Codebase list cdparanoia / f55bf439-8945-4b25-9f79-0baf207380b4/main cachetest.c
f55bf439-8945-4b25-9f79-0baf207380b4/main

Tree @f55bf439-8945-4b25-9f79-0baf207380b4/main (Download .tar.gz)

cachetest.c @f55bf439-8945-4b25-9f79-0baf207380b4/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
/*
 * Copyright: GNU Public License 2 applies
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2, or (at your option)
 *   any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * cdparanoia (C) 2008 Monty <monty@xiph.org>
 *
 */

/* we can ask most drives what their various caches' sizes are, but no
   drive will tell if it caches redbook data.  None should, many do,
   and there's no way in (eg) MMC/ATAPI to tell a cdrom drive not to
   cache when accessing audio.  SCSI drives have a FUA facility, but
   it's not clear how many ignore it.  MMC does specify some cache
   side effect as part of SET READ AHEAD, but it's not clear we can
   rely on them.  For that reason, we need to empirically determine
   cache size and strategy used for reads. */

#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "interface/cdda_interface.h"
#include "paranoia/cdda_paranoia.h"
#include "version.h"

/* not strictly just seeks, but also recapture and read resume when
   reading/readahead is suspended and idling */
#define MIN_SEEK_MS 6

#define reportC(...) {if(progress){fprintf(progress, __VA_ARGS__);}	\
    if(log){fprintf(log, __VA_ARGS__);}}
#define printC(...) {if(progress){fprintf(progress, __VA_ARGS__);}}
#define logC(...) {if(log){fprintf(log, __VA_ARGS__);}}

static int time_drive(cdrom_drive *d, FILE *progress, FILE *log, int lba, int len, int initial_seek){
  int i,x;
  int latency=0;
  double sum=0;
  double sumsq=0;
  int sofar;

  logC("\n");

  for(i=0,sofar=0;sofar<len;i++){
    int toread = (i==0 && initial_seek?1:len-sofar);
    int ret;
    /* first read should also trigger a short seek; one sector so seek duration dominates */
    if((ret=cdda_read_timed(d,NULL,lba+sofar,toread,&x))<=0){
      /* media error! grr!  retry elsewhere */
      if(ret==-404)return -404;
      return -1;
    }

    if(x>9999)x=9999;
    if(x<0)x=0;
    logC("%d:%d:%d ",lba+sofar,ret,x);
    
    sofar+=ret;
    if(i || !initial_seek){
      sum+=x;
      sumsq+= x*x /(float)ret;
    }else
      latency=x;
  }
  
  /* we count even the upper outliers because the drive is almost
     certainly reading ahead and that will work itself out as we keep
     reading to catch up.  Besides-- the tests would rather see too
     slow a timing than too fast; the timing data is used as an
     optimization when sleeping. */
  {
    double mean = sum/(float)(len-1);
    double stddev = sqrt( (sumsq/(float)(len-1) - mean*mean));
    
    if(initial_seek){
      printC("%4dms seek, %.2fms/sec read [%.1fx]",latency,mean,1000./75./mean);
      logC("\n\tInitial seek latency (%d sectors): %dms",len,latency);
    }

    logC("\n\tAverage read latency: %.2fms/sector (raw speed: %.1fx)",mean,1000./75./mean);
    logC("\n\tRead latency standard deviation: %.2fms/sector",stddev);
    
    return sum;
  }
}

static float retime_drive(cdrom_drive *d, FILE *progress, FILE *log, int lba, int readahead, float oldmean){
  int sectors = 2000;
  int total;
  float newmean;
  if(sectors*oldmean > 5000) sectors=5000/oldmean;
  readahead*=10;
  readahead/=9;
  if(readahead>sectors)sectors=readahead;

  printC("\bo");
  logC("\n\tRetiming drive...                               ");
  
  total = time_drive(d,NULL,log,lba,sectors,1);
  newmean = total/(float)sectors;

  logC("\n\tOld mean=%.2fms/sec, New mean=%.2fms/sec\n",oldmean,newmean);
  printC("\b");

  if(newmean>oldmean)return newmean;
  return oldmean;
}

int analyze_cache(cdrom_drive *d, FILE *progress, FILE *log, int speed){

  /* Some assumptions about timing: 

     We can't perform cache determination timing based on looking at
     average transfer times; on slow setups, the speed of a drive
     reading sectors via PIO will not be reliably distinguishable from
     the same drive returning data from the cache via pio.  We need
     something even more noticable and reliable: the seek time. It is
     unlikely we'd ever see a seek latency of under ~10ms given the
     synchronization requirements of a CD and the maximum possible
     rotational velocity. A cache hit would always be faster, even
     with PIO.

