Codebase list coq-float / HEAD Faux.v
HEAD

Tree @HEAD (Download .tar.gz)

Faux.v @HEADraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
(****************************************************************************
                                                                             
          IEEE754  :  Faux                                                   
                                                                             
          Laurent Thery                                                      
                                                                             
  *****************************************************************************
  Auxillary properties about natural numbers, relative numbers and reals *)
Require Export Min.
Require Export Arith.
Require Export Reals.
Require Export Zpower.
Require Export ZArith.
Require Export Zcomplements.
Require Export sTactic.
Hint Resolve R1_neq_R0: real.
(*Missing rule for nat *)
 
Theorem minus_minus : forall a b : nat, a <= b -> b - (b - a) = a.
intros a b H'.
apply sym_equal.
apply plus_minus; auto.
rewrite plus_comm; apply le_plus_minus; auto.
Qed.
 
Theorem lte_comp_mult :
 forall p q r t : nat, p <= q -> r <= t -> p * r <= q * t.
intros p q r t H'; elim H'; simpl in |- *; auto with arith.
elim p; simpl in |- *; auto with arith.
intros n H m H0 H1 H2; apply plus_le_compat; auto with arith.
apply le_trans with (m := r + n * r); auto with arith.
Qed.
Hint Resolve lte_comp_mult: arith.
 
Theorem le_refl_eq : forall n m : nat, n = m -> n <= m.
intros n m H'; rewrite H'; auto.
Qed.
 
Theorem lt_le_pred : forall n m : nat, n < m -> n <= pred m.
intros n m H'; inversion H'; simpl in |- *; auto.
apply le_trans with (S n); auto.
Qed.
 
Theorem lt_comp_mult_l : forall p q r : nat, 0 < p -> q < r -> p * q < p * r.
intros p; elim p; simpl in |- *.
auto with arith.
intros n0; case n0.
simpl in |- *; auto with arith.
intros n1 H' q r H'0 H'1.
apply lt_trans with (m := q + S n1 * r); auto with arith.
Qed.
Hint Resolve lt_comp_mult_l: arith.
 
Theorem lt_comp_mult_r : forall p q r : nat, 0 < p -> q < r -> q * p < r * p.
intros; repeat rewrite (fun x : nat => mult_comm x p); auto with arith.
Qed.
Hint Resolve lt_comp_mult_r: arith.
 
Theorem lt_comp_mult : forall p q r s : nat, p < q -> r < s -> p * r < q * s.
intros p q r s; case q.
intros H'; inversion H'.
intros q'; case p.
intros H' H'0; simpl in |- *; apply le_lt_trans with (m := r);
 auto with arith.
intros p' H' H'0; apply le_lt_trans with (m := S q' * r); auto with arith.
Qed.
Hint Resolve lt_comp_mult: arith.
 
Theorem mult_eq_inv : forall n m p : nat, 0 < n -> n * m = n * p -> m = p.
intros n m p H' H'0.
apply le_antisym; auto.
case (le_or_lt m p); intros H'1; auto with arith.
absurd (n * p < n * m); auto with arith.
rewrite H'0; auto with arith.
case (le_or_lt p m); intros H'1; auto with arith.
absurd (n * m < n * p); auto with arith.
rewrite H'0; auto with arith.
Qed.
 
Definition natEq : forall n m : nat, {n = m} + {n <> m}.
intros n; elim n.
intros m; case m; auto with arith.
intros n0 H' m; case m; auto with arith.
Defined.
 
Theorem notEqLt : forall n : nat, 0 < n -> n <> 0.
intros n H'; Contradict H'; auto.
rewrite H'; auto with arith.
Qed.
Hint Resolve notEqLt: arith.
 
Theorem lt_next : forall n m : nat, n < m -> m = S n \/ S n < m.
intros n m H'; elim H'; auto with arith.
Qed.
 
Theorem le_next : forall n m : nat, n <= m -> m = n \/ S n <= m.
intros n m H'; case (le_lt_or_eq _ _ H'); auto with arith.
Qed.
 
Theorem min_or :
 forall n m : nat, min n m = n /\ n <= m \/ min n m = m /\ m < n.
intros n; elim n; simpl in |- *; auto with arith.
intros n' Rec m; case m; simpl in |- *; auto with arith.
intros m'; elim (Rec m'); intros H'0; case H'0; clear H'0; intros H'0 H'1;
 rewrite H'0; auto with arith.
Qed.
 
Theorem minus_inv_lt_aux : forall n m : nat, n - m = 0 -> n - S m = 0.
intros n; elim n; simpl in |- *; auto with arith.
intros n0 H' m; case m; auto with arith.
intros H'0; discriminate.
Qed.
 
Theorem minus_inv_lt : forall n m : nat, m <= n -> m - n = 0.
intros n m H'; elim H'; simpl in |- *; auto with arith.
intros m0 H'0 H'1; apply minus_inv_lt_aux; auto.
Qed.
 
Theorem minus_le : forall m n p q : nat, m <= n -> p <= q -> m - q <= n - p.
intros m n p q H' H'0.
case (le_or_lt m q); intros H'1.
rewrite minus_inv_lt with (1 := H'1); auto with arith.
apply (fun p n m : nat => plus_le_reg_l n m p) with (p := q).
rewrite le_plus_minus_r; auto with arith.
rewrite (le_plus_minus p q); auto.
rewrite (plus_comm p).
rewrite plus_assoc_reverse.
rewrite le_plus_minus_r; auto with arith.
apply le_trans with (1 := H'); auto with arith.
apply le_trans with (1 := H'0); auto with arith.
apply le_trans with (2 := H'); auto with arith.
Qed.
 
Theorem lt_minus_inv : forall n m p : nat, n <= p -> m < n -> p - n < p - m.
intros n m p H'; generalize m; clear m; elim H'.
intros m H'0; rewrite <- minus_n_n; elim H'0.
rewrite <- minus_Sn_m; auto with arith.
intros m0 H'1 H'2; rewrite <- minus_Sn_m; auto with arith.
intros m H'0 H'1 m0 H'2; repeat rewrite <- minus_Sn_m; auto with arith.
apply le_trans with n; auto with arith.
Qed.
 
Theorem lt_mult_anti_compatibility :
 forall n n1 n2 : nat, 0 < n -> n * n1 < n * n2 -> n1 < n2.
intros n n1 n2 H' H'0; case (le_or_lt n2 n1); auto.
intros H'1; Contradict H'0; auto.
apply le_not_lt; auto with arith.
Qed.
 
