(i=0;i<(long)samplers[j]->getThetaActLog().size();i++)
               actFile<<samplers[j]->getThetaActLog()[i]<<" ";
         }
         actFile<<endl;
         actFile.close();
      }else{
         warning("Main: Unable to write thetaAct log: %s.\n",(args.getS("thetaActFileName")).c_str());
      }
   }
   // }}}
   // Free memory: {{{
   for(j=0;j<chainsN;j++){
      delete samplers[j];
   }
//   delete [] samplers;
   //}}}
   message("Total samples: %ld\n",totalSamples*chainsN);
}//}}}

extern "C" int estimateExpression(int *argc, char* argv[]) {//{{{
clearDataEE();
string programDescription =
"Estimates expression given precomputed probabilities of (observed) reads' alignments.\n\
   Uses MCMC sampling algorithm to produce relative abundance or RPKM.\n";
   // Set options {{{
   ArgumentParser args;
   args.init(programDescription,"[prob file]",1);
   args.addOptionS("o","outPrefix","outFilePrefix",1,"Prefix for the output files.");
   args.addOptionS("O","outType","outputType",0,"Output type (theta, RPKM, counts, tau).","theta");
   args.addOptionB("G","gibbs","gibbs",0,"Use Gibbs sampling instead of collapsed Gibbs sampling.");
   args.addOptionS("p","parFile","parFileName",0,"File containing parameters for the sampler, which can be otherwise specified by --MCMC* options. As the file is checked after every MCMC iteration, the parameters can be adjusted while running.");
   args.addOptionS("t","trInfoFile","trInfoFileName",0,"File containing transcript information. (Necessary for RPKM)");
   args.addOptionL("P","procN","procN",0,"Limit the maximum number of threads to be used. (Default is the number of MCMC chains.)");
   args.addOptionS("","thetaActFile","thetaActFileName",0,"File for logging noise parameter theta^{act}.");
   args.addOptionL("","MCMC_burnIn","MCMC_burnIn",0,"Length of sampler's burn in period.",1000);
   args.addOptionL("","MCMC_samplesN","MCMC_samplesN",0,"Initial number of samples produced. Doubles after every iteration.",1000);
   args.addOptionL("","MCMC_samplesSave","MCMC_samplesSave",0,"Number of samples recorder in total.",1000);
   args.addOptionL("","MCMC_samplesNmax","MCMC_samplesNmax",0,"Maximum number of samples produced in one iteration. After producing samplesNmax samples sampler finishes.",50000);
   args.addOptionB("","MCMC_samplesDOmax","MCMC_samplesDOmax",0,"Produce maximum number of samples (samplesNmax) in second iteration and quit.");
   args.addOptionL("","MCMC_chainsN","MCMC_chainsN",0,"Number of parallel chains used. At least two chains will be used.",4);
   args.addOptionD("","MCMC_scaleReduction","MCMC_scaleReduction",0,"Target scale reduction, sampler finishes after this value is met.",1.2);
   args.addOptionD("","MCMC_dirAlpha","MCMC_dirAlpha",0,"Alpha parameter for the Dirichlet distribution.",1.0);
   args.addOptionB("","scaleReduction","scaleReduction",0,"Use scale reduction as stopping criterion, instead of computing effective sample size.");
   args.addOptionL("s","seed","seed",0,"Random initialization seed.");
   if(!args.parse(*argc,argv))return 0;
   if(args.verbose)buildTime(argv[0],__DATE__,__TIME__);
   // }}}
   MyTimer timer;
   gibbsParameters gPar;
   TagAlignments *alignments=NULL;
//{{{ Initialization:

   gPar.setParameters(args);
   if(args.isSet("parFileName")){
      gPar.setParameters(args.getS("parFileName"));
   }
   args.updateS("outputType", ns_expression::getOutputType(args));
   if(args.verbose)gPar.getAllParameters();
#ifdef SUPPORT_OPENMP
   if(args.isSet("procN"))
      omp_set_num_threads(args.getL("procN"));
   else
      omp_set_num_threads(gPar.chainsN());
#endif


   //}}}
   // {{{ Read transcriptInfo and .prob file 
   if((!args.isSet("trInfoFileName"))||(!trInfo.readInfo(args.getS("trInfoFileName")))){
      if(args.getS("outputType") == "rpkm"){
         error("Main: Missing transcript info file. The file is necessary for producing RPKM.\n");
         return 1;
      }
   }else{
      M = trInfo.getM()+1;
   }
   alignments = readData(args);
   if(! alignments){
      error("Main: Reading alignments failed.\n");
      return 1;
   }
   if(M<=0){
      error("Main: Invalid number of transcripts in .prob file.\n");
      return 1;
   }
   // }}}

   if(args.verbose)timer.split();
   if(args.verbose)messageF("Starting the sampler.\n");
   MCMC(alignments,gPar,args);
   // {{{ Transpose and merge sample file 
   if(transposeFiles(samplesFileNames,args.getS("outFilePrefix")+"."+args.getS("outputType"),args.verbose,failedMessage)){
      if(args.verbose)message("Sample files transposed. Deleting.\n");
      for(long i=0;i<(long)samplesFileNames.size();i++){
         remove(samplesFileNames[i].c_str());
      }
   }else{
      message("Transposing files failed. Please check the files and try using trasposeLargeFile to transpose & merge the files into single file.\n");
   }
   //}}}
   delete alignments;
   message("DONE. ");
   timer.split(0,'m');
   return 0;
}//}}}

#ifndef BIOC_BUILD
int main(int argc, char* argv[]) {
   return estimateExpression(&argc,argv);
}
#endif