Codebase list centrifuge / debian/1.0.3-8 group_walk.h
debian/1.0.3-8

Tree @debian/1.0.3-8 (Download .tar.gz)

group_walk.h @debian/1.0.3-8raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * group_walk.h
 *
 * Classes and routines for walking a set of BW ranges backwards from the edge
 * of a seed hit with the goal of resolving the offset of each row in each
 * range.  Here "offset" means offset into the concatenated string of all
 * references.  The main class is 'GroupWalk' and an important helper is
 * 'GWState'.
 *
 * For each combination of seed offset and orientation, there is an associated
 * QVal.  Each QVal describes a (possibly empty) set of suffix array ranges.
 * Call these "seed range sets."  Each range in the set is "backed" by a range
 * of the salist, represented as a PListSlice. Such a range is the origin of a
 * walk.
 *
 * When an offset is resolved, it is entered into the salist via the
 * PListSlice.  Note that other routines in this same thread might also be
 * setting elements of the salist, so routines here should expect that elements
 * can go from unresolved to resolved at any time.
 *
 * What bookkeeping do we have to do as we walk?  Before the first step, we
 * convert the initial QVal into a list of SATuples; the SATuples are our link
 * to the correpsonding ranges in the suffix array.  The list of SATuples is
 * then converted to a list of GWState objects; these keep track of where we
 * are in our walk (e.g. what 'top' and 'bot' are, how many steps have we gone,
 * etc) as well as how the elements in the current range correspond to elements
 * from the original range.
 *
 * The user asks the GroupWalk to resolve another offset by calling advance().
 * advance() can be called in various ways:
 *
 * (a) The user can request that the GroupWalk proceed until a
 *     *particular* element is resolved, then return that resolved
 *     element.  Other elements may be resolved along the way, but
 *     those results are buffered and may be dispensed in future calls
 *     to advance().
 *
 * (b) The user can request that the GroupWalk select an as-yet-
 *     unreported element at random and and proceed until that element
 *     is resolved and report it.  Again, other elements may be
 *     resolved along the way but they are buffered.
 *
 * (c) The user can request that the GroupWalk resolve elements in a
 *     particular BW range (with a particular offset and orientation)
 *     in an order of its choosing.  The GroupWalk in this case
 *     attempts to resolve as many offsets as possible as quickly as
 *     possible, and returns them as soon as they're found.  The res_
 *     buffer is used in this case.
 *
 * (d) Like (c) but resolving elements at a paritcular offset and
 *     orientation instead of at a specific BW range.  The res_ buffer
 *     is used in this case, since there's a chance that the 
 *
 * There are simple ways to heuristically reduce the problem size while
 * maintaining randomness.  For instance, the user put a ceiling on the
 * number of elements that we walk from any given seed offset or range.
 * We can then trim away random subranges to reduce the size of the
 * problem.  There is no need for the caller to do this for us.
 */

#ifndef GROUP_WALK_H_
#define GROUP_WALK_H_

#include <stdint.h>
#include <limits>
#include "ds.h"
#include "bt2_idx.h"
#include "read.h"
#include "reference.h"
#include "mem_ids.h"

/**
 * Encapsulate an SA range and an associated list of slots where the resolved
 * offsets can be placed.
 */
template<typename T>
class SARangeWithOffs {

public:

	SARangeWithOffs() { reset(); };

	SARangeWithOffs(TIndexOffU tf, size_t len, const T& o) {
		init(tf, len, o);
	}
	
	void init(TIndexOffU tf, size_t len_, const T& o) {
		topf = tf; len = len_, offs = o;
	}

	/**
	 * Reset to uninitialized state.
	 */
	void reset() { topf = std::numeric_limits<TIndexOffU>::max(); }
	
	/**
	 * Return true if this is initialized.
	 */
	bool inited() const {
		return topf != std::numeric_limits<TIndexOffU>::max();
	}
	
	/**
	 * Return the number of times this reference substring occurs in the
	 * reference, which is also the size of the 'offs' TSlice.
	 */
	size_t size() const { return offs.size(); }

	TIndexOffU topf; // top in BWT index
	size_t    len;  // length of the reference sequence involved
	T         offs; // offsets
};

/**
 * A group of per-thread state that can be shared between all the GroupWalks
 * used in that thread.
 */
template <typename index_t>
struct GroupWalkState {

	GroupWalkState(int cat) : map(cat) {
		masks[0].setCat(cat);
		masks[1].setCat(cat);
		masks[2].setCat(cat);
		masks[3].setCat(cat);
	}

	EList<bool> masks[4];      // temporary list for masks; used in GWState
	EList<index_t, 16> map;   // temporary list of GWState maps
};

/**
 * Encapsulates counters that encode how much work the walk-left logic
 * has done.
 */
struct WalkMetrics {

	WalkMetrics() {
	    reset();
	}

	/**
	 * Sum each across this object and 'm'.  This is the only safe way
	 * to update a WalkMetrics shared by many threads.
	 */
	void merge(const WalkMetrics& m, bool getLock = false) {
		ThreadSafe ts(&mutex_m, getLock);
		bwops += m.bwops;
		branches += m.branches;
		resolves += m.resolves;
		refresolves += m.refresolves;
		reports += m.reports;
	}
	