Theorem le_mult_anti_compatibility :
 forall n n1 n2 : nat, 0 < n -> n * n1 <= n * n2 -> n1 <= n2.
intros n n1 n2 H' H'0; case (le_or_lt n1 n2); auto.
intros H'1; Contradict H'0; auto.
apply lt_not_le; auto with arith.
Qed.
 
Theorem min_n_0 : forall n : nat, min n 0 = 0.
intros n; case n; simpl in |- *; auto.
Qed.
(*Simplification rules missing in R *)
Hint Resolve Rabs_pos: real.
 
Theorem Rlt_Rminus_ZERO : forall r1 r2 : R, (r2 < r1)%R -> (0 < r1 - r2)%R.
intros r1 r2 H; replace 0%R with (r1 - r1)%R; unfold Rminus in |- *;
 auto with real.
Qed.
Hint Resolve Rlt_Rminus_ZERO: real.
 
Theorem Rabsolu_left1 : forall a : R, (a <= 0)%R -> Rabs a = (- a)%R.
intros a H; case H; intros H1.
apply Rabs_left; auto.
rewrite H1; simpl in |- *; rewrite Rabs_right; auto with real.
Qed.
 
Theorem RmaxLess1 : forall r1 r2 : R, (r1 <= Rmax r1 r2)%R.
intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real.
Qed.
 
Theorem RmaxLess2 : forall r1 r2 : R, (r2 <= Rmax r1 r2)%R.
intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real;
 intros; apply Ropp_le_cancel; auto with real.
Qed.
 
Theorem RmaxSym : forall p q : R, Rmax p q = Rmax q p.
intros p q; unfold Rmax in |- *.
case (Rle_dec p q); case (Rle_dec q p); auto; intros H1 H2; apply Rle_antisym;
 auto.
case (Rle_or_lt p q); auto; intros H'0; Contradict H1; apply Rlt_le; auto.
case (Rle_or_lt q p); auto; intros H'0; Contradict H2; apply Rlt_le; auto.
Qed.
 
Theorem RmaxAbs :
 forall p q r : R,
 (p <= q)%R -> (q <= r)%R -> (Rabs q <= Rmax (Rabs p) (Rabs r))%R.
intros p q r H' H'0; case (Rle_or_lt 0 p); intros H'1.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with r; auto with real.
apply RmaxLess2; auto.
apply Rge_trans with p; auto with real; apply Rge_trans with q;
 auto with real.
apply Rge_trans with p; auto with real.
rewrite (Rabs_left p); auto.
case (Rle_or_lt 0 q); intros H'2.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with r; auto.
apply RmaxLess2; auto.
apply Rge_trans with q; auto with real.
rewrite (Rabs_left q); auto.
case (Rle_or_lt 0 r); intros H'3.
repeat rewrite Rabs_right; auto with real.
apply Rle_trans with (- p)%R; auto with real.
apply RmaxLess1; auto.
rewrite (Rabs_left r); auto.
apply Rle_trans with (- p)%R; auto with real.
apply RmaxLess1; auto.
Qed.
 
Theorem Rabsolu_Zabs : forall z : Z, Rabs (IZR z) = IZR (Z.abs z).
intros z; case z; simpl in |- *; auto with real.
apply Rabs_right; auto with real.
intros p0; apply Rabs_right; auto with real zarith.
intros p0; unfold IZR; rewrite <- INR_IPR; rewrite Rabs_Ropp.
apply Rabs_right; auto with real zarith.
Qed.
 
Theorem RmaxRmult :
 forall p q r : R, (0 <= r)%R -> Rmax (r * p) (r * q) = (r * Rmax p q)%R.
intros p q r H; unfold Rmax in |- *.
case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto.
case H; intros E1.
case H1; auto with real.
rewrite <- E1; repeat rewrite Rmult_0_l; auto.
case H; intros E1.
case H2; auto with real.
apply Rmult_le_reg_l with (r := r); auto.
rewrite <- E1; repeat rewrite Rmult_0_l; auto.
Qed.
 
Theorem Rle_R0_Ropp : forall p : R, (p <= 0)%R -> (0 <= - p)%R.
intros p H; rewrite <- Ropp_0; auto with real.
Qed.
 
Theorem Rlt_R0_Ropp : forall p : R, (p < 0)%R -> (0 < - p)%R.
intros p H; rewrite <- Ropp_0; auto with real.
Qed.
Hint Resolve Rle_R0_Ropp Rlt_R0_Ropp: real.
(* Properties of Z *)
 
Theorem convert_not_O : forall p : positive, nat_of_P p <> 0.
intros p; elim p.
intros p0 H'; unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6.
generalize H'; case (nat_of_P p0); auto.
intros p0 H'; unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6.
generalize H'; case (nat_of_P p0); simpl in |- *; auto.
unfold nat_of_P in |- *; simpl in |- *; auto with arith.
Qed.
Hint Resolve convert_not_O: zarith arith.
Hint Resolve Zlt_le_weak Zle_not_gt Zgt_irrefl Z.lt_irrefl Zle_not_lt
  Zlt_not_le Zlt_asym inj_lt inj_le: zarith.
 
Theorem inj_abs :
 forall x : Z, (0 <= x)%Z -> Z_of_nat (Z.abs_nat x) = x.
intros x; elim x; auto.
unfold Z.abs_nat in |- *.
intros p.
pattern p at 1 3 in |- *;
 rewrite <- (pred_o_P_of_succ_nat_o_nat_of_P_eq_id p).
generalize (convert_not_O p); case (nat_of_P p); simpl in |- *;
 auto with arith.
intros H'; case H'; auto.
intros n H' H'0; rewrite Pos.pred_succ; auto.
intros p H'; Contradict H'; auto.
Qed.
 
Theorem inject_nat_convert :
 forall (p : Z) (q : positive),
 p = Zpos q -> Z_of_nat (nat_of_P q) = p.
intros p q H'; rewrite H'.
CaseEq (nat_of_P q); simpl in |- *.
elim q; unfold nat_of_P in |- *; simpl in |- *; intros;
 try discriminate.
absurd (0%Z = Zpos p0); auto.
red in |- *; intros H'0; try discriminate.
apply H; auto.
change (nat_of_P p0 = 0) in |- *.
generalize H0; rewrite ZL6; case (nat_of_P p0); simpl in |- *;
 auto; intros; try discriminate.
intros n; rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ.
intros H'0; apply f_equal with (f := Zpos).
apply nat_of_P_inj; auto.
Qed.
Hint Resolve inj_le inj_lt: zarith.
 
