Codebase list dascrubber / bfb6d3f9-49f4-46e6-ac85-53f44f0fb4f9/main DAStrim.c
bfb6d3f9-49f4-46e6-ac85-53f44f0fb4f9/main

Tree @bfb6d3f9-49f4-46e6-ac85-53f44f0fb4f9/main (Download .tar.gz)

DAStrim.c @bfb6d3f9-49f4-46e6-ac85-53f44f0fb4f9/mainraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
/*******************************************************************************************
 *
 *  Using overlap pile for each read and intrinisic quality values, determine the
 *    high quality segments with interspersed gaps.  Any unremoved
 *    adaptemer sequences are dectected and the shorter side trimmed.
 *    Every gap is analyzed and either patched or splits the read.
 *
 *  Author:  Gene Myers
 *  Date  :  June 2016
 *
 *******************************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

#include "DB.h"
#include "align.h"

#ifdef HIDE_FILES
#define PATHSEP "/."
#else
#define PATHSEP "/"
#endif

#undef    DEBUG_HQ_BLOCKS     //  Various DEBUG flags (normally all off)
#undef     SHOW_EVENTS
#undef    DEBUG_HOLE_FINDER
#undef    DEBUG_GAP_STATUS
#undef     SHOW_PAIRS
#undef    DEBUG_PATCHING
#undef    DEBUG_SUMMARY

#undef    DEBUG_CLASS

#define  ANNOTATE   //  Output annotation tracks for DaViewer


//  Command format and global parameter variables

static char *Usage = " [-v] [-g<int>] [-b<int>] <source:db> <overlaps:las> ...";

static int     COVERAGE;   //  estimated coverage
static int     BAD_QV;     //  qv >= and you are "bad"
static int     GOOD_QV;    //  qv <= and you are "good"
static int     HGAP_MIN;   //  less than this length do not process for HGAP
static int     VERBOSE;

//  Gap states

#define LOWQ  0   //  Gap is spanned by many LAs and patchable
#define SPAN  1   //  Gap has many paired LAs and patchable
#define SPLIT 2   //  Gap is a chimer or an unpatchable gap
#define ADAPT 3   //  Gap is due to adaptemer (internal only)

//  Good patch constants

#define MIN_BLOCK  500    //  Minimum length of a good patch

//  Gap constants

#define  MIN_COVER       3  //  A coverage gap occurs at or below this level
#define  COVER_LEN     400  //  An overlap covers a point if it extends COVER_LEN to either side.
#define  ANCHOR_MATCH  .25  //  Delta in trace interval at both ends of patch must be < this %.

#define  MIN_OVERLAP   900  //  Was COVER_LEN, too small?

//  Wall Constants

#define MIN_PNT 5        //  Minimum # of events in a wall
#define MAX_SEP 25       //  Maximum separation between two events in a wall
#define AVE_SEP 5.       //  Maximum average separation between two events in a wall


//  Global Variables (must exist across the processing of each pile)

  //  Input

static int     TRACE_SPACING;  //  Trace spacing (from .las file)

static DAZZ_DB _DB, *DB  = &_DB;   //  Data base
static int     DB_FIRST;           //  First read of DB to process
static int     DB_LAST;            //  Last read of DB to process (+1)
static int     DB_PART;            //  0 if all, otherwise block #

static int64  *QV_IDX;     //  qual track index
static uint8  *QV;         //  qual track values

  //  Output

static FILE   *TR_AFILE;   //  .trim.anno
static FILE   *TR_DFILE;   //  .trim.data
static int64   TR_INDEX;   //  Current index into .trim.data file as it is being written

#ifdef ANNOTATE

static FILE   *HQ_AFILE;   //  .hq.anno
static FILE   *HQ_DFILE;   //  .hq.data
static int64   HQ_INDEX;   //  Current index into .hq.data file as it is being written

static FILE   *HL_AFILE;   //  .hole.anno
static FILE   *HL_DFILE;   //  .hole.data
static int64   HL_INDEX;   //  Current index into .hole.data file as it is being written

static FILE   *SN_AFILE;   //  .span.anno
static FILE   *SN_DFILE;   //  .span.data
static int64   SN_INDEX;   //  Current index into .span.data file as it is being written

static FILE   *SP_AFILE;   //  .split.anno
static FILE   *SP_DFILE;   //  .split.data
static int64   SP_INDEX;   //  Current index into .split.data file as it is being written

static FILE   *AD_AFILE;   //  .adapt.anno
static FILE   *AD_DFILE;   //  .adapt.data
static int64   AD_INDEX;   //  Current index into .adapt.data file as it is being written

static FILE   *KP_AFILE;   //  .keep.anno
static FILE   *KP_DFILE;   //  .keep.data
static int64   KP_INDEX;   //  Current index into .keep.data file as it is being written