     Further complicating things, we have to watch the data collection
     carefully as we're not always going to be on an unloaded system,
     and we even have to guard against other apps accessing the drive
     (something that should never happen on purpose, but could happen
     by accident).  As we know in our testing when seeks should never
     occur, a sudden seek-sized latency popping up in the middle of a
     collection is an indication that collection is possibly invalid.

     A second cause of 'spurious latency' would be media damage; if
     we're consistently hitting latency on the same sector during
     initial collection, may need to move past it. */

  int i,j,ret=0,x;
  int firstsector=-1;
  int lastsector=-1;
  int firsttest=-1;
  int lasttest=-1;
  int offset;
  int warn=0;
  int current=1000;
  int hi=15000;
  int cachesize=0;
  int readahead=0;
  int rollbehind=0;
  int cachegran=0;
  float mspersector=0;
  if(speed<=0)speed=-1;

  reportC("\n=================== Checking drive cache/timing behavior ===================\n");
  d->error_retry=0;

  /* verify the lib and cache analysis match */
  if(strcmp(VERSIONNUM,paranoia_version())){
    reportC("\nWARNING: cdparanoia application (and thus the cache tests) does not match the"
	    "\ninstalled (or in use) libcdda_paranoia.so library.  The final verdict of this"
	    "\ntesting may or may not be accurate for the actual version of the paranoia"
	    "library.  Continuing anyway...\n\n");
  }

  /* find the longest stretch of available audio data */

  for(i=0;i<d->tracks;i++){
    if(cdda_track_audiop(d,i+1)==1){
      if(firsttest == -1)
	firsttest=cdda_track_firstsector(d,i+1);
      lasttest=cdda_track_lastsector(d,i+1);
      if(lasttest-firsttest > lastsector-firstsector){
	firstsector=firsttest;
	lastsector=lasttest;
      }
    }else{
      firsttest=-1;
      lasttest=-1;
    }
  }

  if(firstsector==-1){
    reportC("\n\tNo audio on disc; Cannot determine timing behavior...");
    return -1;
  }

  /* Dump some initial timing data to give a little context for human
     eyes.  Take readings ten minutes apart (45000 sectors) and at end of disk. */
  {
    int best=0;
    int bestcount=0;
    int iterating=0;

    offset = lastsector-firstsector-current-1;

    reportC("\nSeek/read timing:\n");

    while(offset>=firstsector){
      int m = offset/4500;
      int s = (offset-m*4500)/75;
      int f = offset-m*4500-s*75;
      int sofar;

      if(iterating){
	reportC("\n");
      }else{
	printC("\r");
	logC("\n");
      }
      reportC("\t[%02d:%02d.%02d]: ",m,s,f);

      /* initial seek to put at at a small offset past end of upcoming reads */
      if((ret=cdda_read(d,NULL,offset+current+1,1))<0){
	/* media error! grr!  retry elsewhere */
	if(ret==-404)return -1;
	reportC("\n\tWARNING: media error during read; continuing at next offset...");
	offset = (offset-firstsector+44999)/45000*45000+firstsector;
	offset-=45000;
	continue;
      }
  
      sofar=time_drive(d,progress, log, offset, current, 1);
      if(offset==firstsector)mspersector = sofar/(float)current;
      if(sofar==-404)
	return -1;
      else if(sofar<0){
	reportC("\n\tWARNING: media error during read; continuing at next offset...");
	offset = (offset-firstsector+44999)/45000*45000+firstsector;
	offset-=45000;
	continue;
      }else{
	if(!iterating){
	  if(best==0 || sofar*1.01<best){
	    best= sofar;
	    bestcount=0;
	  }else{
	    bestcount+=sofar;
	    if(bestcount>sofar && bestcount>4000)
	      iterating=1;
	  }
	}
      }

      if(iterating){
	offset = (offset-firstsector+44999)/45000*45000+firstsector;
	offset-=45000;
	printC("                 ");
      }else{
	offset--;
	printC(" spinning up...  ");
      }
    }
  }

  reportC("\n\nAnalyzing cache behavior...\n");
  