Theorem ZleLe : forall x y : nat, (Z_of_nat x <= Z_of_nat y)%Z -> x <= y.
intros x y H'.
case (le_or_lt x y); auto with arith.
intros H'0; Contradict H'; auto with zarith.
Qed.
 
Theorem inject_nat_eq : forall x y : nat, Z_of_nat x = Z_of_nat y -> x = y.
intros x y H'; apply le_antisym.
apply ZleLe; auto.
idtac; rewrite H'; auto with zarith.
apply ZleLe; auto.
idtac; rewrite H'; auto with zarith.
Qed.
 
Theorem Zcompare_EGAL :
 forall p q : Z, (p ?= q)%Z = Datatypes.Eq -> p = q.
intros p q; case p; case q; simpl in |- *; auto with arith;
 try (intros; discriminate); intros q1 p1.
intros H1; rewrite (Pcompare_Eq_eq p1 q1); auto.
unfold Pos.compare.
generalize (Pcompare_Eq_eq p1 q1);
 case (Pcompare p1 q1 Datatypes.Eq); simpl in |- *; 
 intros H H1; try discriminate; rewrite H; auto.
Qed.
 
Theorem Zlt_Zopp : forall x y : Z, (x < y)%Z -> (- y < - x)%Z.
intros x y; case x; case y; simpl in |- *; auto with zarith; intros p p0;
 unfold Z.lt in |- *; simpl in |- *; unfold Pos.compare; rewrite <- ZC4;
 auto.
Qed.
Hint Resolve Zlt_Zopp: zarith.
 
Theorem Zle_Zopp : forall x y : Z, (x <= y)%Z -> (- y <= - x)%Z.
intros x y H'; case (Zle_lt_or_eq _ _ H'); auto with zarith.
Qed.
Hint Resolve Zle_Zopp: zarith.
 
Theorem absolu_INR : forall n : nat, Z.abs_nat (Z_of_nat n) = n.
intros n; case n; simpl in |- *; auto with arith.
intros n0; rewrite nat_of_P_o_P_of_succ_nat_eq_succ; auto with arith.
Qed.
 
Theorem absolu_Zopp : forall p : Z, Z.abs_nat (- p) = Z.abs_nat p.
intros p; case p; simpl in |- *; auto.
Qed.
 
Theorem Zabs_absolu : forall z : Z, Z.abs z = Z_of_nat (Z.abs_nat z).
intros z; case z; simpl in |- *; auto; intros p; apply sym_equal;
 apply inject_nat_convert; auto.
Qed.
 
Theorem absolu_comp_mult :
 forall p q : Z, Z.abs_nat (p * q) = Z.abs_nat p * Z.abs_nat q.
intros p q; case p; case q; simpl in |- *; auto; intros p0 p1;
 apply
  ((fun (x y : positive) (_ : positive -> positive) =>
    nat_of_P_mult_morphism x y) p1 p0 (fun x => x)).
Qed.
 
Theorem Zmin_sym : forall m n : Z, Z.min n m = Z.min m n.
intros m n; unfold Z.min in |- *.
case n; case m; simpl in |- *; auto; unfold Pos.compare.
intros p p0; rewrite (ZC4 p p0).
generalize (Pcompare_Eq_eq p0 p).
case (Pcompare p0 p Datatypes.Eq); simpl in |- *; auto.
intros H'; rewrite H'; auto.
intros p p0; rewrite (ZC4 p p0).
generalize (Pcompare_Eq_eq p0 p).
case (Pcompare p0 p Datatypes.Eq); simpl in |- *; auto.
intros H'; rewrite H'; auto.
Qed.
 
Theorem Zpower_nat_O : forall z : Z, Zpower_nat z 0 = Z_of_nat 1.
intros z; unfold Zpower_nat in |- *; simpl in |- *; auto.
Qed.
 
Theorem Zpower_nat_1 : forall z : Z, Zpower_nat z 1 = z.
intros z; unfold Zpower_nat in |- *; simpl in |- *; rewrite Zmult_1_r; auto.
Qed.
 
Theorem Zmin_le1 : forall z1 z2 : Z, (z1 <= z2)%Z -> Z.min z1 z2 = z1.
intros z1 z2; unfold Z.le, Z.min in |- *; case (z1 ?= z2)%Z; auto; intros H;
 Contradict H; auto.
Qed.
 
Theorem Zmin_le2 : forall z1 z2 : Z, (z2 <= z1)%Z -> Z.min z1 z2 = z2.
intros z1 z2 H; rewrite Zmin_sym; apply Zmin_le1; auto.
Qed.
 
Theorem Zmin_Zle :
 forall z1 z2 z3 : Z,
 (z1 <= z2)%Z -> (z1 <= z3)%Z -> (z1 <= Z.min z2 z3)%Z.
intros z1 z2 z3 H' H'0; unfold Z.min in |- *.
case (z2 ?= z3)%Z; auto.
Qed.
 
Theorem Zminus_n_predm :
 forall n m : Z, Z.succ (n - m) = (n - Z.pred m)%Z.
intros n m.
unfold Z.pred in |- *; unfold Z.succ in |- *; ring.
Qed.
 
Theorem Zopp_Zpred_Zs : forall z : Z, (- Z.pred z)%Z = Z.succ (- z).
intros z; unfold Z.pred, Z.succ in |- *; ring.
Qed.
 
Theorem Zle_mult_gen :
 forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x * y)%Z.
intros x y H' H'0; case (Zle_lt_or_eq _ _ H').
intros H'1; rewrite Zmult_comm; apply Zmult_gt_0_le_0_compat; auto;
 apply Z.lt_gt; auto.
intros H'1; rewrite <- H'1; simpl in |- *; auto with zarith.
Qed.
Hint Resolve Zle_mult_gen: zarith.
 
Definition Zmax : forall x_ x_ : Z, Z :=
  fun n m : Z =>
  match (n ?= m)%Z with
  | Datatypes.Eq => m
  | Datatypes.Lt => m
  | Datatypes.Gt => n
  end.
 
Theorem ZmaxLe1 : forall z1 z2 : Z, (z1 <= Zmax z1 z2)%Z.
intros z1 z2; unfold Zmax in |- *; CaseEq (z1 ?= z2)%Z; simpl in |- *;
 auto with zarith.
unfold Z.le in |- *; intros H; rewrite H; red in |- *; intros; discriminate.
Qed.
 