#endif

  //  Statistics

static int64 nreads, totlen;
static int64 nelim, nelimbp;
static int64 n5trm, n5trmbp;
static int64 n3trm, n3trmbp;
static int64 natrm, natrmbp;
static int64 ngaps, ngapsbp;
  static int64 nlowq, nlowqbp;
  static int64 nspan, nspanbp;
  static int64 nchim, nchimbp;


//  Data Structures

typedef struct   //  General read interval [beg..end]
  { int beg;
    int end;
  } Interval;

  //  Coverage events, type (one of 7 below) and position

#define ADD  0  //  leftmost A-position of LA
#define LFT  1  //  ADD position + COVER_LEN of LA (>= 2*COVER_LEN long)
#define LGP  2  //  left end of an HQ-block
#define CTR  3  //  A-center of LA < 2*COVER_LEN long
#define RGP  4  //  right end of an HQ-block
#define RGT  5  //  DEL position - COVER_LEN of LA
#define DEL  6  //  rightmost A-position of LA

#ifdef SHOW_EVENTS

static char   Symbol[7] = { 'A', 'L', '[', 'C', ']', 'R', 'D' };

#endif

typedef struct
  { int  type;   
    int  pos;
  } Event;

  //  Wall: there are cnt LFT/RGT events ending in the interval [beg,end] going
  //        from coverage depth cov up to cov+cnt

typedef struct
  { int beg;
    int end;
    int cnt;
    int cov;
  } Wall;

/*******************************************************************************************
 *
 *  FIND ALL HIGH_QV BLOCKS OF EACH READ
 *
 ********************************************************************************************/

  //  Find "good" blocks of trace point intervals:
  //    0. A good block must begin and end with an interval <= GOOD_QV
  //    1. Any stretch all < BAD_QV at least MIN_BLOCK long
  //    2. Any stretch all <= GOOD_QV at least MIN_BLOCK-TRACE_SPACING long
  //    3. Any stretch all <= GOOD_QV only 1 interval away from another good patch

  //  Global Inputs:  QV, QV_IDX, GOOD_QV, BAD_QV 
  //  HQ_BLOCKS[0..*nblk-1] contain the good patches in increase sequencing across aread.
  //  Parameter aread is input-only, and p_nblk is output-only.

static Interval *HQ_BLOCKS(int aread, int *p_nblk)
{ int              nblk;
  static int      *alive = NULL;
  static Interval *block = NULL;

  int    alen, atick;
  uint8 *qvec;

  alen  = DB->reads[aread].rlen;
  atick = (alen + (TRACE_SPACING-1))/TRACE_SPACING;

  if (alive == NULL)
    { int max = DB->maxlen/TRACE_SPACING+2;
      alive = (int *) Malloc(max*sizeof(int),"Allocating alive vector");
      block = (Interval *) Malloc(max*sizeof(Interval),"Allocating block vector");
      if (alive == NULL || block == NULL)
        exit (1);
    }

  qvec = QV + QV_IDX[aread];
  nblk = 0;

  //  Find all blocks < BAD_QV with either len >= MIN_BLOCK or all <= GOOD_QV in block[0..nblk)
  //    Mark those satisfying 1. or 2. as "alive" (.alv)

  { int lmost = 0, rmost = 0, thr;
    int i, in;

    thr = (MIN_BLOCK-1)/TRACE_SPACING;
    in  = 0;
    for (i = 0; i <= atick; i++)
      { int q, alv;

        if (i < atick)
          q = qvec[i];
        else
          q = BAD_QV;
        if (in)
          { if (q >= BAD_QV)
              { alv = (lmost-rmost >= thr);
                if (alv)
                  { block[nblk].beg = rmost; 
                    block[nblk].end = lmost + 1;
                    alive[nblk] = alv;
                    nblk += 1;
                  }
                else
                  { int j, k;

                    for (j = rmost; j <= lmost; j = k)
                      { for (k = j+1; k <= lmost; k++)
                          if (qvec[k] > GOOD_QV)
                            break;
                        block[nblk].beg = j; 
                        block[nblk].end = k;
                        alive[nblk] = (k-j >= thr);
                        nblk += 1;
                        for ( ; k <= lmost; k++)
                          if (qvec[k] <= GOOD_QV)
                            break;
                      }
                  }
                in = 0;
              }
            else if (q <= GOOD_QV)
              lmost = i;
          }
        else
          { if (q <= GOOD_QV)
              { rmost = lmost = i;
                in = 1;
              }
          }
      }
  }

  //  Mark as alive all short, all-good blocks that satisfy 3.

