Codebase list coq-float / upstream/8.9.0 FroundMult.v
upstream/8.9.0

Tree @upstream/8.9.0 (Download .tar.gz)

FroundMult.v @upstream/8.9.0raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
(****************************************************************************
                                                                             
          IEEE754  :  FroundMult                                                     
                                                                             
          Laurent Thery, Sylvie Boldo                                                      
                                                                             
  ******************************************************************************)
Require Export FroundProp.
 
Section FRoundP.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
 
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
 
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
 
Theorem errorBoundedMultMin :
 forall p q fmin : float,
 Fbounded b p ->
 Fbounded b q ->
 (0 <= p)%R ->
 (0 <= q)%R ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 isMin b radix (p * q) fmin ->
 exists r : float,
   r = (p * q - fmin)%R :>R /\ Fbounded b r /\ Fexp r = (Fexp p + Fexp q)%Z.
intros p q fmin Fp Fq H' H'0 H'1 H'2.
cut (0 <= Fnum p * Fnum q)%Z;
 [ intros multPos
 | apply Zle_mult_gen; apply (LeR0Fnum radix); auto with arith ].
cut (ex (fun m : Z => FtoRradix fmin = Float m (Fexp (Fmult p q)))).
2: unfold FtoRradix in |- *;
    apply
     RoundedModeRep
      with (b := b) (precision := precision) (P := isMin b radix); 
    auto.
2: apply MinRoundedModeP with (precision := precision); auto.
2: rewrite (Fmult_correct radix); auto with zarith.
intros H'3; elim H'3; intros m E; clear H'3.
exists (Fminus radix (Fmult p q) (Float m (Fexp (Fmult p q)))).
split.
rewrite E; unfold FtoRradix in |- *; repeat rewrite Fminus_correct;
 repeat rewrite Fmult_correct; auto with zarith.
split.
cut (fmin <= Fmult p q)%R;
 [ idtac
 | unfold FtoRradix in |- *; rewrite Fmult_correct; auto; case H'2;
    auto with real zarith; (intros H1 H2; case H2; auto with zarith) ].
rewrite E; unfold Fmult, Fminus, Fopp, Fplus in |- *; simpl in |- *; auto.
repeat rewrite Zmin_n_n; repeat rewrite <- Zminus_diag_reverse; auto.
simpl in |- *; repeat rewrite Zpower_nat_O; repeat rewrite Zmult_1_r.
unfold FtoRradix, FtoR in |- *; simpl in |- *.
intros H'3;
 (cut (m <= Fnum p * Fnum q)%Z;
   [ idtac
   | apply le_IZR;
      apply Rmult_le_reg_l with (r := powerRZ radix (Fexp p + Fexp q));
      auto with real zarith;
      repeat rewrite (Rmult_comm (powerRZ radix (Fexp p + Fexp q)));
      auto with zarith ]); intros H'4.
repeat split; simpl in |- *; auto.
case (ZquotientProp (Fnum p * Fnum q) (Zpower_nat radix precision));
 auto with zarith.
intros x (H'5, (H'6, H'7)).
cut
 (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
  powerRZ radix (precision + (Fexp p + Fexp q)) <= fmin)%R;
 [ rewrite E; intros H'8 | idtac ].
cut
 (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
  powerRZ radix precision <= m)%R; [ intros H'9 | idtac ].
rewrite Zabs_eq; auto with zarith.
apply Zle_lt_trans with x; auto.
replace x with
 (Fnum p * Fnum q +
  -
  (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
   Zpower_nat radix precision))%Z.
apply Zplus_le_compat_l; auto.
apply Zle_Zopp.
apply le_IZR; auto.
rewrite Rmult_IZR.
rewrite Zpower_nat_Z_powerRZ; auto with zarith.
pattern (Fnum p * Fnum q)%Z at 1 in |- *; rewrite H'5; ring.
rewrite pGivesBound.
rewrite <- (Zabs_eq (Zpower_nat radix precision)); auto with zarith.
apply Zlt_Zabs_inv2; auto.
apply Rmult_le_reg_l with (r := powerRZ radix (Fexp p + Fexp q));
 auto with real zarith.
repeat rewrite (Rmult_comm (powerRZ radix (Fexp p + Fexp q))); auto.
rewrite Rmult_assoc; rewrite <- powerRZ_add; auto with real zarith.
case
 (FboundedMbound _ radixMoreThanOne b precision)
  with
    (z := (precision + (Fexp p + Fexp q))%Z)
    (m := Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision));
 auto with zarith.
apply Zmult_le_reg_r with (p := Zpower_nat radix precision); auto with zarith.
apply Zlt_gt; auto with zarith.
pattern (Zpower_nat radix precision) at 2 in |- *;
 rewrite <- (fun x => Zabs_eq (Zpower_nat radix x)).
rewrite <- Zabs_Zmult.
apply Zle_trans with (1 := H'6); auto with zarith.
rewrite Zabs_Zmult.
apply Zle_trans with (Zpower_nat radix precision * Zabs (Fnum q))%Z.
apply Zle_Zmult_comp_r; auto with zarith.
apply Zlt_le_weak; rewrite <- pGivesBound; case Fp; auto with float.
apply Zle_Zmult_comp_l; auto with zarith.
apply Zlt_le_weak; rewrite <- pGivesBound; case Fq; auto with float.
auto with zarith.
intros x0 (H'8, H'9); rewrite <- H'9.
case H'2.
intros H'10 (H'11, H'12); apply H'12; auto.
rewrite H'9; auto.
rewrite powerRZ_add; auto with real zarith.
rewrite <- Rmult_assoc.
unfold FtoRradix in |- *; rewrite <- Fmult_correct; auto with zarith.
unfold Fmult, FtoR in |- *; simpl in |- *.
repeat rewrite (fun x => Rmult_comm x (powerRZ radix (Fexp p + Fexp q))).
apply Rmult_le_compat_l; auto with real zarith.
rewrite <- Zpower_nat_Z_powerRZ; auto with zarith.
pattern (Fnum p * Fnum q)%Z at 2 in |- *;
 rewrite <- (Zabs_eq (Fnum p * Fnum q)); auto.
rewrite <- Rmult_IZR; apply Rle_IZR; apply Zle_Zabs_inv2; auto.
simpl in |- *; auto.
apply Zmin_n_n; auto.
Qed.
 