  /* search on cache size; cache hits are fast, seeks are not, so a
     linear search through cache hits up to a miss are faster than a
     bisection */
  {
    int under=1;
    int onex=0;
    current=0;
    offset = firstsector+10;
    
    while(current <= hi && under){
      int i,j;
      under=0;
      current++;
      
      if(onex){
	if(speed==-1){
	  logC("\tAttempting to reset read speed to full... ");
	}else{
	  logC("\tAttempting to reset read speed to %dx... ",speed);
	}
	if(cdda_speed_set(d,speed)){
	  logC("failed.\n");
	}else{
	  logC("drive said OK\n");
	}
	onex=0;
      }

      printC("\r");
      reportC("\tFast search for approximate cache size... %d sectors            ",current-1);
      logC("\n");
      
      for(i=0;i<25 && !under;i++){
	for(j=0;;j++){
	  int ret1=0,ret2=0;
	  if(i>=15){
	    int sofar=0;
	    
	    if(i==15){
	      printC("\r");
	      reportC("\tSlow verify for approximate cache size... %d sectors",current-1);
	      logC("\n");
	      
	      logC("\tAttempting to reduce read speed to 1x... ");
	      if(cdda_speed_set(d,1)){
		logC("failed.\n");
	      }else{
		logC("drive said OK\n");
	      }
	      onex=1;
	    }
	    printC(".");
	    logC("\t\t>>> ");
	    
	    while(sofar<current){
	      ret1 = cdda_read_timed(d,NULL,offset+sofar,current-sofar,&x);
	      logC("slow_read=%d:%d:%d ",offset+sofar,ret1,x);
	      if(ret1<=0)break;
	      sofar+=ret1;
	    }
	  }else{
	    ret1 = cdda_read_timed(d,NULL,offset+current-1,1,&x);
	    logC("\t\t>>> fast_read=%d:%d:%d ",offset+current-1,ret1,x);

	    /* Some drives are 'easily distracted' when readahead is
	       running ahead of the read cursor, causing accesses of
	       the earliest sectors in the cache to show bursty
	       latency. If there's no seek here after a borderline
	       long read of the earliest sector in the cache, then the
	       cache must not have been dumped yet. */

	    if(ret==1 && i && x<MIN_SEEK_MS){ 
	      under=1;
	      logC("\n");
	      break;
	    }
	  }
	  ret2 = cdda_read_timed(d,NULL,offset,1,&x);
	  logC("seek_read=%d:%d:%d\n",offset,ret2,x);
	  
	  if(ret1<=0 || ret2<=0){
	    offset+=current+100;
	    if(j==10 || offset+current>lastsector){
	      reportC("\n\tToo many read errors while performing drive cache checks;"
		      "\n\t  aborting test.\n\n");
	      return(-1);
	    }
	    reportC("\n\tRead error while performing drive cache checks;"
		    "\n\t  choosing new offset and trying again.\n");
	  }else{
	    if(x==-1){
	      reportC("\n\tTiming error while performing drive cache checks; aborting test.\n");
	      return(-1);
	    }else{
	      if(x<MIN_SEEK_MS){
		under=1;
	      }
	      break;
	    }
	  }
	}
      }
    } 
  }
  cachesize=current-1;

  printC("\r");
  if(cachesize==hi){
    reportC("\tWARNING: Cannot determine drive cache size or behavior!          \n");
    return 1;
  }else if(cachesize){
    reportC("\tApproximate random access cache size: %d sector(s)               \n",cachesize);
  }else{
    reportC("\tDrive does not cache nonlinear access                            \n");
    return 0;
  }
  
  /* does the readahead cache exceed the maximum Paranoia currently expects? */
  {
    cdrom_paranoia *p=paranoia_init(d);
    if(cachesize > paranoia_cachemodel_size(p,-1)){
      reportC("\nWARNING: This drive appears to be caching more sectors of\n"
	      "           readahead than Paranoia can currently handle!\n");
      warn=1;
      
    }
    paranoia_free(p);
  }
  if(speed==-1){
    logC("\tAttempting to reset read speed to full... ");
  }else{
    logC("\tAttempting to reset read speed to %d... ",speed);
  }
  if(cdda_speed_set(d,speed)){
    logC("failed.\n");
  }else{
    logC("drive said OK\n");
  }