Theorem ZmaxSym : forall z1 z2 : Z, Zmax z1 z2 = Zmax z2 z1.
intros z1 z2; unfold Zmax in |- *; CaseEq (z1 ?= z2)%Z; CaseEq (z2 ?= z1)%Z;
 intros H1 H2; try case (Zcompare_EGAL _ _ H1); auto;
 try case (Zcompare_EGAL _ _ H2); auto; Contradict H1.
case (Zcompare.Zcompare_Gt_Lt_antisym z2 z1); auto.
intros H' H'0; rewrite H'0; auto; red in |- *; intros; discriminate.
case (Zcompare.Zcompare_Gt_Lt_antisym z1 z2); auto.
intros H'; rewrite H'; auto; intros; red in |- *; intros; discriminate.
Qed.
 
Theorem Zmax_le2 : forall z1 z2 : Z, (z1 <= z2)%Z -> Zmax z1 z2 = z2.
intros z1 z2; unfold Z.le, Zmax in |- *; case (z1 ?= z2)%Z; auto.
intros H'; case H'; auto.
Qed.
 
Theorem Zmax_le1 : forall z1 z2 : Z, (z2 <= z1)%Z -> Zmax z1 z2 = z1.
intros z1 z2 H'; rewrite ZmaxSym; apply Zmax_le2; auto.
Qed.
 
Theorem ZmaxLe2 : forall z1 z2 : Z, (z2 <= Zmax z1 z2)%Z.
intros z1 z2; rewrite ZmaxSym; apply ZmaxLe1.
Qed.
Hint Resolve ZmaxLe1 ZmaxLe2: zarith.
 
Theorem Zeq_Zs :
 forall p q : Z, (p <= q)%Z -> (q < Z.succ p)%Z -> p = q.
intros p q H' H'0; apply Zle_antisym; auto.
apply Zlt_succ_le; auto.
Qed.
 
Theorem Zmin_Zmax : forall z1 z2 : Z, (Z.min z1 z2 <= Zmax z1 z2)%Z.
intros z1 z2; case (Zle_or_lt z1 z2); unfold Z.le, Z.lt, Z.min, Zmax in |- *;
 CaseEq (z1 ?= z2)%Z; auto; intros H1 H2; try rewrite H1; 
 try rewrite H2; red in |- *; intros; discriminate.
Qed.
 
Theorem Zabs_Zmult :
 forall z1 z2 : Z, Z.abs (z1 * z2) = (Z.abs z1 * Z.abs z2)%Z.
intros z1 z2; case z1; case z2; simpl in |- *; auto with zarith.
Qed.
 
Theorem Zle_Zmult_comp_r :
 forall x y z : Z, (0 <= z)%Z -> (x <= y)%Z -> (x * z <= y * z)%Z.
intros x y z H' H'0; case (Zle_lt_or_eq _ _ H'); intros Zlt1.
apply Zmult_gt_0_le_compat_r; auto.
apply Z.lt_gt; auto.
rewrite <- Zlt1; repeat rewrite <- Zmult_0_r_reverse; auto with zarith.
Qed.
 
Theorem Zle_Zmult_comp_l :
 forall x y z : Z, (0 <= z)%Z -> (x <= y)%Z -> (z * x <= z * y)%Z.
intros x y z H' H'0; repeat rewrite (Zmult_comm z);
 apply Zle_Zmult_comp_r; auto.
Qed.
 
Theorem NotZmultZero :
 forall z1 z2 : Z, z1 <> 0%Z -> z2 <> 0%Z -> (z1 * z2)%Z <> 0%Z.
intros z1 z2; case z1; case z2; simpl in |- *; intros; auto; try discriminate.
Qed.
Hint Resolve NotZmultZero: zarith.
(* Conversions from R <-> Z  <-> N *)
 
Theorem IZR_zero : forall p : Z, p = 0%Z -> IZR p = 0%R.
intros p H'; rewrite H'; auto.
Qed.
Hint Resolve not_O_INR: real.
 
Theorem IZR_zero_r : forall p : Z, IZR p = 0%R -> p = 0%Z.
intros p; case p; simpl in |- *; auto.
intros p1 H'; Contradict H'; auto with real zarith.
intros p1 H'; absurd (INR (nat_of_P p1) = 0%R); auto with real zarith.
rewrite <- (Ropp_involutive (INR (nat_of_P p1))).
unfold IZR in H'; rewrite <- INR_IPR in H'.
rewrite H'; auto with real.
Qed.
 
Theorem INR_lt_nm : forall n m : nat, n < m -> (INR n < INR m)%R.
intros n m H'; elim H'; auto.
replace (INR n) with (INR n + 0)%R; auto with real; rewrite S_INR;
 auto with real.
intros m0 H'0 H'1.
replace (INR n) with (INR n + 0)%R; auto with real; rewrite S_INR;
 auto with real.
Qed.
Hint Resolve INR_lt_nm: real.
 
Theorem Rlt_INR1 : forall n : nat, 1 < n -> (1 < INR n)%R.
replace 1%R with (INR 1); auto with real.
Qed.
Hint Resolve Rlt_INR1: real.
 
Theorem NEq_INR : forall n m : nat, n <> m -> INR n <> INR m.
intros n m H'; (case (le_or_lt n m); intros H'1).
case (le_lt_or_eq _ _ H'1); intros H'2.
apply Rlt_dichotomy_converse; auto with real.
Contradict H'; auto.
apply Compare.not_eq_sym; apply Rlt_dichotomy_converse; auto with real.
Qed.
Hint Resolve NEq_INR: real.
 
Theorem NEq_INRO : forall n : nat, n <> 0 -> INR n <> 0%R.
replace 0%R with (INR 0); auto with real.
Qed.
Hint Resolve NEq_INRO: real.
 
Theorem NEq_INR1 : forall n : nat, n <> 1 -> INR n <> 1%R.
replace 1%R with (INR 1); auto with real.
Qed.
Hint Resolve NEq_INR1: real.
 
Theorem not_O_lt : forall n : nat, n <> 0 -> 0 < n.
intros n; elim n; simpl in |- *; auto with arith.
Qed.
Hint Resolve not_O_lt: arith.
 
Theorem NEq_IZRO : forall n : Z, n <> 0%Z -> IZR n <> 0%R.
intros n H; Contradict H.
apply IZR_zero_r; auto.
Qed.
Hint Resolve NEq_IZRO: real.
 