Theorem errorBoundedMultMax :
 forall p q fmax : float,
 Fbounded b p ->
 Fbounded b q ->
 (0 <= p)%R ->
 (0 <= q)%R ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 isMax b radix (p * q) fmax ->
 exists r : float,
   FtoRradix r = (p * q - fmax)%R /\
   Fbounded b r /\ Fexp r = (Fexp p + Fexp q)%Z.
intros p q fmax Fp Fq H' H'0 H'1 H'2.
cut (0 <= Fnum p * Fnum q)%Z;
 [ intros multPos
 | apply Zle_mult_gen; apply (LeR0Fnum radix); auto with arith ].
case (ZquotientProp (Fnum p * Fnum q) (Zpower_nat radix precision));
 auto with zarith.
intros r; intros (H'3, (H'4, H'5)).
cut (0 <= Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision))%Z;
 [ intros Z2 | apply ZquotientPos; auto with zarith ].
cut (0 <= r)%Z;
 [ intros Z3
 | replace r with
    (Fnum p * Fnum q -
     Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
     Zpower_nat radix precision)%Z;
    [ idtac | pattern (Fnum p * Fnum q)%Z at 1 in |- *; rewrite H'3; ring ];
    auto ].
2: apply Zle_Zminus_ZERO; rewrite Zabs_eq in H'4; auto with zarith;
    rewrite Zabs_eq in H'4; auto with zarith.
case (Z_eq_dec r 0); intros Z4.
exists (Fzero (Fexp p + Fexp q)); repeat (split; auto with float).
replace (FtoRradix (Fzero (Fexp p + Fexp q))) with 0%R;
 [ idtac | unfold Fzero, FtoRradix, FtoR in |- *; simpl in |- *; ring ].
apply Rplus_eq_reg_l with (r := FtoRradix fmax).
replace (fmax + 0)%R with (FtoRradix fmax); [ idtac | ring ].
replace (fmax + (p * q - fmax))%R with (p * q)%R; [ idtac | ring ].
unfold FtoRradix in |- *; rewrite <- (Fmult_correct radix); auto with zarith.
case
 (FboundedMbound _ radixMoreThanOne b precision)
  with
    (z := (precision + (Fexp p + Fexp q))%Z)
    (m := Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision));
 auto with zarith.
apply Zmult_le_reg_r with (p := Zpower_nat radix precision); auto with zarith.
apply Zlt_gt; auto with zarith.
pattern (Zpower_nat radix precision) at 2 in |- *;
 rewrite <- (fun x => Zabs_eq (Zpower_nat radix x)).
rewrite <- Zabs_Zmult.
apply Zle_trans with (1 := H'4); auto with zarith.
rewrite Zabs_Zmult.
apply Zle_trans with (Zpower_nat radix precision * Zabs (Fnum q))%Z.
apply Zle_Zmult_comp_r; auto with zarith.
apply Zlt_le_weak; rewrite <- pGivesBound; case Fp; auto with float.
apply Zle_Zmult_comp_l; auto with zarith.
apply Zlt_le_weak; rewrite <- pGivesBound; case Fq; auto with float.
auto with zarith.
intros x (H'6, H'7).
cut (FtoR radix (Fmult p q) = FtoR radix x).
intros H'8; rewrite H'8.
apply sym_eq; apply (ProjectMax b radix); auto.
rewrite <- H'8; auto.
rewrite Fmult_correct; auto with zarith.
rewrite H'7.
unfold FtoRradix, FtoR in |- *; simpl in |- *.
rewrite powerRZ_add with (n := Z_of_nat precision); auto with real zarith.
pattern (Fnum p * Fnum q)%Z at 1 in |- *; rewrite H'3.
rewrite plus_IZR; rewrite Rmult_IZR.
repeat rewrite Zpower_nat_Z_powerRZ; auto with real zarith.
rewrite Z4; simpl;ring.
cut (ex (fun m : Z => FtoRradix fmax = Float m (Fexp (Fmult p q))));
 [ intros Z5 | idtac ].
2: unfold FtoRradix in |- *;
    apply
     RoundedModeRep
      with (b := b) (precision := precision) (P := isMax b radix); 
    auto.
2: apply MaxRoundedModeP with (precision := precision); auto.
2: rewrite (Fmult_correct radix); auto with zarith.
elim Z5; intros m E; clear Z5.
exists (Fopp (Fminus radix (Float m (Fexp (Fmult p q))) (Fmult p q))).
split.
rewrite E; unfold FtoRradix in |- *; repeat rewrite Fopp_correct;
 repeat rewrite Fminus_correct; repeat rewrite Fmult_correct;
 auto with zarith; ring.
cut
 (Fexp (Fopp (Fminus radix (Float m (Fexp (Fmult p q))) (Fmult p q))) =
  (Fexp p + Fexp q)%Z); [ intros Z5 | idtac ].
split; auto.
split; [ idtac | rewrite Z5; auto ].
cut (Fmult p q <= fmax)%R;
 [ idtac
 | unfold FtoRradix in |- *; rewrite Fmult_correct; auto; case H'2;
    auto with real zarith; (intros H1 H2; case H2; auto) ].
cut
 (fmax <=
  Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)) *
  powerRZ radix (precision + (Fexp p + Fexp q)))%R.
rewrite E; repeat rewrite Zmin_n_n; repeat rewrite <- Zminus_diag_reverse;
 repeat rewrite Zpower_nat_O; repeat rewrite Zmult_1_r; 
 auto.
unfold Fmult, Fminus, Fplus, Fopp in |- *; simpl in |- *.
repeat rewrite Zmin_n_n; repeat rewrite <- Zminus_diag_reverse;
 repeat rewrite Zpower_nat_O; repeat rewrite Zmult_1_r; 
 auto.
intros H1 H2; rewrite Zabs_Zopp; apply Zlt_Zabs_intro.