	/**
	 * Set all to 0.
	 */
	void reset() {
		bwops = branches = resolves = refresolves = reports = 0;
	}

	uint64_t bwops;       // Burrows-Wheeler operations
	uint64_t branches;    // BW range branch-offs
	uint64_t resolves;    // # offs resolved with BW walk-left
	uint64_t refresolves; // # resolutions caused by reference scanning
	uint64_t reports;     // # offs reported (1 can be reported many times)
	MUTEX_T mutex_m;
};

/**
 * Coordinates for a BW element that the GroupWalk might resolve.
 */
template <typename index_t>
struct GWElt {

	GWElt() { reset(); }
	
	/**
	 * Reset GWElt to uninitialized state.
	 */
	void reset() {
		offidx = range = elt = len = (index_t)0xffffffff;
		fw = false;
	}

	/**
	 * Initialize this WalkResult.
	 */
	void init(
		index_t oi,
		bool f,
		index_t r,
		index_t e,
		index_t l)
	{
		offidx = oi;
		fw = f;
		range = r;
		elt = e;
		len = l;
	}

	/**
	 * Return true iff this GWElt and the given GWElt refer to the same
	 * element.
	 */
	bool operator==(const GWElt& o) const {
		return offidx == o.offidx &&
		       fw == o.fw &&
		       range == o.range &&
		       elt == o.elt &&
		       len == o.len;
	}
	
	/**
	 * Return true iff this GWElt and the given GWElt refer to
	 * different elements.
	 */
	bool operator!=(const GWElt& o) const {
		return !(*this == o);
	}

	index_t offidx; // seed offset index
	bool    fw;     // strand
	index_t range;  // range
	index_t elt;    // element
	index_t len;    // length
};

/**
 * A record encapsulating the result of looking up one BW element in
 * the Bowtie index.
 */
template <typename index_t>
struct WalkResult {

	WalkResult() { reset(); }
	
	/**
	 * Reset GWElt to uninitialized state.
	 */
	void reset() {
		elt.reset();
		bwrow = toff = (index_t)OFF_MASK;
	}

	/**
	 * Initialize this WalkResult.
	 */
	void init(
		index_t oi,  // seed offset index
		bool f,       // strand
		index_t r,   // range
		index_t e,   // element
		index_t bwr, // BW row
		index_t len, // length
		index_t to)  // text offset
	{
		elt.init(oi, f, r, e, len);
		bwrow = bwr;
		toff = to;
	}

	GWElt<index_t> elt;   // element resolved
	index_t        bwrow; // SA row resolved
	index_t        toff;  // resolved offset from SA sample
};

/**
 * A GW hit encapsulates an SATuple describing a reference substring
 * in the cache, along with a bool indicating whether each element of
 * the hit has been reported yet.
 */
template<typename index_t, typename T>
class GWHit {

public:
	GWHit() :
		fmap(0, GW_CAT),
		offidx((index_t)OFF_MASK),
		fw(false),
		range((index_t)OFF_MASK),
		len((index_t)OFF_MASK),
		reported_(0, GW_CAT),
		nrep_(0)
	{
		assert(repOkBasic());
	}

	/**
	 * Initialize with a new SA range.  Resolve the done vector so that
	 * there's one bool per suffix array element.
	 */
	void init(
		SARangeWithOffs<T>& sa,
		index_t oi,
		bool f,
		index_t r)
	{
		nrep_ = 0;
		offidx = oi;
		fw = f;
		range = r;
		len = (index_t)sa.len;
		reported_.resize(sa.offs.size());
		reported_.fill(false);
		fmap.resize(sa.offs.size());
		fmap.fill(make_pair((index_t)OFF_MASK, (index_t)OFF_MASK));
	}
	
	/**
	 * Clear contents of sat and done.
	 */
	void reset() {
		reported_.clear();
		fmap.clear();
		nrep_ = 0;
		offidx = (index_t)OFF_MASK;
		fw = false;
		range = (index_t)OFF_MASK;
		len = (index_t)OFF_MASK;
	}
	
#ifndef NDEBUG
	/**
	 * Check that GWHit is internally consistent.  If a pointer to an
	 * EList of GWStates is given, we assume that it is the EList
	 * corresponding to this GWHit and check whether the forward and
	 * reverse mappings match up for the as-yet-unresolved elements.
	 */
	bool repOk(const SARangeWithOffs<T>& sa) const {
		assert_eq(reported_.size(), sa.offs.size());
		assert_eq(fmap.size(), sa.offs.size());
		// Shouldn't be any repeats among as-yet-unresolveds
		size_t nrep = 0;
		for(size_t i = 0; i < fmap.size(); i++) {
			if(reported_[i]) nrep++;
			if(sa.offs[i] != (index_t)OFF_MASK) {
				continue;
			}
			for(size_t j = i+1; j < fmap.size(); j++) {
				if(sa.offs[j] != (index_t)OFF_MASK) {
					continue;
				}
				assert(fmap[i] != fmap[j]);
			}
		}
		assert_eq(nrep_, nrep);
		return true;
	}