Theorem Rlt_IZR : forall p q : Z, (p < q)%Z -> (IZR p < IZR q)%R.
intros p q H; case (Rle_or_lt (IZR q) (IZR p)); auto.
intros H1; Contradict H; apply Zle_not_lt.
apply le_IZR; auto.
Qed.
Hint Resolve Rlt_IZR: real.
 
Theorem Rle_IZR : forall x y : Z, (x <= y)%Z -> (IZR x <= IZR y)%R.
intros x y H'.
case (Zle_lt_or_eq _ _ H'); clear H'; intros H'.
apply Rlt_le; auto with real.
rewrite <- H'; auto with real.
Qed.
Hint Resolve Rle_IZR: real.
 
Theorem Rlt_IZRO : forall p : Z, (0 < p)%Z -> (0 < IZR p)%R.
intros p H; replace 0%R with (IZR 0); auto with real.
Qed.
Hint Resolve Rlt_IZRO: real.
 
Theorem Rle_IZRO : forall x y : Z, (0 <= y)%Z -> (0 <= IZR y)%R.
intros; replace 0%R with (IZR 0); auto with real.
Qed.
Hint Resolve Rle_IZRO: real.
 
Theorem Rlt_IZR1 : forall p q : Z, (1 < q)%Z -> (1 < IZR q)%R.
intros; replace 1%R with (IZR 1); auto with real.
Qed.
Hint Resolve Rlt_IZR1: real.
 
Theorem Rle_IZR1 : forall x y : Z, (1 <= y)%Z -> (1 <= IZR y)%R.
intros; replace 1%R with (IZR 1); auto with real.
Qed.
Hint Resolve Rle_IZR1: real.
 
Theorem lt_Rlt : forall n m : nat, (INR n < INR m)%R -> n < m.
intros n m H'; case (le_or_lt m n); auto; intros H0; Contradict H';
 auto with real.
case (le_lt_or_eq _ _ H0); intros H1; auto with real.
rewrite H1; apply Rlt_irrefl.
Qed.
 
Theorem INR_inv : forall n m : nat, INR n = INR m -> n = m.
intros n; elim n; auto; try rewrite S_INR.
intros m; case m; auto.
intros m' H1; Contradict H1; auto.
rewrite S_INR.
apply Rlt_dichotomy_converse; left.
apply Rle_lt_0_plus_1.
apply pos_INR.
intros n' H' m; case m.
intros H'0; Contradict H'0; auto.
rewrite S_INR.
apply Rlt_dichotomy_converse; right.
red in |- *; apply Rle_lt_0_plus_1.
apply pos_INR.
intros m' H'0.
rewrite (H' m'); auto.
repeat rewrite S_INR in H'0.
apply Rplus_eq_reg_l with (r := 1%R); repeat rewrite (Rplus_comm 1);
 auto with real.
Qed.
 
Theorem Rle_INR : forall x y : nat, x <= y -> (INR x <= INR y)%R.
intros x y H; repeat rewrite INR_IZR_INZ.
apply Rle_IZR; auto with zarith.
Qed.
Hint Resolve Rle_INR: real.
 
Theorem le_Rle : forall n m : nat, (INR n <= INR m)%R -> n <= m.
intros n m H'; case H'; auto.
intros H'0; apply lt_le_weak; apply lt_Rlt; auto.
intros H'0; rewrite <- (INR_inv _ _ H'0); auto with arith.
Qed.
 
Theorem Rmult_IZR : forall z t : Z, IZR (z * t) = (IZR z * IZR t)%R.
intros z t; case z; case t; simpl in |- *; auto with real; unfold IZR; intros t1 z1; repeat rewrite <- INR_IPR.
- rewrite nat_of_P_mult_morphism; auto with real.
- rewrite nat_of_P_mult_morphism; auto with real.
  rewrite Rmult_comm.
  rewrite Ropp_mult_distr_l_reverse; auto with real.
  apply Ropp_eq_compat; rewrite mult_comm; auto with real.
- rewrite nat_of_P_mult_morphism; auto with real.
  rewrite Ropp_mult_distr_l_reverse; auto with real.
- rewrite nat_of_P_mult_morphism; auto with real.
  rewrite Rmult_opp_opp; auto with real.
Qed.
 
Theorem absolu_Zs :
 forall z : Z, (0 <= z)%Z -> Z.abs_nat (Z.succ z) = S (Z.abs_nat z).
intros z; case z.
3: intros p H'; Contradict H'; auto with zarith.
replace (Z.succ 0) with (Z_of_nat 1).
intros H'; rewrite absolu_INR; simpl in |- *; auto.
simpl in |- *; auto.
intros p H'; rewrite <- Zpos_succ_morphism; simpl in |- *; auto with zarith.
unfold nat_of_P in |- *; rewrite Pmult_nat_succ_morphism; auto.
Qed.
Hint Resolve Zlt_le_succ: zarith.
 
Theorem Zlt_next :
 forall n m : Z, (n < m)%Z -> m = Z.succ n \/ (Z.succ n < m)%Z.
intros n m H'; case (Zle_lt_or_eq (Z.succ n) m); auto with zarith.
Qed.
 
Theorem Zle_next :
 forall n m : Z, (n <= m)%Z -> m = n \/ (Z.succ n <= m)%Z.
intros n m H'; case (Zle_lt_or_eq _ _ H'); auto with zarith.
Qed.
 
Theorem Zlt_Zopp_Inv : forall p q : Z, (- p < - q)%Z -> (q < p)%Z.
intros x y H'; case (Zle_or_lt x y); auto with zarith.
Qed.
 
Theorem Zle_Zopp_Inv : forall p q : Z, (- p <= - q)%Z -> (q <= p)%Z.
intros p q H'; case (Zle_lt_or_eq _ _ H'); auto with zarith.
Qed.
 
Theorem absolu_Zs_neg :
 forall z : Z, (z < 0)%Z -> S (Z.abs_nat (Z.succ z)) = Z.abs_nat z.
intros z H'; apply inject_nat_eq.
rewrite inj_S.
repeat rewrite <- (absolu_Zopp (Z.succ z)).
repeat rewrite <- (absolu_Zopp z).
repeat rewrite inj_abs; replace 0%Z with (- (0))%Z; auto with zarith.
Qed.
 