  { int i, j;

    for (i = 0; i < nblk; i++)
      if (alive[i])
        { for (j = i-1; j >= 0 && ! alive[j]; j--)
            if (block[j+1].beg - block[j].end == 1)
              alive[j] = 1;  
            else
              break;
          for (j = i+1; j < nblk && ! alive[j]; j++)
            if (block[j].beg - block[j-1].end == 1)
              alive[j] = 1;  
            else
              break;
        }
  }

  //  Remove all blocks that are not alive

  { int i, j;

    j = 0;
    for (i = 0; i < nblk; i++)
      if (alive[i])
        { block[j].beg = block[i].beg * TRACE_SPACING;
          block[j].end = block[i].end * TRACE_SPACING;
          j += 1;
        }
    nblk = j;
    if (nblk > 0 && block[nblk-1].end > alen)
      block[nblk-1].end = alen;
  }

#ifdef DEBUG_HQ_BLOCKS
  { int i;

    printf("         %3d:",nblk);
    for (i = 0; i < nblk; i++)
      printf(" [%5d,%5d]",block[i].beg,block[i].end);
    printf("\n");
  }
#endif

  *p_nblk = nblk;
  return (block);
}


/*******************************************************************************************
 *
 *  WALL ANALYZER TO HELP AVOID REPEAT BOUNDARIES
 *
 ********************************************************************************************/

   //  Find intervals of LFT/RGT events where no two events are separated by more than
   //    MAX_SEP, the average arrival rate is AVE_SEP, and there are at least MIN_PNT
   //    events in the interval.

static Wall *wall_detector(int *ev, int b, int e, Wall *next)
{ int idx;

  { int    i, n, max;
    double ave;

    n = e-b;

    if (n < MIN_PNT) return (next);  //  Too small: done

    idx = b;
    max = -1;                        //  Find the position of the largest separation between
    for (i = b+1; i < e; i++)        //     two tips in ev[b..e)
      if (ev[i] - ev[i-1] > max)
        { max = ev[i] - ev[i-1];
          idx = i;
        }

    ave = (ev[e-1] - ev[b]) / (n-1.);        //  Check if the current interval is a wall
    if (ave <= AVE_SEP && max <= MAX_SEP)
      { if (max <= 4.*(ave+1.))              //  Max separation < 4*average separation ?
          { next->beg = b;
            next->end = e;
            next->cnt = n;
            return (next+1);
          }
      }
  }

  next = wall_detector(ev,b,idx,next);    //  If not then split on the largest separation
  next = wall_detector(ev,idx,e,next);    //    and recurse on the two parts
  return (next);
}

   //  Find LFT/RGT event walls

static Wall *find_walls(int novl, Event *queue, int *anum, int *dnum)
{ static int   nmax = 0;

  Wall        *aptr, *dptr;
  static Wall *wall = NULL;

  int          ntip;
  static int  *adds = NULL;
  static int  *dels;

  if (novl == 0)
    return (NULL);

  if (novl > nmax)
    { nmax = novl*1.2 + 1000; 
      wall = (Wall *) Realloc(wall,sizeof(Wall)*2*(nmax/MIN_PNT),"Reallocating wall vector");
      adds = (int *)  Realloc(adds,sizeof(int)*2*nmax,"Reallocating add+del vectors");
      if (wall == NULL || adds == NULL)
        exit (1);
      dels = adds + nmax;
    }

  //  Make separate arrays of add and del tips (LFT and RGT events) in sorted order in
  //    which to seek "walls".