	/**
	 * Return true iff this GWHit is not obviously corrupt.
	 */
	bool repOkBasic() {
		return true;
	}
#endif
	
	/**
	 * Set the ith element to be reported.
	 */
	void setReported(index_t i) {
		assert(!reported_[i]);
		assert_lt(i, reported_.size());
		reported_[i] = true;
		nrep_++;
	}
	
	/**
	 * Return true iff element i has been reported.
	 */
	bool reported(index_t i) const {
		assert_lt(i, reported_.size());
		return reported_[i];
	}
	
	/**
	 * Return true iff all elements have been reported.
	 */
	bool done() const {
		assert_leq(nrep_, reported_.size());
		return nrep_ == reported_.size();
	}

	EList<std::pair<index_t, index_t>, 16> fmap; // forward map; to GWState & elt
	index_t offidx; // offset idx
	bool fw;         // orientation
	index_t range;  // original range index
	index_t len;    // length of hit

protected:

	EList<bool, 16> reported_; // per-elt bool indicating whether it's been reported
	index_t nrep_;
};

/**
 * Encapsulates the progress made along a particular path from the original
 * range.
 */
template<typename index_t, typename T>
class GWState {
	
public:

	GWState() : map_(0, GW_CAT) {
		reset(); assert(repOkBasic());
	}
	
	/**
	 * Initialize this GWState with new ebwt, top, bot, step, and sat.
	 *
	 * We assume map is already set up.
	 *
	 * Returns true iff at least one elt was resolved.
	 */
	template<int S>
	pair<int, int> init(
		const Ebwt<index_t>& ebwt,    // index to walk left in
		const BitPairReference& ref,  // bitpair-encoded reference
		SARangeWithOffs<T>& sa,       // SA range with offsets
		EList<GWState, S>& sts,       // EList of GWStates for range being advanced
		GWHit<index_t, T>& hit,       // Corresponding hit structure
		index_t range,                // which range is this?
		bool reportList,              // if true, "report" resolved offsets immediately by adding them to 'res' list
		EList<WalkResult<index_t>, 16>* res,   // EList where resolved offsets should be appended
		index_t tp,                   // top of range at this step
		index_t bt,                   // bot of range at this step
		index_t st,                   // # steps taken to get to this step
		WalkMetrics& met)
	{
		assert_gt(bt, tp);
		assert_lt(range, sts.size());
		top = tp;
		bot = bt;
		step = (int)st;
		assert(!inited_);
		ASSERT_ONLY(inited_ = true);
		ASSERT_ONLY(lastStep_ = step-1);
		return init(ebwt, ref, sa, sts, hit, range, reportList, res, met);
	}

	/**
	 * Initialize this GWState.
	 *
	 * We assume map is already set up, and that 'step' is equal to the
	 * number of steps taken to get to the new top/bot pair *currently*
	 * in the top and bot fields.
	 *
	 * Returns a pair of numbers, the first being the number of
	 * resolved but unreported offsets found during this advance, the
	 * second being the number of as-yet-unresolved offsets.
	 */
	template<int S>
	pair<int, int> init(
		const Ebwt<index_t>& ebwt,    // forward Bowtie index
		const BitPairReference& ref,  // bitpair-encoded reference
		SARangeWithOffs<T>& sa,       // SA range with offsets
		EList<GWState, S>& st,        // EList of GWStates for advancing range
		GWHit<index_t, T>& hit,       // Corresponding hit structure
		index_t range,                // range being inited
		bool reportList,              // report resolutions, adding to 'res' list?
		EList<WalkResult<index_t>, 16>* res,   // EList to append resolutions
		WalkMetrics& met)             // update these metrics
	{
		assert(inited_);
		assert_eq(step, lastStep_+1);
		ASSERT_ONLY(lastStep_++);
		assert_leq((index_t)step, ebwt.eh().len());
		assert_lt(range, st.size());
		pair<int, int> ret = make_pair(0, 0);
		index_t trimBegin = 0, trimEnd = 0;
		bool empty = true; // assume all resolved until proven otherwise
		// Commit new information, if any, to the PListSlide.  Also,
		// trim and check if we're done.
		for(size_t i = mapi_; i < map_.size(); i++) {
			bool resolved = (off(i, sa) != (index_t)OFF_MASK);
			if(!resolved) {
				// Elt not resolved yet; try to resolve it now
				index_t bwrow = (index_t)(top - mapi_ + i);
				index_t toff = ebwt.tryOffset(bwrow);
				ASSERT_ONLY(index_t origBwRow = sa.topf + map(i));
				assert_eq(bwrow, ebwt.walkLeft(origBwRow, step));
				if(toff != (index_t)OFF_MASK) {
					// Yes, toff was resolvable
					assert_eq(toff, ebwt.getOffset(bwrow));
					met.resolves++;
#ifdef CENTRIFUGE
#else
					toff += step;
                    assert_eq(toff, ebwt.getOffset(origBwRow));
#endif
					setOff(i, toff, sa, met);
					if(!reportList) ret.first++;
#if 0
// used to be #ifndef NDEBUG, but since we no longer require that the reference
// string info be included, this is no longer relevant.