Theorem Zlt_absolu :
 forall (x : Z) (n : nat), Z.abs_nat x < n -> (x < Z_of_nat n)%Z.
intros x n; case x; simpl in |- *; auto with zarith.
replace 0%Z with (Z_of_nat 0); auto with zarith.
intros p; rewrite <- (inject_nat_convert (Zpos p) p); auto with zarith.
case n; simpl in |- *; intros; red in |- *; simpl in |- *; auto.
Qed.
 
Theorem inj_pred :
 forall n : nat, n <> 0 -> Z_of_nat (pred n) = Z.pred (Z_of_nat n).
intros n; case n; auto.
intros H'; Contradict H'; auto.
intros n0 H'; rewrite inj_S; rewrite <- Zpred_succ; auto.
Qed.
 
Theorem Zle_abs : forall p : Z, (p <= Z_of_nat (Z.abs_nat p))%Z.
intros p; case p; simpl in |- *; auto with zarith; intros q;
 rewrite inject_nat_convert with (p := Zpos q); 
 auto with zarith.
unfold Z.le in |- *; red in |- *; intros H'2; discriminate.
Qed.
Hint Resolve Zle_abs: zarith.
 
Theorem ZleAbs :
 forall (z : Z) (n : nat),
 (- Z_of_nat n <= z)%Z -> (z <= Z_of_nat n)%Z -> Z.abs_nat z <= n.
intros z n H' H'0; case (le_or_lt (Z.abs_nat z) n); auto; intros lt.
case (Zle_or_lt 0 z); intros Zle0.
Contradict H'0.
apply Zlt_not_le; auto.
rewrite <- (inj_abs z); auto with zarith.
Contradict H'.
apply Zlt_not_le; auto.
replace z with (- Z_of_nat (Z.abs_nat z))%Z.
apply Zlt_Zopp; auto with zarith.
rewrite <- absolu_Zopp.
rewrite inj_abs; auto with zarith.
Qed.
 
Theorem lt_Zlt_inv : forall n m : nat, (Z_of_nat n < Z_of_nat m)%Z -> n < m.
intros n m H'; case (le_or_lt n m); auto.
intros H'0.
case (le_lt_or_eq _ _ H'0); auto with zarith.
intros H'1.
Contradict H'.
apply Zle_not_lt; auto with zarith.
Qed.
 
Theorem NconvertO : forall p : positive, nat_of_P p <> 0.
intros p; elim p; unfold nat_of_P in |- *; simpl in |- *.
intros p0 H'; red in |- *; intros H'0; discriminate.
intros p0; rewrite ZL6; unfold nat_of_P in |- *.
case (Pmult_nat p0 1); simpl in |- *; auto.
red in |- *; intros H'; discriminate.
Qed.
Hint Resolve NconvertO: zarith.
 
Theorem absolu_lt_nz : forall z : Z, z <> 0%Z -> 0 < Z.abs_nat z.
intros z; case z; simpl in |- *; auto; try (intros H'; case H'; auto; fail);
 intros p; generalize (NconvertO p); auto with arith.
Qed.
 
Theorem Rlt2 : (0 < INR 2)%R.
replace 0%R with (INR 0); auto with real arith.
Qed.
Hint Resolve Rlt2: real.
 
Theorem RlIt2 : (0 < / INR 2)%R.
apply Rmult_lt_reg_l with (r := INR 2); auto with real.
Qed.
Hint Resolve RlIt2: real.
 
Theorem Rledouble : forall r : R, (0 <= r)%R -> (r <= INR 2 * r)%R.
intros r H'.
replace (INR 2 * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
pattern r at 1 in |- *; replace r with (r + 0)%R; [ idtac | ring ].
apply Rplus_le_compat_l; auto.
Qed.
 
Theorem Rltdouble : forall r : R, (0 < r)%R -> (r < INR 2 * r)%R.
intros r H'.
pattern r at 1 in |- *; replace r with (r + 0)%R; try ring.
replace (INR 2 * r)%R with (r + r)%R; simpl in |- *; try ring; auto with real.
Qed.
 
Theorem Rlt_RinvDouble : forall r : R, (0 < r)%R -> (/ INR 2 * r < r)%R.
intros r H'.
apply Rmult_lt_reg_l with (r := INR 2); auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_r.
apply Rmult_lt_compat_r; replace 1%R with (INR 1); auto with real arith.
replace 0%R with (INR 0); auto with real arith.
Qed.
Hint Resolve Rledouble: real.
 
Theorem Rle_Rinv : forall x y : R, (0 < x)%R -> (x <= y)%R -> (/ y <= / x)%R.
intros x y H H1; case H1; intros H2.
left; apply Rinv_lt_contravar; auto.
apply Rmult_lt_0_compat; auto.
apply Rlt_trans with (2 := H2); auto.
rewrite H2; auto with real.
Qed.
 
Theorem Int_part_INR : forall n : nat, Int_part (INR n) = Z_of_nat n.
intros n; unfold Int_part in |- *.
cut (up (INR n) = (Z_of_nat n + Z_of_nat 1)%Z).
intros H'; rewrite H'; simpl in |- *; ring.
apply sym_equal; apply tech_up; auto.
replace (Z_of_nat n + Z_of_nat 1)%Z with (Z_of_nat (S n)).
repeat rewrite <- INR_IZR_INZ.
apply INR_lt_nm; auto.
rewrite Zplus_comm; rewrite <- inj_plus; simpl in |- *; auto.
rewrite plus_IZR; simpl in |- *; auto with real.
repeat rewrite <- INR_IZR_INZ; auto with real.
Qed.
 
Theorem Int_part_IZR : forall z : Z, Int_part (IZR z) = z.
intros z; unfold Int_part in |- *.
cut (up (IZR z) = (z + 1)%Z).
intros Z1; rewrite Z1; rewrite Zplus_comm; apply Zminus_plus;
 auto with zarith.
apply sym_equal; apply tech_up; simpl in |- *; auto with real zarith.
replace (IZR z) with (IZR z + IZR 0)%R; try rewrite plus_IZR;
 auto with real zarith.
Qed.
 
Theorem Zlt_Rlt : forall z1 z2 : Z, (IZR z1 < IZR z2)%R -> (z1 < z2)%Z.
intros z1 z2 H; case (Zle_or_lt z2 z1); auto.
intros H1; Contradict H; auto with real zarith.
apply Rle_not_lt; auto with real zarith.
Qed.
 