apply Zlt_le_trans with 0%Z; auto with zarith.
cut (Fnum p * Fnum q <= m)%Z; auto with zarith.
apply le_IZR;
 apply (Rle_monotony_contra_exp radix) with (z := (Fexp p + Fexp q)%Z);
 auto with zarith.
cut
 (m <=
  Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)) *
  Zpower_nat radix precision)%Z; [ intros H'9 | idtac ].
apply Zle_lt_trans with (Zpower_nat radix precision - r)%Z;
 [ idtac | rewrite pGivesBound; auto with zarith ].
replace r with
 (Fnum p * Fnum q -
  Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
  Zpower_nat radix precision)%Z.
replace
 (Zpower_nat radix precision -
  (Fnum p * Fnum q -
   Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
   Zpower_nat radix precision))%Z with
 (Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)) *
  Zpower_nat radix precision - Fnum p * Fnum q)%Z; 
 auto with zarith.
unfold Zsucc in |- *; simpl in |- *; ring.
pattern (Fnum p * Fnum q)%Z at 1 in |- *; rewrite H'3; ring.
apply le_IZR;
 apply (Rle_monotony_contra_exp radix) with (z := (Fexp p + Fexp q)%Z);
 auto with zarith.
replace
 (IZR
    (Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)) *
     Zpower_nat radix precision) * powerRZ radix (Fexp p + Fexp q))%R with
 (Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)) *
  powerRZ radix (precision + (Fexp p + Fexp q)))%R; 
 [ auto | idtac ].
rewrite powerRZ_add; auto with real zarith.
repeat rewrite Rmult_IZR; repeat rewrite Zpower_nat_Z_powerRZ; auto with zarith.
ring.
case
 (FboundedMbound _ radixMoreThanOne b precision)
  with
    (z := (precision + (Fexp p + Fexp q))%Z)
    (m := Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)));
 auto with arith.
rewrite Zabs_eq; auto with zarith.
apply Zlt_le_succ.
case (Zle_lt_or_eq _ _ multPos); intros Eq1.
cut (0 < Zabs (Fnum p))%Z; [ intros Eq2 | idtac ].
cut (0 < Zabs (Fnum q))%Z; [ intros Eq3 | idtac ].
apply Zlt_mult_simpl_l with (c := Zpower_nat radix precision);
 auto with zarith.
rewrite (fun x y z => Zmult_comm x (Zquotient y z)).
apply Zle_lt_trans with (Fnum p * Fnum q)%Z.
rewrite Zabs_eq in H'4; auto with zarith; rewrite Zabs_eq in H'4;
 auto with zarith.
rewrite <- (Zabs_eq (Fnum p * Fnum q)); auto with zarith; rewrite Zabs_Zmult.
apply Zlt_trans with (Zabs (Fnum p) * Zpower_nat radix precision)%Z.
cut (Zabs (Fnum q) < Zpower_nat radix precision)%Z;
 [ intros Eq4; apply Zmult_gt_0_lt_compat_l
 | rewrite <- pGivesBound; case Fq ]; auto with zarith.
cut (Zabs (Fnum p) < Zpower_nat radix precision)%Z;
 [ intros Eq4; apply Zmult_gt_0_lt_compat_r
 | rewrite <- pGivesBound; case Fp ]; auto with zarith.
case (Zle_lt_or_eq _ _ (Zle_ZERO_Zabs (Fnum q))); auto.
intros Eq3; Contradict Eq1; replace (Fnum q) with 0%Z; auto with zarith.
generalize Eq3; case (Fnum q); simpl in |- *; auto; intros; discriminate.
case (Zle_lt_or_eq _ _ (Zle_ZERO_Zabs (Fnum p))); auto.
intros Eq3; Contradict Eq1; replace (Fnum p) with 0%Z; auto with zarith.
generalize Eq3; case (Fnum p); simpl in |- *; auto; intros; discriminate.
rewrite <- Eq1; replace (Zquotient 0 (Zpower_nat radix precision)) with 0%Z;
 auto with zarith.
apply Zle_trans with (1 := H'1); auto with zarith.
intros f1 (Hf1, Hf2); rewrite <- Hf2.
case H'2; intros L1 (L2, L3); apply L3; auto.
rewrite Hf2; unfold Fmult, FtoRradix, FtoR in |- *.
replace
 (Fnum p * powerRZ radix (Fexp p) * (Fnum q * powerRZ radix (Fexp q)))%R with
 (Fnum p * Fnum q * powerRZ radix (Fexp p + Fexp q))%R.
replace
 (Zsucc (Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision)) *
  powerRZ radix (precision + (Fexp p + Fexp q)))%R with
 ((Zquotient (Fnum p * Fnum q) (Zpower_nat radix precision) *
   Zpower_nat radix precision + Zpower_nat radix precision)%Z *
  powerRZ radix (Fexp p + Fexp q))%R.
apply Rle_monotone_exp; auto with real zarith.
rewrite <- Rmult_IZR; apply Rle_IZR.
pattern (Fnum p * Fnum q)%Z at 1 in |- *; rewrite H'3;
 cut (r < Zpower_nat radix precision)%Z; auto with zarith.
rewrite Zabs_eq in H'5; auto with zarith; rewrite Zabs_eq in H'5;
 auto with zarith.
unfold Zsucc in |- *; repeat rewrite Rmult_IZR || rewrite plus_IZR;
 simpl in |- *.
rewrite (powerRZ_add radix precision); auto with real zarith;
 rewrite <- (Zpower_nat_Z_powerRZ radix precision); auto with real zarith; 
 ring.
rewrite powerRZ_add; auto with real zarith; ring.
unfold Fopp, Fminus, Fmult in |- *; simpl in |- *; auto.
apply Zmin_n_n.
Qed.
 