					// Sanity check that the reference characters under this
					// hit match the seed characters in hit.satup->key.seq.
					// This is NOT a check that we associated the exact right
					// text offset with the BW row.  This is an important
					// distinction because when resolved offsets are filled in
					// via refernce scanning, they are not necessarily the
					// exact right text offsets to associate with the
					// respective BW rows but they WILL all be correct w/r/t
					// the reference sequence underneath, which is what really
					// matters here.
					index_t tidx = (index_t)OFF_MASK, tof, tlen;
					bool straddled = false;
					ebwt.joinedToTextOff(
						hit.len, // length of seed
						toff,    // offset in joined reference string
						tidx,    // reference sequence id
						tof,     // offset in reference coordinates
						tlen,    // length of reference sequence
						true,    // don't reject straddlers
						straddled);
					if(tidx != (index_t)OFF_MASK &&
					   hit.satup->key.seq != std::numeric_limits<uint64_t>::max())
					{
						// key: 2-bit characters packed into a 64-bit word with
						// the least significant bitpair corresponding to the
						// rightmost character on the Watson reference strand.
						uint64_t key = hit.satup->key.seq;
						for(int64_t j = tof + hit.len-1; j >= tof; j--) {
							// Get next reference base to the left
							int c = ref.getBase(tidx, j);
							assert_range(0, 3, c);
							// Must equal least significant bitpair of key
							if(c != (int)(key & 3)) {
								// Oops; when we jump to the piece of the
								// reference where the seed hit is, it doesn't
								// match the seed hit.  Before dying, check
								// whether we have the right spot in the joined
								// reference string
								SString<char> jref;
								ebwt.restore(jref);
								uint64_t key2 = hit.satup->key.seq;
								for(int64_t k = toff + hit.len-1; k >= toff; k--) {
									int c = jref[k];
									assert_range(0, 3, c);
									assert_eq(c, (int)(key2 & 3));
									key2 >>= 2;
								}
								assert(false);
							}
							key >>= 2;
						}
					}
#endif
				}
			}
			// Is the element resolved?  We ask this regardless of how it was
			// resolved (whether this function did it just now, whether it did
			// it a while ago, or whether some other function outside GroupWalk
			// did it).
			if(off(i, sa) != (index_t)OFF_MASK) {
				if(reportList && !hit.reported(map(i))) {
					// Report it
					index_t toff = off(i, sa);
					assert(res != NULL);
					res->expand();
					index_t origBwRow = sa.topf + map(i);
					res->back().init(
						hit.offidx, // offset idx
						hit.fw,     // orientation
						hit.range,  // original range index
						map(i),     // original element offset
						origBwRow,  // BW row resolved
						hit.len,    // hit length
						toff);      // text offset
					hit.setReported(map(i));
					met.reports++;
				}
				// Offset resolved
				if(empty) {
					// Haven't seen a non-empty entry yet, so we
					// can trim this from the beginning.
					trimBegin++;
				} else {
					trimEnd++;
				}
			} else {
				// Offset not yet resolved
				ret.second++;
				trimEnd = 0;
				empty = false;
				// Set the forward map in the corresponding GWHit
				// object to point to the appropriate element of our
				// range
				assert_geq(i, mapi_);
				index_t bmap = map(i);
				hit.fmap[bmap].first = range;
				hit.fmap[bmap].second = (index_t)i;
#ifndef NDEBUG
				for(size_t j = 0; j < bmap; j++) {
					if(sa.offs[j] == (index_t)OFF_MASK &&
					   hit.fmap[j].first == range)
					{
						assert_neq(i, hit.fmap[j].second);
					}
				}
#endif
			}
		}
		// Trim from beginning
		assert_geq(trimBegin, 0);
		mapi_ += trimBegin;
		top += trimBegin;
		if(trimEnd > 0) {
			// Trim from end
			map_.resize(map_.size() - trimEnd);
			bot -= trimEnd;
		}
		if(empty) {
			assert(done());
#ifndef NDEBUG
			// If range is done, all elements from map should be
			// resolved
			for(size_t i = mapi_; i < map_.size(); i++) {
				assert_neq((index_t)OFF_MASK, off(i, sa));
			}
			// If this range is done, then it should be the case that
			// all elements in the corresponding GWHit that point to
			// this range are resolved.
			for(size_t i = 0; i < hit.fmap.size(); i++) {
				if(sa.offs[i] == (index_t)OFF_MASK) {
					assert_neq(range, hit.fmap[i].first);
				}
			}
#endif
			return ret;
		} else {
			assert(!done());
		}
		// Is there a dollar sign in the middle of the range?
		assert_neq(top, ebwt._zOff);
		assert_neq(bot-1, ebwt._zOff);
		if(ebwt._zOff > top && ebwt._zOff < bot-1) {
			// Yes, the dollar sign is in the middle of this range.  We
			// must split it into the two ranges on either side of the
			// dollar.  Let 'bot' and 'top' delimit the portion of the
			// range prior to the dollar.
			index_t oldbot = bot;
			bot = ebwt._zOff;
			// Note: might be able to do additional trimming off the
			// end.
			// Create a new range for the portion after the dollar.
			st.expand();
			st.back().reset();
			index_t ztop = ebwt._zOff+1;
			st.back().initMap(oldbot - ztop);
			assert_eq((index_t)map_.size(), oldbot-top+mapi_);
			for(index_t i = ztop; i < oldbot; i++) {
				st.back().map_[i - ztop] = map(i-top+mapi_);
			}
			map_.resize(bot - top + mapi_);
			st.back().init(
				ebwt,
				ref,
				sa,
				st,
				hit,
				(index_t)st.size()-1,
				reportList,
				res,
				ztop,
				oldbot,
				step,
				met);
		}
		assert_gt(bot, top);
		// Prepare SideLocus's for next step
		if(bot-top > 1) {
			SideLocus<index_t>::initFromTopBot(top, bot, ebwt.eh(), ebwt.ebwt(), tloc, bloc);
			assert(tloc.valid()); assert(tloc.repOk(ebwt.eh()));
			assert(bloc.valid()); assert(bloc.repOk(ebwt.eh()));
		} else {
			tloc.initFromRow(top, ebwt.eh(), ebwt.ebwt());
			assert(tloc.valid()); assert(tloc.repOk(ebwt.eh()));
			bloc.invalidate();
		}
		return ret;
	}
	