  /* This is similar to the Fast search above, but just in case the
     cache is being tracked as multiple areas that are treated
     differently if non-contiguous.... */
  {
    int seekoff = cachesize*3;
    int under=0;
    reportC("\tVerifying that cache is contiguous...");
  
    for(i=0;i<20 && !under;i++){
      printC(".");
      for(j=0;;j++){
	int ret1,ret2;

	if(offset+seekoff>lastsector){
	  reportC("\n\tOut of readable space on CDROM while performing drive checks;"
		  "\n\t  aborting test.\n\n");
	  return(-1);
	}
	

	ret1 = cdda_read_timed(d,NULL,offset+seekoff,1,&x);
	logC("\t\t>>> %d:%d:%d ",offset+seekoff,ret1,x);
	ret2 = cdda_read_timed(d,NULL,offset,1,&x);
	logC("seek_read:%d:%d:%d\n",offset,ret2,x);
	
	if(ret1<=0 || ret2<=0){
	  offset+=cachesize+100;
	  if(j==10){
	    reportC("\n\tToo many read errors while performing drive cache checks;"
		    "\n\t  aborting test.\n\n");
	    return(-1);
	  }
	  reportC("\n\tRead error while performing drive cache checks;"
		  "\n\t  choosing new offset and trying again.\n");
	}else{
	  if(x==-1){
	    reportC("\n\tTiming error while performing drive cache checks; aborting test.\n");
	    return(-1);
	  }else{
	    if(x<MIN_SEEK_MS)under=1;
	    break;
	  }
	}
      }
    }
    printC("\r");
    if(under){
      reportC("\nWARNING: Drive cache does not appear to be contiguous!\n");
      warn=1;
    }else{
      reportC("\tDrive cache tests as contiguous                           \n");
    }
  }

  /* The readahead cache size ascertained above is likely qualified by
     background 'rollahead'; that is, the drive's readahead process is
     often working ahead of our actual linear reads, and if reads stop
     or are interrupted, readahead continues and overflows the cache.
     It is also the case that the cache size we determined above is
     slightly too low because readahead is probably always working
     ahead of reads. 

     Determine the rollahead size a few ways (which may disagree:
     1) Read number of sectors equal to cache size; pause; read backward until seek
     2) Read sectors equal to cache-rollahead; verify reading back to beginning does not seek 
     3) Read sectors equal to cache; pause; read ahead until seek delay
  */

  {
    int lower=0;
    int gran=64;
    int it=3;
    int tests=0;
    int under=1;
    readahead=0;
    
    while(gran>1 || under){
      tests++;
      if(tests>8 && gran<64){
	gran<<=3;
	tests=0;
	it=3;
      }
      if(gran && !under){
	gran>>=3;
	tests=0;
	if(gran==1)it=10;
      }

      under=0;
      readahead=lower+gran;

      printC("\r");
      logC("\n");
      reportC("\tTesting background readahead past read cursor... %d",readahead);
      printC("           \b\b\b\b\b\b\b\b\b\b\b");
      for(i=0;i<it;i++){
	int sofar=0,ret;
	logC("\n\t\t%d >>> ",i);

	while(sofar<cachesize){
	  ret = cdda_read_timed(d,NULL,offset+sofar,cachesize-sofar,&x);
	  if(ret<=0)goto error;
	  logC("%d:%d:%d ",offset+sofar,ret,x);

	  /* some drives can lose sync and perform an internal resync,
	     which can also cause readahead to restart.  If we see
	     seek-like delays during the initial cahe load, retry the
	     preload */

	  sofar+=ret;
	}
	
	printC(".");

	/* what we'd predict is needed to let the readahead process work. */
	{
	  int usec=mspersector*(readahead)*(6+i)*200;
	  int max= 13000*2*readahead; /* corresponds to .5x */
	  if(usec>max)usec=max;
	  logC("sleep=%dus ",usec);
	  usleep(usec);
	}
	
	/* seek to offset+cachesize+readahead */
	ret = cdda_read_timed(d,NULL,offset+cachesize+readahead-1,1,&x);
	if(ret<=0)break;
	logC("seek=%d:%d:%d",offset+cachesize+readahead-1,ret,x);
	if(x<MIN_SEEK_MS){
	  under=1;
	  break;
	}else if(i%3==1){
	  /* retime the drive just to be conservative */
	  mspersector=retime_drive(d, progress, log, offset, readahead, mspersector);
	}
      }
      
      if(under)
	lower=readahead;

    }
    readahead=lower;
  }
  logC("\n");
  printC("\r");
  if(readahead==0){
    reportC("\tDrive does not read ahead past read cursor (very strange)     \n");
  }else{
    reportC("\tDrive readahead past read cursor: %d sector(s)                \n",readahead);
  }
  
   reportC("\tTesting cache tail cursor...");

  while(1){
    rollbehind=cachesize;
    
    for(i=0;i<10 && rollbehind;){
      int sofar=0,ret=0,retry=0;
      logC("\n\t\t>>> ");
      printC(".");
      while(sofar<cachesize){
	ret = cdda_read_timed(d,NULL,offset+sofar,cachesize-sofar,&x);
	if(ret<=0)goto error;
	logC("%d:%d:%d ",offset+sofar,ret,x);
	sofar+=ret;
      }
    