Theorem multExpMin :
 forall P,
 RoundedModeP b radix P ->
 forall p q pq : float,
 P (p * q)%R pq ->
 exists s : float,
   Fbounded b s /\ s = pq :>R /\ (Fexp p + Fexp q <= Fexp s)%Z.
intros P H' p q pq H'0.
case
 (RoundedModeRep b radix precision) with (p := Fmult p q) (q := pq) (P := P);
 auto with zarith.
rewrite Fmult_correct; auto with zarith.
simpl in |- *; intros x H'1.
case
 (eqExpLess _ radixMoreThanOne b)
  with (p := pq) (q := Float x (Fexp (Fmult p q))); 
 auto.
apply RoundedModeBounded with (radix := radix) (P := P) (r := (p * q)%R);
 auto.
simpl in |- *; intros x0 H'2; elim H'2; intros H'3 H'4; elim H'4;
 intros H'5 H'6; clear H'4 H'2.
exists x0; split; [ idtac | split ]; auto.
unfold FtoRradix in |- *; rewrite H'5; auto.
apply le_IZR; auto.
Qed.
 
Theorem multExpUpperBound :
 forall P,
 RoundedModeP b radix P ->
 forall p q pq : float,
 P (p * q)%R pq ->
 Fbounded b p ->
 Fbounded b q ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 exists r : float,
   Fbounded b r /\ r = pq :>R /\ (Fexp r <= precision + (Fexp p + Fexp q))%Z.
intros P H' p q pq H'0 H'1 H'2 H'3.
replace (precision + (Fexp p + Fexp q))%Z with
 (Fexp (Float (pPred (vNum b)) (precision + (Fexp p + Fexp q))));
 [ idtac | simpl in |- *; auto ].
unfold FtoRradix in |- *; apply eqExpMax; auto.
apply RoundedModeBounded with (radix := radix) (P := P) (r := (p * q)%R);
 auto; auto.
unfold pPred in |- *; apply maxFbounded; auto.
apply Zle_trans with (1 := H'3); auto with zarith.
replace (FtoR radix (Float (pPred (vNum b)) (precision + (Fexp p + Fexp q))))
 with (radix * Float (pPred (vNum b)) (pred precision + (Fexp p + Fexp q)))%R.
rewrite Fabs_correct; auto with zarith.
unfold FtoRradix in |- *;
 apply
  RoundedModeMultAbs
   with (b := b) (precision := precision) (P := P) (r := (p * q)%R); 
 auto.
unfold pPred in |- *; apply maxFbounded; auto with zarith.
rewrite Rabs_mult; auto.
apply
 Rle_trans
  with
    (FtoR radix
       (Fmult (Float (pPred (vNum b)) (Fexp p))
          (Float (pPred (vNum b)) (Fexp q)))).
rewrite Fmult_correct; auto with arith.
apply Rmult_le_compat; auto with real.
rewrite <- (Fabs_correct radix); try apply maxMax1; auto with zarith.
rewrite <- (Fabs_correct radix); try apply maxMax1; auto with zarith.
unfold Fmult, FtoR in |- *; simpl in |- *; auto.
rewrite powerRZ_add with (n := Z_of_nat (pred precision));
 auto with real arith.
repeat rewrite <- Rmult_assoc.
repeat rewrite (fun (z : Z) (x : R) => Rmult_comm x (powerRZ radix z));
 auto.
apply Rmult_le_compat_l; auto with real arith.
rewrite <- Rmult_assoc.
rewrite (fun x : R => Rmult_comm x radix).
rewrite <- powerRZ_Zs; auto with real arith.
replace (Zsucc (pred precision)) with (Z_of_nat precision).
rewrite Rmult_IZR; auto.
apply Rmult_le_compat; auto with real arith.
replace 0%R with (IZR 0); unfold pPred in |- *; try apply Rle_IZR;
 auto with real zarith.
replace 0%R with (IZR 0); unfold pPred in |- *; try apply Rle_IZR;
 auto with real zarith.
unfold pPred in |- *; rewrite pGivesBound; rewrite <- Zpower_nat_Z_powerRZ;
 auto with real zarith.
rewrite inj_pred; auto with arith zarith.
auto with real zarith.
auto with real zarith.
unfold FtoRradix, FtoR in |- *; simpl in |- *.
repeat rewrite (Rmult_comm (pPred (vNum b))).
rewrite <- Rmult_assoc.
rewrite <- powerRZ_Zs; auto with real zarith.
rewrite inj_pred; auto with arith zarith.
replace (Zsucc (Zpred precision + (Fexp p + Fexp q))) with
 (precision + (Fexp p + Fexp q))%Z; auto; unfold Zsucc, Zpred in |- *; 
 ring.
Qed.
 