#ifndef NDEBUG
	/**
	 * Check if this GWP is internally consistent.
	 */
	bool repOk(
		const Ebwt<index_t>& ebwt,
		GWHit<index_t, T>& hit,
		index_t range) const
	{
		assert(done() || bot > top);
		assert(doneResolving(hit) || (tloc.valid() && tloc.repOk(ebwt.eh())));
		assert(doneResolving(hit) || bot == top+1 || (bloc.valid() && bloc.repOk(ebwt.eh())));
		assert_eq(map_.size()-mapi_, bot-top);
		// Make sure that 'done' is compatible with whether we have >=
		// 1 elements left to resolve.
		int left = 0;
		for(size_t i = mapi_; i < map_.size(); i++) {
			ASSERT_ONLY(index_t row = (index_t)(top + i - mapi_));
			ASSERT_ONLY(index_t origRow = hit.satup->topf + map(i));
			assert(step == 0 || row != origRow);
			assert_eq(row, ebwt.walkLeft(origRow, step));
			assert_lt(map_[i], hit.satup->offs.size());
			if(off(i, hit) == (index_t)OFF_MASK) left++;
		}
		assert(repOkMapRepeats());
		assert(repOkMapInclusive(hit, range));
		return true;
	}
	
	/**
	 * Return true iff this GWState is not obviously corrupt.
	 */
	bool repOkBasic() {
		assert_geq(bot, top);
		return true;
	}

	/**
	 * Check that the fmap elements pointed to by our map_ include all
	 * of the fmap elements that point to this range.
	 */
	bool repOkMapInclusive(GWHit<index_t, T>& hit, index_t range) const {
		for(size_t i = 0; i < hit.fmap.size(); i++) {
			if(hit.satup->offs[i] == (index_t)OFF_MASK) {
				if(range == hit.fmap[i].first) {
					ASSERT_ONLY(bool found = false);
					for(size_t j = mapi_; j < map_.size(); j++) {
						if(map(j) == i) {
							ASSERT_ONLY(found = true);
							break;
						}
					}
					assert(found);
				}
			}
		}
		return true;
	}
	
	/**
	 * Check that no two elements in map_ are the same.
	 */
	bool repOkMapRepeats() const {
		for(size_t i = mapi_; i < map_.size(); i++) {
			for(size_t j = i+1; j < map_.size(); j++) {
				assert_neq(map_[i], map_[j]);
			}
		}
		return true;
	}
#endif
	
	/**
	 * Return the offset currently assigned to the ith element.  If it
	 * has not yet been resolved, return 0xffffffff.
	 */
	index_t off(
				index_t i,
				const SARangeWithOffs<T>& sa)
	{
		assert_geq(i, mapi_);
		assert_lt(i, map_.size());
		assert_lt(map_[i], sa.offs.size());
		return sa.offs.get(map_[i]);
	}

	/**
	 * Return the offset of the element within the original range's
	 * PListSlice that the ith element of this range corresponds to.
	 */
	index_t map(index_t i) const {
		assert_geq(i, mapi_);
		assert_lt(i, map_.size());
		return map_[i];
	}

	/**
	 * Return the offset of the first untrimmed offset in the map.
	 */
	index_t mapi() const {
		return mapi_;
	}

	/**
	 * Return number of active elements in the range being tracked by
	 * this GWState.
	 */
	index_t size() const {
		return map_.size() - mapi_;
	}
	
	/**
	 * Return true iff all elements in this leaf range have been
	 * resolved.
	 */
	bool done() const {
		return size() == 0;
	}

	/**
	 * Set the PListSlice element that corresponds to the ith element
	 * of 'map' to the specified offset.
	 */
	void setOff(
		index_t i,
		index_t off,
		SARangeWithOffs<T>& sa,
		WalkMetrics& met)
	{
		assert_lt(i + mapi_, map_.size());
		assert_lt(map_[i + mapi_], sa.offs.size());
		size_t saoff = map_[i + mapi_];
		sa.offs[saoff] = off;
		assert_eq(off, sa.offs[saoff]);
	}