  { int i, j, x;

    i = x = 0;                      //  A bit tricky: less than novl tips due to CTR events
    for (j = 0; x < novl; j++)      //   that don't generate tips, so analyze events until
      if (queue[j].type == CTR)     //   have counted all LA's.  Furthermore adds and dels
        x += 1;                     //   are sorted because queue is sorted.
      else if (queue[j].type == LFT)
        { x += 1;
          adds[i++] = queue[j].pos;
        }
    ntip = i;

    i = 0;
    for (j = 0; i < ntip; j++)
      if (queue[j].type == RGT)
        dels[i++] = queue[j].pos;
  }

  //  Find LFT walls and RGT walls in [walls,aptr) and [aptr,dptr)

  aptr = wall_detector(adds,0,ntip,wall);
  dptr = wall_detector(dels,0,ntip,aptr);

  //  For each wall, determine the coverage of its base with a merged traversal
  //    of the adds and dels arrays

  { Wall *a, *d;
    int   i, j, x;

    x = 0;
    a = wall;
    d = aptr;;
    i = j = 0;
    while (j < ntip)
      if (i < ntip && adds[i] < dels[j])
        { if (a->beg == i)
            a->cov = x;
          else if (a->end == i+1)
            { a += 1;
              if (a >= aptr)
                a -= 1;
            }
          x += 1;
          i += 1;
        }
      else
        { if (d->beg == j)
            d->cov = x - d->cnt;
          else if (d->end == j+1)
            { d += 1;
              if (d >= dptr)
                d -= 1;
            }
          x -= 1;
          j += 1;
        }
  }
  
  //  Sneaky, switch beg/end from an index into the adds or dels array, to the actually
  //    coordinate of the event.

  { Wall *a;

    for (a = wall; a < aptr; a++)
      { a->beg = adds[a->beg];
        a->end = adds[a->end-1];
      }
    for (a = aptr; a < dptr; a++)
      { a->beg = dels[a->beg];
        a->end = dels[a->end-1];
      }
  }

  *anum = aptr-wall;
  *dnum = dptr-aptr;
  return (wall);
}


/*******************************************************************************************
 *
 *  COVERAGE ANALYSIS TO FIND ALL HOLES (regions of very low coverage/support)
 *
 ********************************************************************************************/

  //  Find intervals for which there are MIN_COVER or fewer LAs that project at least COVER_LEN
  //    bases to the left and right of the interval.  These are called holes.
  //  Holes are usually found between HQ-blocks.  However occasionally they intersect one or
  //    more blocks and this requires the HQ-blocks be refined as follows:
  //      a. Hole spans an HQ-block:
  //           The block needs to be removed as HQ *if* it is not based on 5 or more LA's
  //           (this usually never happens, 10^-5 or less)
  //      b. Hole is contained in an HQ-block:
  //           The block needs to be split around the hole because one needs to verify that
  //           the left and right regions on each side of a hole actually belong together
  //           (this happens occasionaly, ~ 10^-3)
  //      c. Hole overlaps an HQ-block:
  //           If this happens, then the overlap is very small and the block is left unperturbed.
  //           (this worries me a bit, but in all testing it (very small overlap) remains so)
  //  Given the above possibilities, the list of HQ-blocks can be modified by FIND_HOLES.

static int ESORT(const void *l, const void *r)
{ Event *x = (Event *) l;
  Event *y = (Event *) r;

  if (x->pos == y->pos)
    return (x->type - y->type);
  return (x->pos - y->pos);
}

static int FIND_HOLES(int aread, Overlap *ovls, int novl, Interval *block, int nblk)
{ static int       nmax = 0;

  int              nev;
  static Event    *queue = NULL;  //  Event queue[0..nev)

  int              nhole;
  static Interval *holes = NULL;  //  Detected holes[0..nhole)

  static int       pmax;
  static Interval *cover = NULL;  //  Coverage at block ends [0..nblk)
  static Interval *nwblk;         //  Modified block list [0..nblk')

  int   anum = 0, dnum = 0;       //  LFT and RGT walls, awall[0..anum) & dwall[0..dnum)
  Wall *awall,   *dwall;

  if (cover == NULL)
    { pmax = DB->maxlen/TRACE_SPACING + 2;
      cover = (Interval *) Malloc(2*pmax*sizeof(Interval),"Allocating patch vector");
      nwblk = cover + pmax;
    }

  if (4*novl + pmax > nmax)
    { nmax = 4.8*novl + pmax + 100;
      queue = (Event *) Realloc(queue,(nmax+1)*sizeof(Event),"Allocating event queue");
      holes = (Interval *) Realloc(holes,(nmax/4)*sizeof(Interval),"Allocating hole vector");
      if (queue == NULL || holes == NULL)
        exit (1);
    }

  { int i;