Theorem errorBoundedMultPos :
 forall P,
 RoundedModeP b radix P ->
 forall p q f : float,
 Fbounded b p ->
 Fbounded b q ->
 (0 <= p)%R ->
 (0 <= q)%R ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 P (p * q)%R f ->
 exists r : float,
   r = (p * q - f)%R :>R /\ Fbounded b r /\ Fexp r = (Fexp p + Fexp q)%Z.
intros P H p q f H0 H1 H2 H3 H4 H5.
generalize errorBoundedMultMin errorBoundedMultMax; intros H6 H7.
cut (MinOrMaxP b radix P);
 [ intros | case H; intros H'1 (H'2, (H'3, H'4)); auto ].
case (H8 (p * q)%R f); auto.
Qed.
 
Theorem errorBoundedMultNeg :
 forall P,
 RoundedModeP b radix P ->
 forall p q f : float,
 Fbounded b p ->
 Fbounded b q ->
 (p <= 0)%R ->
 (0 <= q)%R ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 P (p * q)%R f ->
 exists r : float,
   r = (p * q - f)%R :>R /\ Fbounded b r /\ Fexp r = (Fexp p + Fexp q)%Z.
intros P H p q f H0 H1 H2 H3 H4 H5.
generalize errorBoundedMultMin errorBoundedMultMax; intros H6 H7.
cut (MinOrMaxP b radix P);
 [ intros | case H; intros H'1 (H'2, (H'3, H'4)); auto ].
case (H8 (p * q)%R f); auto; intros H9.
generalize (H7 (Fopp p) q (Fopp f)); intros H12.
lapply H12; auto with float; intros H10; clear H12.
lapply H10; auto; intros H12; clear H10.
lapply H12;
 [ intros H10
 | unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real ];
 clear H12.
lapply H10; auto; intros H12; clear H10.
lapply H12; [ intros H10 | simpl in |- *; auto ]; clear H12.
lapply H10; [ intros H12 | idtac ]; clear H10.
2: replace (Fopp p * q)%R with (- (p * q))%R;
    [ apply MinOppMax; auto | idtac ].
2: unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
elim H12; intros r H10; clear H12; elim H10; intros H11 H12; clear H10.
elim H12; clear H12; intros H10 H12.
exists (Fopp r); split; [ generalize H11 | split; auto with float ].
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; intros H13;
 rewrite H13; ring.
generalize (H6 (Fopp p) q (Fopp f)); intros H12.
lapply H12; auto with float; intros H10; clear H12.
lapply H10; auto; intros H12; clear H10.
lapply H12;
 [ intros H10
 | unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real ];
 clear H12.
lapply H10; auto; intros H12; clear H10.
lapply H12; [ intros H10 | simpl in |- *; auto ]; clear H12.
lapply H10; [ intros H12 | idtac ]; clear H10.
2: replace (Fopp p * q)%R with (- (p * q))%R;
    [ apply MaxOppMin; auto | idtac ].
2: unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
elim H12; intros r H10; clear H12; elim H10; intros H11 H12; clear H10.
elim H12; clear H12; intros H10 H12.
exists (Fopp r); split; [ generalize H11 | split; auto with float ].
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; intros H13;
 rewrite H13; ring.
Qed.
 