	/**
	 * Advance this GWState by one step (i.e. one BW operation).  In
	 * the event of a "split", more elements are added to the EList
	 * 'st', which must have room for at least 3 more elements without
	 * needing another expansion.  If an expansion of 'st' is
	 * triggered, this GWState object becomes invalid.
	 *
	 * Returns a pair of numbers, the first being the number of
	 * resolved but unreported offsets found during this advance, the
	 * second being the number of as-yet-unresolved offsets.
	 */
	template <int S>
	pair<int, int> advance(
		const Ebwt<index_t>& ebwt,   // the forward Bowtie index, for stepping left
		const BitPairReference& ref, // bitpair-encoded reference
		SARangeWithOffs<T>& sa,      // SA range with offsets
		GWHit<index_t, T>& hit,      // the associated GWHit object
		index_t range,               // which range is this?
		bool reportList,             // if true, "report" resolved offsets immediately by adding them to 'res' list
		EList<WalkResult<index_t>, 16>* res,  // EList where resolved offsets should be appended
		EList<GWState, S>& st,       // EList of GWStates for range being advanced
		GroupWalkState<index_t>& gws,         // temporary storage for masks
		WalkMetrics& met,
		PerReadMetrics& prm)
	{
		ASSERT_ONLY(index_t origTop = top);
		ASSERT_ONLY(index_t origBot = bot);
		assert_geq(step, 0);
		assert_eq(step, lastStep_);
		assert_geq(st.capacity(), st.size() + 4);
		assert(tloc.valid()); assert(tloc.repOk(ebwt.eh()));
		assert_eq(bot-top, (index_t)(map_.size()-mapi_));
		pair<int, int> ret = make_pair(0, 0);
		assert_eq(top, tloc.toBWRow());
		if(bloc.valid()) {
			// Still multiple elements being tracked
			assert_lt(top+1, bot);
			index_t upto[4], in[4];
			upto[0] = in[0] = upto[1] = in[1] =
			upto[2] = in[2] = upto[3] = in[3] = 0;
			assert_eq(bot, bloc.toBWRow());
			met.bwops++;
			prm.nExFmops++;
			// Assert that there's not a dollar sign in the middle of
			// this range
			assert(bot <= ebwt._zOff || top > ebwt._zOff);
			ebwt.mapLFRange(tloc, bloc, bot-top, upto, in, gws.masks);
#ifndef NDEBUG
			for(int i = 0; i < 4; i++) {
			  assert_eq(bot-top, (index_t)(gws.masks[i].size()));
			}
#endif
			bool first = true;
			ASSERT_ONLY(index_t sum = 0);
			index_t newtop = 0, newbot = 0;
			gws.map.clear();
			for(int i = 0; i < 4; i++) {
				if(in[i] > 0) {
					// Non-empty range resulted
					if(first) {
						// For the first one, 
						first = false;
						newtop = upto[i];
						newbot = newtop + in[i];
						assert_leq(newbot-newtop, bot-top);
						// Range narrowed so we have to look at the masks
						for(size_t j = 0; j < gws.masks[i].size(); j++) {
							assert_lt(j+mapi_, map_.size());
							if(gws.masks[i][j]) {
								gws.map.push_back(map_[j+mapi_]);
								assert(gws.map.size() <= 1 || gws.map.back() != gws.map[gws.map.size()-2]);
#ifndef NDEBUG
								// If this element is not yet resolved,
								// then check that it really is the
								// expected number of steps to the left
								// of the corresponding element in the
								// root range
								assert_lt(gws.map.back(), sa.size());
								if(sa.offs[gws.map.back()] == (index_t)OFF_MASK) {
									assert_eq(newtop + gws.map.size() - 1,
											  ebwt.walkLeft(sa.topf + gws.map.back(), step+1));
								}
#endif
							}
						}
 						assert_eq(newbot-newtop, (index_t)(gws.map.size()));
					} else {
						// For each beyond the first, create a new
						// GWState and add it to the GWState list. 
						// NOTE: this can cause the underlying list to
						// be expanded which in turn might leave 'st'
						// pointing to bad memory.
						st.expand();
						st.back().reset();
						index_t ntop = upto[i];
						index_t nbot = ntop + in[i];
						assert_lt(nbot-ntop, bot-top);
						st.back().mapi_ = 0;
						st.back().map_.clear();
						met.branches++;
						// Range narrowed so we have to look at the masks
						for(size_t j = 0; j < gws.masks[i].size(); j++) {
							if(gws.masks[i][j]) st.back().map_.push_back(map_[j+mapi_]);
						}
						pair<int, int> rret =
						st.back().init(
							ebwt,        // forward Bowtie index
							ref,         // bitpair-encodede reference
							sa,          // SA range with offsets
							st,          // EList of all GWStates associated with original range
							hit,         // associated GWHit object
							(index_t)st.size()-1, // range offset
							reportList,  // if true, report hits to 'res' list
							res,         // report hits here if reportList is true
							ntop,        // BW top of new range
							nbot,        // BW bot of new range
							step+1,      // # steps taken to get to this new range
							met);        // update these metrics
						ret.first += rret.first;
						ret.second += rret.second;
					}
					ASSERT_ONLY(sum += in[i]);
				}
			}
			mapi_ = 0;
			assert_eq(bot-top, sum);
			assert_gt(newbot, newtop);
			assert_leq(newbot-newtop, bot-top);
			assert(top != newtop || bot != newbot);
			//assert(!(newtop < top && newbot > top));
			top = newtop;
			bot = newbot;
			if(!gws.map.empty()) {
				map_ = gws.map;
			}
			//assert(repOkMapRepeats());
			//assert(repOkMapInclusive(hit, range));
			assert_eq(bot-top, (index_t)map_.size());
		} else {
			// Down to one element
			assert_eq(bot, top+1);
			assert_eq(1, map_.size()-mapi_);
			// Sets top, returns char walked through (which we ignore)
			ASSERT_ONLY(index_t oldtop = top);
			met.bwops++;
			prm.nExFmops++;
			ebwt.mapLF1(top, tloc);
			assert_neq(top, oldtop);
			bot = top+1;
			if(mapi_ > 0) {
				map_[0] = map_[mapi_];
				mapi_ = 0;
			}
			map_.resize(1);
		}
		assert(top != origTop || bot != origBot);
		step++;
		assert_gt(step, 0);
		assert_leq((index_t)step, ebwt.eh().len());
		pair<int, int> rret =
		init<S>(
			ebwt,       // forward Bowtie index
			ref,        // bitpair-encodede reference
			sa,         // SA range with offsets
			st,         // EList of all GWStates associated with original range
			hit,        // associated GWHit object
			range,      // range offset
			reportList, // if true, report hits to 'res' list
			res,        // report hits here if reportList is true
			met);       // update these metrics
		ret.first += rret.first;
		ret.second += rret.second;
		return ret;
	}