      /* Pause what we'd predict is needed to let the readahead process work. */
      {
	int usec=mspersector*readahead*1500;
	logC("\n\t\tsleeping %d microseconds",usec);
	usleep(usec);
      }
      
      /* read backwards until we seek */
      logC("\n\t\t<<< ");
      sofar=rollbehind;
      while(sofar>0){
	sofar--;
	ret = cdda_read_timed(d,NULL,offset+sofar,1,&x);
	if(ret<=0)break;
	logC("%d:%d:%d ",sofar,ret,x);
	if(x>=MIN_SEEK_MS){
	  if(rollbehind != sofar+1){
	    rollbehind=sofar+1;
	    i=0;
	  }else{
	    i++;
	  }
	  break;
	}
	if(sofar==0)rollbehind=0;
      }

    error:
      if(ret<=0){
	offset+=cachesize;
	retry++;
	if(retry>10 || offset+cachesize>lastsector){
	  reportC("\n\tToo many read errors while performing drive cache checks;"
		  "\n\t  aborting test.\n\n");
	  return(-1);
	}
	reportC("\n\tRead error while performing drive cache checks;"
		"\n\t  choosing new offset and trying again.\n");
	continue;
      }
    }

    /* verify that the drive timing didn't suddenly change */
    {
      float newms=retime_drive(d, progress, log, offset, readahead, mspersector);
      if(newms > mspersector*1.2){
	mspersector=newms;
	printC("\r");
	reportC("\tDrive timing changed during test; retrying...");
	continue;
      }
    }
    break;

  }
  
  logC("\n");
  printC("\r");
  if(rollbehind==0){
    reportC("\tCache tail cursor tied to read cursor                      \n");
  }else{
    reportC("\tCache tail rollbehind: %d sector(s)                        \n",rollbehind);
  }
  reportC("\tTesting granularity of cache tail");

  while(1){
    cachegran=cachesize+1;
    for(i=0;i<10 && cachegran;){
      int sofar=0,ret=0,retry=0;
      logC("\n\t\t>>> ");
      printC(".");
      while(sofar<cachesize+1){
	ret = cdda_read_timed(d,NULL,offset+sofar,cachesize-sofar+1,&x);
	if(ret<=0)goto error2;
	logC("%d:%d:%d ",offset+sofar,ret,x);
	sofar+=ret;
      }
      
      /* Pause what we'd predict is needed to let the readahead process work. */
      {
	int usec=mspersector*readahead*1500;
	logC("\n\t\tsleeping %d microseconds",usec);
	usleep(usec);
      }
      
      /* read backwards until we seek */
      logC("\n\t\t<<< ");
      sofar=cachegran;
      while(sofar){
	sofar--;
	ret = cdda_read_timed(d,NULL,offset+sofar,1,&x);
	if(ret<=0)break;
	logC("%d:%d:%d ",offset+sofar,ret,x);
	if(x>=MIN_SEEK_MS){
	  if(cachegran == sofar+1){
	    i++;
	  }else{
	    cachegran=sofar+1;
	    i=0;
	  }
	  break;
	}
	if(sofar==0)cachegran=0;
      }

    error2:
      if(ret<=0){
	offset+=cachesize;
	retry++;
	if(retry>10 || offset+cachesize>lastsector){
	  reportC("\n\tToo many read errors while performing drive cache checks;"
		  "\n\t  aborting test.\n\n");
	  return(-1);
	}
	reportC("\n\tRead error while performing drive cache checks;"
		"\n\t  choosing new offset and trying again.\n");
	continue;
      }
    }

    /* verify that the drive timing didn't suddenly change */
    {
      float newms=retime_drive(d, progress, log, offset, readahead, mspersector);
      if(newms > mspersector*1.2){
	mspersector=newms;
	printC("\r");
	reportC("\tDrive timing changed during test; retrying...");
	continue;
      }
    }
    break;
    
  }
  
  cachegran -= rollbehind;

  logC("\n");
  printC("\r");
  reportC("\tCache tail granularity: %d sector(s)                      \n",cachegran);


  /* Verify that a read that begins before the cached readahead dumps
     the entire readahead cache */