Theorem Zle_Rle :
 forall z1 z2 : Z, (IZR z1 <= IZR z2)%R -> (z1 <= z2)%Z.
intros z1 z2 H; case (Zle_or_lt z1 z2); auto.
intros H1; Contradict H; auto with real zarith.
apply Rlt_not_le; auto with real zarith.
Qed.
 
Theorem IZR_inv : forall z1 z2 : Z, IZR z1 = IZR z2 :>R -> z1 = z2.
intros z1 z2 H; apply Zle_antisym; apply Zle_Rle; rewrite H; auto with real.
Qed.
 
Theorem Zabs_eq_opp : forall x, (x <= 0)%Z -> Z.abs x = (- x)%Z.
intros x; case x; simpl in |- *; auto.
intros p H; Contradict H; auto with zarith.
Qed.
 
Theorem Zabs_Zs : forall z : Z, (Z.abs (Z.succ z) <= Z.succ (Z.abs z))%Z.
intros z; case z; auto.
simpl in |- *; auto with zarith.
repeat rewrite Z.abs_eq; auto with zarith.
intros p; rewrite Zabs_eq_opp; auto with zarith.
2: unfold Z.succ in |- *; replace 0%Z with (-1 + 1)%Z; auto with zarith.
2: case p; simpl in |- *; intros; red in |- *; simpl in |- *; intros;
    red in |- *; intros; discriminate.
replace (- Z.succ (Zneg p))%Z with (Zpos p - 1)%Z.
replace (Z.succ (Z.abs (Zneg p))) with (Zpos p + 1)%Z;
 auto with zarith.
unfold Z.succ in |- *; rewrite Zopp_plus_distr.
auto with zarith.
Qed.
Hint Resolve Zabs_Zs: zarith.
 
Theorem Zle_Zpred : forall x y : Z, (x < y)%Z -> (x <= Z.pred y)%Z.
intros x y H; apply Zlt_succ_le.
rewrite <- Zsucc_pred; auto.
Qed.
Hint Resolve Zle_Zpred: zarith.
 
Theorem Zabs_Zopp : forall z : Z, Z.abs (- z) = Z.abs z.
intros z; case z; simpl in |- *; auto.
Qed.
 
Theorem Zle_Zabs : forall z : Z, (z <= Z.abs z)%Z.
intros z; case z; simpl in |- *; red in |- *; simpl in |- *; auto;
 try (red in |- *; intros; discriminate; fail).
intros p; elim p; simpl in |- *; auto;
 try (red in |- *; intros; discriminate; fail).
Qed.
Hint Resolve Zle_Zabs: zarith.
 
Theorem Zlt_mult_simpl_l :
 forall a b c : Z, (0 < c)%Z -> (c * a < c * b)%Z -> (a < b)%Z.
intros a b0 c H H0; apply Z.gt_lt.
apply Zmult_gt_reg_r with (p := c); try apply Z.lt_gt; auto with zarith.
repeat rewrite (fun x => Zmult_comm x c); auto with zarith.
Qed.
(* An equality function on Z that return a bool *)
 
Fixpoint pos_eq_bool (a b : positive) {struct b} : bool :=
  match a, b with
  | xH, xH => true
  | xI a', xI b' => pos_eq_bool a' b'
  | xO a', xO b' => pos_eq_bool a' b'
  | _, _ => false
  end.
 
Theorem pos_eq_bool_correct :
 forall p q : positive,
 match pos_eq_bool p q with
 | true => p = q
 | false => p <> q
 end.
intros p q; generalize p; elim q; simpl in |- *; auto; clear p q.
intros p Rec q; case q; simpl in |- *;
 try (intros; red in |- *; intros; discriminate; fail).
intros q'; generalize (Rec q'); case (pos_eq_bool q' p); simpl in |- *; auto.
intros H1; rewrite H1; auto.
intros H1; Contradict H1; injection H1; auto.
intros p Rec q; case q; simpl in |- *;
 try (intros; red in |- *; intros; discriminate; fail).
intros q'; generalize (Rec q'); case (pos_eq_bool q' p); simpl in |- *; auto.
intros H1; rewrite H1; auto.
intros H1; Contradict H1; injection H1; auto.
intros q; case q; simpl in |- *;
 try (intros; red in |- *; intros; discriminate; fail); 
 auto.
Qed.
 
Theorem Z_O_1 : (0 < 1)%Z.
red in |- *; simpl in |- *; auto; intros; red in |- *; intros; discriminate.
Qed.
Hint Resolve Z_O_1: zarith.
 
Definition Z_eq_bool a b :=
  match a, b with
  | Z0, Z0 => true
  | Zpos a', Zpos b' => pos_eq_bool a' b'
  | Zneg a', Zneg b' => pos_eq_bool a' b'
  | _, _ => false
  end.
 
Theorem Z_eq_bool_correct :
 forall p q : Z,
 match Z_eq_bool p q with
 | true => p = q
 | false => p <> q
 end.
intros p q; case p; case q; simpl in |- *; auto;
 try (intros; red in |- *; intros; discriminate; fail).
intros p' q'; generalize (pos_eq_bool_correct q' p');
 case (pos_eq_bool q' p'); simpl in |- *; auto.
intros H1; rewrite H1; auto.
intros H1; Contradict H1; injection H1; auto.
intros p' q'; generalize (pos_eq_bool_correct q' p');
 case (pos_eq_bool q' p'); simpl in |- *; auto.
intros H1; rewrite H1; auto.
intros H1; Contradict H1; injection H1; auto.
Qed.
 
Theorem Zlt_mult_ZERO :
 forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z.
intros x y; case x; case y; unfold Z.lt in |- *; simpl in |- *; auto.
Qed.
Hint Resolve Zlt_mult_ZERO: zarith.
 
Theorem Zlt_Zminus_ZERO :
 forall z1 z2 : Z, (z2 < z1)%Z -> (0 < z1 - z2)%Z.
intros z1 z2; rewrite (Zminus_diag_reverse z2); auto with zarith.
Qed.
 
Theorem Zle_Zminus_ZERO :
 forall z1 z2 : Z, (z2 <= z1)%Z -> (0 <= z1 - z2)%Z.
intros z1 z2; rewrite (Zminus_diag_reverse z2); auto with zarith.
Qed.
Hint Resolve Zle_Zminus_ZERO Zlt_Zminus_ZERO: zarith.
 