	/**
	 * Clear all state in preparation for the next walk.
	 */
	void reset() {
		top = bot = step = mapi_ = 0;
		ASSERT_ONLY(lastStep_ = -1);
		ASSERT_ONLY(inited_ = false);
		tloc.invalidate();
		bloc.invalidate();
		map_.clear();
	}
	
	/**
	 * Resize the map_ field to the given size.
	 */
	void initMap(size_t newsz) {
		mapi_ = 0;
		map_.resize(newsz);
		for(size_t i = 0; i < newsz; i++) {
			map_[i] = (index_t)i;
		}
	}

	/**
	 * Return true iff all rows corresponding to this GWState have been
	 * resolved and reported.
	 */
	bool doneReporting(const GWHit<index_t, T>& hit) const {
		for(size_t i = mapi_; i < map_.size(); i++) {
			if(!hit.reported(map(i))) return false;
		}
		return true;
	}

	/**
	 * Return true iff all rows corresponding to this GWState have been
	 * resolved (but not necessarily reported).
	 */
	bool doneResolving(const SARangeWithOffs<T>& sa) const {
		for(size_t i = mapi_; i < map_.size(); i++) {
			if(sa.offs[map(i)] == (index_t)OFF_MASK) return false;
		}
		return true;
	}

	SideLocus<index_t> tloc;      // SideLocus for top
	SideLocus<index_t> bloc;      // SideLocus for bottom
	index_t            top;       // top elt of range in BWT
	index_t            bot;       // bot elt of range in BWT
	int                step;      // how many steps have we walked to the left so far

protected:
	
	ASSERT_ONLY(bool inited_);
	ASSERT_ONLY(int lastStep_);
	EList<index_t, 16> map_; // which elts in range 'range' we're tracking
	index_t mapi_;           // first untrimmed element of map
};

template<typename index_t, typename T, int S>
class GroupWalk2S {
public:
	typedef EList<GWState<index_t, T>, S> TStateV;

	GroupWalk2S() : st_(8, GW_CAT) {
		reset();
	}
	
	/**
	 * Reset the GroupWalk in preparation for the next SeedResults.
	 */
	void reset() {
		elt_ = rep_ = 0;
		ASSERT_ONLY(inited_ = false);
	}

	/**
	 * Initialize a new group walk w/r/t a QVal object.
	 */
	void init(
		const Ebwt<index_t>& ebwtFw, // forward Bowtie index for walking left
		const BitPairReference& ref, // bitpair-encoded reference
		SARangeWithOffs<T>& sa,      // SA range with offsets
		RandomSource& rnd,           // pseudo-random generator for sampling rows
		WalkMetrics& met)            // update metrics here
	{
		reset();
#ifndef NDEBUG
		inited_ = true;
#endif
		// Init GWHit
		hit_.init(sa, 0, false, 0);
		// Init corresponding GWState
		st_.resize(1);
		st_.back().reset();
		assert(st_.back().repOkBasic());
		index_t top = sa.topf;
		index_t bot = (index_t)(top + sa.size());
		st_.back().initMap(bot-top);
		st_.ensure(4);
		st_.back().init(
			ebwtFw,             // Bowtie index
			ref,                // bitpair-encoded reference
			sa,                 // SA range with offsets
			st_,                // EList<GWState>
			hit_,               // GWHit
			0,                  // range 0
			false,              // put resolved elements into res_?
			NULL,               // put resolved elements here
			top,                // BW row at top
			bot,                // BW row at bot
			0,                  // # steps taken
			met);               // update metrics here
		elt_ += sa.size();
		assert(hit_.repOk(sa));
	}