  /* This is tricky because we can't simply read a one sector back
     seek, then rely on timing/seeking of subsequent sectors; the
     drive may well not seek ahead if reading linearly would be faster
     (and it often will be), and simply reading ahead after the seek
     and watching timing will be inaccurate because the drive may roll
     some readahead into the initial seek/read before returning the
     first block. */

  /* we will need to use the timing of reading from media in one form
     or another and thus need to guard against slow bus transfer times
     [eg, no DMA] swamping the actual read time from media. */

  /* sample cache access for five realtime seconds. */
  {
    float cachems;
    float readms;
    int readsize = cachesize-rollbehind-8;
    int retry=0;

    if(readsize>cachesize-1)readsize=cachesize-1;

    if(readsize<7){
      reportC("\tCache size (considering rollbehind) too small to test cache speed.\n");
    }else{
      reportC("\tTesting cache transfer speed...");
      
      /* cache timing isn't dependent on rotational speed, so get a good
	 read and then just hammer the cache; we will only need to do it once */

      /* we need to time the cache using the most conservative
	 possible read pattern; many drives will flush cache on *any*
	 nonlinear access, but not if the read starts from the same
	 point.  The original cache size verification algo knows this,
	 and we need to do it the same way here (this the '0' for
	 'initial_seek' on time_drve */

      while(1){
	int ret=time_drive(d, NULL, log, offset, readsize, 0);
	if(ret==-404) return -1;
	if(ret>0)break;
	retry++;
	if(retry==10){
	  reportC("\n\tToo many read errors while performing drive cache checks;"
		  "\n\t  aborting test.\n\n");
	  return(-1);
	}
	reportC("\n\tRead error while performing drive cache checks;"
		"\n\t  choosing new offset and trying again.\n");
      }
      
      {
	int elapsed=0;
	int sectors=0;
	int spinner=0;
	while(elapsed<5000){
	  sectors += readsize;
	  elapsed += time_drive(d, NULL, log, offset, readsize, 0);
	  spinner = elapsed*5/1000%4;
	  printC("\b%c",(spinner==0?'o':(spinner==1?'O':(spinner==2?'o':'.'))));
	}
	printC("\r");
	logC("\n");
	cachems = elapsed/(float)sectors;
	reportC("\t        Cache read speed: %.2fms/sector [%dx]\n",
		cachems,(int)(1000./75./cachems));
      }

      if(cachems*3>mspersector){
	reportC("\tCache access insufficiently faster than media access to\n"
		"\t\tperform cache backseek tests\n\n");
      }else{
	
	/* now do the read/backseek combo */
	reportC("\tTesting that backseek flushes cache...");
	{
	  int total=0;
	  int elapsed=0;
	  int sectors=0;
	  int spinner=0;
	  int retry=0;
	  while(elapsed<5000 && total<25){ /* don't kill the drive */
	    int ret;
	    while(1){
	      /* need to force seek/flush, but don't kill the drive */
	      int seekpos = offset+cachesize+20000;
	      if(seekpos>lastsector-150)seekpos=lastsector-150;
	      ret=cdda_read(d, NULL, seekpos, 1);
	      if(ret>0) ret=time_drive(d, NULL, log, offset+1, readsize, 1);
	      if(ret>=0) ret=time_drive(d, NULL, log, offset, readsize, 1);

	      if(ret<=0){
		retry++;
		if(retry==10){
		  reportC("\n\tToo many read errors while performing drive cache checks;"
			  "\n\t  aborting test.\n\n");
		  return(-1);
		}
		reportC("\n\tRead error while performing drive cache checks; retrying...");
	      }else
		break;
	    }
	    
	    sectors += (readsize-1);
	    elapsed += ret;
	    total++;

	    spinner = elapsed*5/1000%4;
	    printC("\b%c",(spinner==0?'o':(spinner==1?'O':(spinner==2?'o':'.'))));
	  }
	
	  printC("\r");
	  logC("\n");
	  readms = elapsed/(float)sectors;
	  reportC("\t        Access speed after backseek: %.2fms/sector [%dx]\n",
		  readms,(int)(1000./75./readms));
	  if(readms*2. < mspersector ||
	     cachems*2. > readms){
	    reportC("\tWARNING: Read timing after backseek faster than expected!\n"
		    "\t         It's possible/likely that this drive is not\n"
		    "\t         flushing the readahead cache on backward seeks!\n\n");
	    warn=1;
	  }else{
	    reportC("\tBackseek flushes the cache as expected\n");
	  }
	}
      }
    }
  }




  return warn;
}