Theorem errorBoundedMult :
 forall P,
 RoundedModeP b radix P ->
 forall p q f : float,
 Fbounded b p ->
 Fbounded b q ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 P (p * q)%R f ->
 exists r : float,
   r = (p * q - f)%R :>R /\ Fbounded b r /\ Fexp r = (Fexp p + Fexp q)%Z.
intros P H p q f H0 H1 H2 H3.
case (Rle_or_lt 0 p); intros H4; case (Rle_or_lt 0 q); intros H5.
apply errorBoundedMultPos with P; auto.
replace (Fexp p) with (Fexp (Fopp p)); auto with float.
replace (Fexp q) with (Fexp (Fopp q)); auto with float.
cut ((p * q)%R = (Fopp p * Fopp q)%R); [ intros H6; rewrite H6 | idtac ].
apply errorBoundedMultNeg with P; auto with float real.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
rewrite <- H6; auto.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
apply errorBoundedMultNeg with P; auto with float real.
replace (Fexp p) with (Fexp (Fopp p)); auto with float.
replace (Fexp q) with (Fexp (Fopp q)); auto with float.
cut ((p * q)%R = (Fopp p * Fopp q)%R); [ intros H6; rewrite H6 | idtac ].
apply errorBoundedMultPos with P; auto with float real.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
rewrite <- H6; auto.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
Qed.
 
Theorem errorBoundedMultExp_aux :
 forall n1 n2 : Z,
 (Zabs n1 < Zpos (vNum b))%Z ->
 (Zabs n2 < Zpos (vNum b))%Z ->
 (exists ny : Z,
    (exists ey : Z,
       (n1 * n2)%R = (ny * powerRZ radix ey)%R :>R /\
       (Zabs ny < Zpos (vNum b))%Z)) ->
 exists nx : Z,
   (exists ex : Z,
      (n1 * n2)%R = (nx * powerRZ radix ex)%R :>R /\
      (Zabs nx < Zpos (vNum b))%Z /\
      (0 <= ex)%Z /\ (ex <= precision)%Z).
intros n1 n2 H H0 H1.
case H1; intros ny (ey, (H2, H3)).
case (Zle_or_lt 0 ey); intros Zl1.
case (Zle_or_lt ey precision); intros Zl2.
exists ny; exists ey; repeat (split; auto).
exists (ny * Zpower_nat radix (Zabs_nat (ey - precision)))%Z;
 exists (Z_of_nat precision); repeat (split; auto with zarith).
replace (IZR (ny * Zpower_nat radix (Zabs_nat (ey - precision)))) with
 (ny * powerRZ radix (ey - precision))%R.
rewrite Rmult_assoc; rewrite <- powerRZ_add; auto with zarith real.
replace (ey - precision + precision)%Z with ey; [ auto | ring ].
rewrite Rmult_IZR.
rewrite Zpower_nat_powerRZ_absolu; auto with real zarith.
rewrite Zabs_Zmult.
apply lt_IZR; apply Rmult_lt_reg_l with (r := powerRZ radix precision);
 auto with real zarith.
repeat rewrite (fun x y => Rmult_comm (powerRZ x y)).
rewrite Rmult_IZR.
rewrite Rmult_assoc.
rewrite (Zabs_eq (Zpower_nat radix (Zabs_nat (ey - precision))));
 auto with zarith.
rewrite Zpower_nat_powerRZ_absolu; auto with real zarith.
rewrite <- powerRZ_add; auto with real zarith.
replace (ey - precision + precision)%Z with ey; [ idtac | ring ].
replace (powerRZ radix precision) with (IZR (Zpos (vNum b)));
 [ idtac
 | rewrite pGivesBound; rewrite <- Zpower_nat_powerRZ_absolu;
    try rewrite absolu_INR; auto with zarith ].
rewrite <- (fun x y => Rabs_pos_eq (powerRZ x y)); auto with real zarith.
rewrite <- Faux.Rabsolu_Zabs; rewrite <- Rabs_mult; rewrite <- H2.
rewrite Rabs_mult; repeat rewrite Faux.Rabsolu_Zabs; auto with real zarith.
case (Zle_lt_or_eq 0 (Zabs n2)); auto with zarith; intros Z1.
apply Rlt_trans with (Zpos (vNum b) * Zabs n2)%R;
 auto with real zarith.
rewrite <- Z1; auto with real zarith.
replace (Zabs n1 * 0%Z)%R with (0 * Zpos (vNum b))%R;
 [ auto with real zarith | simpl; ring ].
exists (n1 * n2)%Z; exists 0%Z; repeat (split; auto with zarith).
rewrite Rmult_IZR; rewrite powerRZ_O; ring.
apply lt_IZR.
rewrite <- Faux.Rabsolu_Zabs; rewrite Rmult_IZR; rewrite H2.
rewrite Rabs_mult.
apply Rle_lt_trans with (Rabs ny).
pattern (Rabs ny) at 2 in |- *; replace (Rabs ny) with (Rabs ny * 1)%R;
 [ apply Rmult_le_compat_l | ring ]; auto with arith real.
rewrite (Rabs_pos_eq (powerRZ radix ey));
 [ idtac | apply powerRZ_le; auto with arith real ].
replace 1%R with (powerRZ radix 0); [ apply Rle_powerRZ | simpl in |- * ];
 auto with real arith zarith.
rewrite Faux.Rabsolu_Zabs; auto with real zarith.
Qed.
 