	//
	// ELEMENT-BASED
	//

	/**
	 * Advance the GroupWalk until all elements have been resolved.
	 * FIXME FB: Commented as the types of advanceElements do not correlate with the types of the function definition.
	 */
//	void resolveAll(WalkMetrics& met, PerReadMetrics& prm) {
//		WalkResult<index_t> res; // ignore results for now
//		for(size_t i = 0; i < elt_; i++) {
//			advanceElement((index_t)i, res, met, prm);
//		}
//	}

	/**
	 * Advance the GroupWalk until the specified element has been
	 * resolved.
	 */
	bool advanceElement(
		index_t elt,                  // element within the range
		const Ebwt<index_t>& ebwtFw,  // forward Bowtie index for walking left
		const BitPairReference& ref,  // bitpair-encoded reference
		SARangeWithOffs<T>& sa,       // SA range with offsets
		GroupWalkState<index_t>& gws, // GroupWalk state; scratch space
		WalkResult<index_t>& res,     // put the result here
		WalkMetrics& met,             // metrics
		PerReadMetrics& prm)          // per-read metrics
	{
		assert(inited_);
		assert(!done());
		assert(hit_.repOk(sa));
		assert_lt(elt, sa.size()); // elt must fall within range
		// Until we've resolved our element of interest...
		while(sa.offs[elt] == (index_t)OFF_MASK) {
			// Get the GWState that contains our element of interest
			size_t range = hit_.fmap[elt].first;
			st_.ensure(4);
			GWState<index_t, T>& st = st_[range];
			assert(!st.doneResolving(sa));
			// Returns a pair of numbers, the first being the number of
			// resolved but unreported offsets found during this advance, the
			// second being the number of as-yet-unresolved offsets.
			st.advance(
				ebwtFw,
				ref,
				sa,
				hit_,
				(index_t)range,
				false,
				NULL,
				st_,
				gws,
				met,
				prm);
			assert(sa.offs[elt] != (index_t)OFF_MASK ||
			       !st_[hit_.fmap[elt].first].doneResolving(sa));
		}
		assert_neq((index_t)OFF_MASK, sa.offs[elt]);
		// Report it!
		if(!hit_.reported(elt)) {
			hit_.setReported(elt);
		}
		met.reports++;
		res.init(
			0,              // seed offset
			false,          // orientation
			0,              // range
			elt,            // element
			sa.topf + elt,  // bw row
			(index_t)sa.len, // length of hit
			sa.offs[elt]);  // resolved text offset
		rep_++;
		return true;
	}

	/**
	 * Return true iff all elements have been resolved and reported.
	 */
	bool done() const { return rep_ == elt_; }
	
#ifndef NDEBUG
	/**
	 * Check that GroupWalk is internally consistent.
	 */
	bool repOk(const SARangeWithOffs<T>& sa) const {
		assert(hit_.repOk(sa));
		assert_leq(rep_, elt_);
		// This is a lot of work
		size_t resolved = 0, reported = 0;
		// For each element
		const size_t sz = sa.size();
		for(size_t m = 0; m < sz; m++) {
			// Is it resolved?
			if(sa.offs[m] != (index_t)OFF_MASK) {
				resolved++;
			} else {
				assert(!hit_.reported(m));
			}
			// Is it reported?
			if(hit_.reported(m)) {
				reported++;
			}
			assert_geq(resolved, reported);
		}
		assert_geq(resolved, reported);
		assert_eq(rep_, reported);
		assert_eq(elt_, sz);
		return true;
	}
#endif

	/**
	 * Return the number of BW elements that we can resolve.
	 */
	index_t numElts() const { return elt_; }
	
	/**
	 * Return the size occupied by this GroupWalk and all its constituent
	 * objects.
	 */
	size_t totalSizeBytes() const {
		return 2 * sizeof(size_t) + st_.totalSizeBytes() + sizeof(GWHit<index_t, T>);
	}
	/**
	 * Return the capacity of this GroupWalk and all its constituent objects.
	 */
	size_t totalCapacityBytes() const {
		return 2 * sizeof(size_t) + st_.totalCapacityBytes() + sizeof(GWHit<index_t, T>);
	}
	
#ifndef NDEBUG
	bool initialized() const { return inited_; }
#endif
	
protected:

	ASSERT_ONLY(bool inited_);    // initialized?
	
	index_t elt_;    // # BW elements under the control of the GropuWalk
	index_t rep_;    // # BW elements reported

	// For each orientation and seed offset, keep a GWState object that
	// holds the state of the walk so far.
	TStateV st_;

	// For each orientation and seed offset, keep an EList of GWHit.
	GWHit<index_t, T> hit_;
};

#endif /*GROUP_WALK_H_*/