Theorem Zle_Zpred_Zpred :
 forall z1 z2 : Z, (z1 <= z2)%Z -> (Z.pred z1 <= Z.pred z2)%Z.
intros z1 z2 H; apply Zsucc_le_reg.
repeat rewrite <- Zsucc_pred; auto.
Qed.
Hint Resolve Zle_Zpred_Zpred: zarith.
 
Theorem Zle_ZERO_Zabs : forall z : Z, (0 <= Z.abs z)%Z.
intros z; case z; simpl in |- *; auto with zarith.
Qed.
Hint Resolve Zle_ZERO_Zabs: zarith.
 
Theorem Zlt_Zabs_inv1 :
 forall z1 z2 : Z, (Z.abs z1 < z2)%Z -> (- z2 < z1)%Z.
intros z1 z2 H; case (Zle_or_lt 0 z1); intros H1.
apply Z.lt_le_trans with (- (0))%Z; auto with zarith.
apply Zlt_Zopp; apply Z.le_lt_trans with (2 := H); auto with zarith.
rewrite <- (Z.opp_involutive z1); rewrite <- (Zabs_eq_opp z1);
 auto with zarith.
Qed.
 
Theorem Zlt_Zabs_inv2 :
 forall z1 z2 : Z, (Z.abs z1 < Z.abs z2)%Z -> (z1 < Z.abs z2)%Z.
intros z1 z2; case z1; case z2; simpl in |- *; auto with zarith.
Qed.
 
Theorem Zle_Zabs_inv1 :
 forall z1 z2 : Z, (Z.abs z1 <= z2)%Z -> (- z2 <= z1)%Z.
intros z1 z2 H; case (Zle_or_lt 0 z1); intros H1.
apply Z.le_trans with (- (0))%Z; auto with zarith.
apply Zle_Zopp; apply Z.le_trans with (2 := H); auto with zarith.
rewrite <- (Z.opp_involutive z1); rewrite <- (Zabs_eq_opp z1);
 auto with zarith.
Qed.
 
Theorem Zle_Zabs_inv2 :
 forall z1 z2 : Z, (Z.abs z1 <= z2)%Z -> (z1 <= z2)%Z.
intros z1 z2 H; case (Zle_or_lt 0 z1); intros H1.
rewrite <- (Z.abs_eq z1); auto.
apply Z.le_trans with (Z.abs z1); auto with zarith.
Qed.
 
Theorem Zlt_Zabs_Zpred :
 forall z1 z2 : Z,
 (Z.abs z1 < z2)%Z -> z1 <> Z.pred z2 -> (Z.abs (Z.succ z1) < z2)%Z.
intros z1 z2 H H0; case (Zle_or_lt 0 z1); intros H1.
rewrite Z.abs_eq; auto with zarith.
rewrite Z.abs_eq in H; auto with zarith.
apply Z.lt_trans with (2 := H).
repeat rewrite Zabs_eq_opp; auto with zarith.
Qed.
 
Theorem Zle_n_Zpred :
 forall z1 z2 : Z, (Z.pred z1 <= Z.pred z2)%Z -> (z1 <= z2)%Z.
intros z1 z2 H; rewrite (Zsucc_pred z1); rewrite (Zsucc_pred z2);
 auto with zarith.
Qed.
 
Theorem Zpred_Zopp_Zs : forall z : Z, Z.pred (- z) = (- Z.succ z)%Z.
intros z; unfold Z.pred, Z.succ in |- *; ring.
Qed.
 
Theorem Zlt_1_O : forall z : Z, (1 <= z)%Z -> (0 < z)%Z.
intros z H; apply Zsucc_lt_reg; simpl in |- *; auto with zarith.
Qed.
Hint Resolve Zlt_succ Zsucc_lt_compat Zle_lt_succ: zarith.
 
Theorem Zlt_not_eq : forall p q : Z, (p < q)%Z -> p <> q.
intros p q H; Contradict H; rewrite H; auto with zarith.
Qed.
 
Theorem Zlt_not_eq_rev : forall p q : Z, (q < p)%Z -> p <> q.
intros p q H; Contradict H; rewrite H; auto with zarith.
Qed.
Hint Resolve Zlt_not_eq Zlt_not_eq_rev: zarith.
 
Theorem Zle_Zpred_Zlt :
 forall z1 z2 : Z, (z1 <= z2)%Z -> (Z.pred z1 < z2)%Z.
intros z1 z2 H; apply Zsucc_lt_reg; rewrite <- Zsucc_pred; auto with zarith.
Qed.
Hint Resolve Zle_Zpred_Zlt: zarith.
 
Theorem Zle_Zpred_inv :
 forall z1 z2 : Z, (z1 <= Z.pred z2)%Z -> (z1 < z2)%Z.
intros z1 z2 H; rewrite (Zsucc_pred z2); auto with zarith.
Qed.
 
Theorem Zabs_intro :
 forall (P : Z -> Prop) (z : Z), P (- z)%Z -> P z -> P (Z.abs z).
intros P z; case z; simpl in |- *; auto.
Qed.
 
Theorem Zpred_Zle_Zabs_intro :
 forall z1 z2 : Z,
 (- Z.pred z2 <= z1)%Z -> (z1 <= Z.pred z2)%Z -> (Z.abs z1 < z2)%Z.
intros z1 z2 H H0; apply Zle_Zpred_inv.
apply Zabs_intro with (P := fun x => (x <= Z.pred z2)%Z); auto with zarith.
Qed.
 
Theorem Zlt_ZERO_Zle_ONE : forall z : Z, (0 < z)%Z -> (1 <= z)%Z.
intros z H; replace 1%Z with (Z.succ 0); auto with zarith; simpl in |- *; auto.
Qed.
Hint Resolve Zlt_ZERO_Zle_ONE: zarith.
 
Theorem ptonat_def1 : forall p q, 1 < Pmult_nat p (S (S q)).
intros p; elim p; simpl in |- *; auto with arith.
Qed.
Hint Resolve ptonat_def1: arith.
 
Theorem lt_S_le : forall p q, p < q -> S p <= q.
intros p q; unfold lt in |- *; simpl in |- *; auto.
Qed.
Hint Resolve lt_S_le: arith.
 
Theorem Zlt_Zabs_intro :
 forall z1 z2 : Z, (- z2 < z1)%Z -> (z1 < z2)%Z -> (Z.abs z1 < z2)%Z.
intros z1 z2; case z1; case z2; simpl in |- *; auto with zarith.
intros p p0 H H0; change (- Zneg p0 < - Zneg p)%Z in |- *;
 auto with zarith.
Qed.