Theorem errorBoundedMultExpPos :
 forall P,
 RoundedModeP b radix P ->
 forall p q pq : float,
 Fbounded b p ->
 Fbounded b q ->
 (0 <= p)%R ->
 (0 <= q)%R ->
 P (p * q)%R pq ->
 (- dExp b <= Fexp p + Fexp q)%Z ->
 ex
   (fun r : float =>
    ex
      (fun s : float =>
       Fbounded b r /\
       Fbounded b s /\
       r = pq :>R /\
       s = (p * q - r)%R :>R /\
       Fexp s = (Fexp p + Fexp q)%Z :>Z /\
       (Fexp s <= Fexp r)%Z /\ (Fexp r <= precision + (Fexp p + Fexp q))%Z)).
intros P H p q pq H0 H1 H2 H3 H4 H5.
case (multExpUpperBound P H p q pq); auto; intros r (H'1, (H'2, H'3)).
case (Req_dec (p * q - pq) 0); intros H6.
case (Req_dec pq 0); intros H7.
cut (Fbounded b (Fzero (Fexp p + Fexp q))); [ intros Fb1 | idtac ].
exists (Fzero (Fexp p + Fexp q)); exists (Fzero (Fexp p + Fexp q));
 repeat (split; simpl in |- *; auto with zarith).
rewrite H7; unfold FtoRradix in |- *; apply FzeroisReallyZero.
unfold FtoRradix in |- *; rewrite FzeroisReallyZero; rewrite <- H7.
pattern (FtoRradix pq) at 1 in |- *; rewrite H7; auto with real.
repeat (split; auto); simpl in |- *; auto with arith zarith.
case (errorBoundedMultExp_aux (Fnum p) (Fnum q)); auto with float real zarith.
exists (Fnum pq); exists (Fexp pq - (Fexp p + Fexp q))%Z; split.
apply Rmult_eq_reg_l with (powerRZ radix (Fexp p + Fexp q));
 auto with real zarith.
repeat rewrite (fun x y => Rmult_comm (powerRZ x y)).
apply trans_eq with (p * q)%R; auto.
rewrite <- (Fmult_correct radix); auto with real zarith;
 unfold FtoRradix, FtoR, Fmult in |- *; simpl in |- *; 
 rewrite Rmult_IZR; auto.
apply trans_eq with (FtoRradix pq); auto with real.
rewrite Rmult_assoc; rewrite <- powerRZ_add; auto with real zarith.
replace (Fexp pq - (Fexp p + Fexp q) + (Fexp p + Fexp q))%Z with (Fexp pq);
 auto; ring.
cut (Fbounded b pq); [ intros Z1; case Z1 | idtac ]; auto with real zarith.
apply (RoundedModeBounded b radix P (p * q)); auto.
intros nx (ex, (H'4, (H'5, (H'6, H'7)))).
cut (FtoRradix pq = FtoRradix (Float nx (ex + (Fexp p + Fexp q))) :>R);
 [ intros Eq1 | idtac ].
exists (Float nx (ex + (Fexp p + Fexp q))); exists (Fzero (Fexp p + Fexp q));
 repeat (split; simpl in |- *; auto with real zarith).
rewrite <- Eq1; rewrite H6; apply (FzeroisReallyZero radix).
replace (FtoRradix pq) with (p * q)%R.
unfold FtoRradix in |- *; unfold FtoR in |- *; simpl in |- *.
rewrite powerRZ_add; auto with zarith real.
repeat rewrite <- Rmult_assoc; rewrite <- H'4; rewrite powerRZ_add;
 [ ring | auto with zarith real ].
replace (FtoRradix p * FtoRradix q)%R with
 (pq + (FtoRradix p * FtoRradix q - FtoRradix pq))%R; 
 [ rewrite H6 | idtac ]; ring.
case (errorBoundedMultPos P H p q pq); auto.
intros s (H'4, (H'5, H'6)).
exists r; exists s; repeat (split; auto with zarith).
rewrite H'2; auto.
apply Zlt_le_weak;
 apply RoundedModeErrorExpStrict with b radix precision P (p * q)%R; 
 auto.
cut (CompatibleP b radix P);
 [ intros H'7 | case H; try intros H'7 (H'8, (H'9, H'10)); auto ].
apply H'7 with (p * q)%R pq; auto with real.
fold FtoRradix in |- *; rewrite H'2; auto with real.
fold FtoRradix in |- *; rewrite H'4; auto with real.
Qed.
 
Theorem errorBoundedMultExp :
 forall P, (RoundedModeP b radix P) -> 
 forall p q pq : float,
  (Fbounded b p) -> (Fbounded b q) ->
  (P (p * q)%R pq) ->
   (-(dExp b) <= Fexp p + Fexp q)%Z ->
   exists r : float,
   exists s : float,
      (Fbounded b r) /\ (Fbounded b s) /\
       r = pq :>R /\ s = (p * q - r)%R :>R /\
       (Fexp s =  Fexp p + Fexp q)%Z /\
       (Fexp s <= Fexp r)%Z /\ 
       (Fexp r <= precision + (Fexp p + Fexp q))%Z.
intros P H p q pq H1 H2 H3 H4.
cut (MinOrMaxP b radix P);
 [ intros | case H; intros H'1 (H'2, (H'3, H'4)); auto ].
case H0 with (p*q)%R pq; auto; intros H0'; clear H0.
case (Rle_or_lt 0 p); intros Rl1.
case (Rle_or_lt 0 q); intros Rl2.
apply (errorBoundedMultExpPos P); auto.
case errorBoundedMultExpPos with (isMax b radix) p (Fopp q) (Fopp pq); auto with float real.
apply MaxRoundedModeP with precision; auto.
rewrite (Fopp_correct radix); auto with real.
replace (FtoRradix p * FtoRradix (Fopp q))%R with
 (- (FtoRradix p * FtoRradix q))%R; [apply MinOppMax;auto|idtac].
rewrite (Fopp_correct radix);
 fold FtoRradix in |- *; auto with zarith; ring.
intros r (s, (H5, (H6, (H7, (H8, H9))))); exists (Fopp r); exists (Fopp s);
 repeat (split; simpl in |- *; auto with float real zarith).
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H7; repeat rewrite (Fopp_correct radix); auto with zarith;
 fold FtoRradix; ring.
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H8; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix; ring.
case (Rle_or_lt 0 q); intros Rl2.
case errorBoundedMultExpPos with (isMax b radix) (Fopp p) q (Fopp pq); auto with float real.
apply MaxRoundedModeP with precision; auto.
rewrite (Fopp_correct radix); auto with real.
replace (FtoRradix (Fopp p) * FtoRradix q)%R with
 (- (FtoRradix p * FtoRradix q))%R; [apply MinOppMax;auto|idtac].
rewrite (Fopp_correct radix);
 fold FtoRradix in |- *; auto with zarith; ring.
intros r (s, (H5, (H6, (H7, (H8, H9))))); exists (Fopp r); exists (Fopp s);
 repeat (split; simpl in |- *; auto with float real zarith).
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H7; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix; ring.
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H8; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix;ring.
case (errorBoundedMultExpPos P H (Fopp p) (Fopp q) pq); auto with float real.
rewrite (Fopp_correct radix); auto with real.
rewrite (Fopp_correct radix); auto with real.
replace (FtoRradix (Fopp p) * FtoRradix (Fopp q))%R with
 (FtoRradix p * FtoRradix q)%R; auto; repeat rewrite (Fopp_correct radix);
 fold FtoRradix in |- *; auto with zarith; ring.
intros r (s, (H5, (H6, (H7, (H8, (H9, (H10, H11))))))); exists r; exists s;
 repeat (split; simpl in |- *; auto with float real zarith).
fold FtoRradix in |- *; rewrite H8; repeat rewrite (Fopp_correct radix);
 auto with zarith; fold FtoRradix; ring.
case (Rle_or_lt 0 p); intros Rl1.
case (Rle_or_lt 0 q); intros Rl2.
apply (errorBoundedMultExpPos P); auto.
case errorBoundedMultExpPos with (isMin b radix) p (Fopp q) (Fopp pq); auto with float real.
apply MinRoundedModeP with precision; auto.
rewrite (Fopp_correct radix); auto with real.
replace (FtoRradix p * FtoRradix (Fopp q))%R with
 (- (FtoRradix p * FtoRradix q))%R; [apply MaxOppMin;auto|idtac].
rewrite (Fopp_correct radix);
 fold FtoRradix in |- *; auto with zarith; ring.
intros r (s, (H5, (H6, (H7, (H8, H9))))); exists (Fopp r); exists (Fopp s);
 repeat (split; simpl in |- *; auto with float real zarith).
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H7; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix; ring.
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H8; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix; ring.
case (Rle_or_lt 0 q); intros Rl2.
case errorBoundedMultExpPos with (isMin b radix) (Fopp p) q (Fopp pq); auto with float real.
apply MinRoundedModeP with precision; auto.
rewrite (Fopp_correct radix); auto with real.
replace (FtoRradix (Fopp p) * FtoRradix q)%R with
 (- (FtoRradix p * FtoRradix q))%R; [apply MaxOppMin;auto|idtac].
rewrite (Fopp_correct radix);
 fold FtoRradix in |- *; auto with zarith; ring.
intros r (s, (H5, (H6, (H7, (H8, H9))))); exists (Fopp r); exists (Fopp s);
 repeat (split; simpl in |- *; auto with float real zarith).
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H7; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix; ring.
repeat rewrite (Fopp_correct radix); auto with zarith; fold FtoRradix in |- *;
 rewrite H8; repeat rewrite (Fopp_correct radix); auto with zarith; 
 fold FtoRradix;ring.
case (errorBoundedMultExpPos P H (Fopp p) (Fopp q) pq); auto with float real.
rewrite (Fopp_correct radix); auto with real.
rewrite (Fopp_correct radix); auto with real.
replace (FtoRradix (Fopp p) * FtoRradix (Fopp q))%R with
 (FtoRradix p * FtoRradix q)%R; auto; repeat rewrite (Fopp_correct radix);
 fold FtoRradix in |- *; auto with zarith; ring.
intros r (s, (H5, (H6, (H7, (H8, (H9, (H10, H11))))))); exists r; exists s;
 repeat (split; simpl in |- *; auto with float real zarith).
fold FtoRradix in |- *; rewrite H8; repeat rewrite (Fopp_correct radix);
 auto with zarith; fold FtoRradix; ring.
Qed.
 
End FRoundP.