    //  For each trimmed overlap: add its events to the queue

    nev = 0;
    for (i = 0; i < novl; i++)
      { queue[nev].type = ADD;
        queue[nev].pos  = ovls[i].path.abpos;
        nev += 1;

        queue[nev].type = DEL;
        queue[nev].pos  = ovls[i].path.aepos;
        nev += 1;

        if (ovls[i].path.abpos + 2*COVER_LEN + 10 > ovls[i].path.aepos)
          { queue[nev].type = CTR;
            queue[nev].pos  = (ovls[i].path.abpos + ovls[i].path.aepos) / 2;
            nev += 1;
          }
        else
          { queue[nev].type = LFT;
            queue[nev].pos  = ovls[i].path.abpos + COVER_LEN;
            nev += 1;
            queue[nev].type = RGT;
            queue[nev].pos  = ovls[i].path.aepos - COVER_LEN;
            nev += 1;
          }
      }

    //  For each HQ-block: add its events to the queue

    for (i = 0; i < nblk; i++)
      { queue[nev].type = LGP;
        queue[nev].pos  = block[i].beg;
        nev += 1;
        queue[nev].type = RGP;
        queue[nev].pos  = block[i].end;
        nev += 1;
      }

    queue[nev].pos = DB->reads[aread].rlen;
  }

  //  Sort the events

  qsort(queue,nev,sizeof(Event),ESORT);

  //  Find all LFT and RGT walls

  awall = find_walls(novl,queue,&anum,&dnum);
  dwall = awall + anum;

#ifdef DEBUG_HOLE_FINDER
  { int i;

    printf("\n");
    for (i = 0; i < anum; i++)
      printf("  Add [%5d,%5d] %d %d\n",awall[i].beg,awall[i].end,awall[i].cnt,awall[i].cov);
    for (i = 0; i < dnum; i++)
      printf("  Del [%5d,%5d] %d %d\n",dwall[i].beg,dwall[i].end,dwall[i].cnt,dwall[i].cov);
    printf("\n");
  }
#endif

  //  Move through events in order keeping track of inc, dec, & cnf so that the
  //    invariant stated below holds

  { int  cnf, inc, dec;
    int  cblk;

    int   in;
    int   nbeg, nend = 0;
    int   first, last;

    int  i;

    in    = 1;
    first = -1;
    cblk  = 0;
    nhole = 0;
    inc = dec = cnf = 0;
    for (i = 0; i < nev; i++)
      { switch (queue[i].type)
        { case ADD:
            inc += 1;
            break;
          case LFT:
            inc  -= 1;
            cnf  += 1;
            break;
          case LGP:
            cover[cblk].beg = cnf + inc + dec;  // = coverage depth at block[cblk].beg
            continue;
          case CTR:
            inc -= 1;
            dec += 1;
            continue;
          case RGP:
            cover[cblk].end = cnf + inc + dec;  // = coverage depth at block[cblk].end
            cblk += 1;
            continue;
          case RGT:
            cnf  -= 1;
            dec  += 1;
            break;
          case DEL:
            dec -= 1;
            break;
        }

        //  For position x = queue[i].pos:
        //    inc = # of LA's between (ADD,LFT] positions
        //    dec = # of LA's between (RGT,DEL] positions
        //    cnf = # of LA's between (LFT,RGT] positions (= # of LAs tat project at least
        //             COVER_LEN bases to the right and left of x!

#ifdef SHOW_EVENTS
        printf(" %5d %c: %3d<  %3d  >%3d  %3d\n",
               queue[i].pos,Symbol[queue[i].type],inc,cnf,dec,dec-inc);
#endif

        //  When truncated coverage, cnf, transitions below MIN_COVER(3), note the fact (in = 1)
        //    and record the index first of the event (must be a RGT) and the number of LA's
        //    currently in their (RGT,DEL] interval

        if (cnf <= MIN_COVER)
          { if ( ! in)
              { in = 1;
                nend  = dec;
                first = i;
              }
          }

        //  When truncated coverage transitions above MIN_COVER, we declare it a hole
        //    if interval below MIN_COVER is at least COVER_LEN long, there are at least
        //    4 LA's that are "ending" at the left (i.e. in (RGT,DEL] interval, and
        //    at least 4 LA's ending at the right.

        else
          { if (in && first >= 0 && queue[i].pos - queue[first].pos >= COVER_LEN &&
                  nend >= 4 && inc >= 4)
              { int lflank, rflank;
                int dpos, apos;

                nbeg = inc;
                last = i;

                //  Need to find the boundaries of the hole.  In principle, this is
                //    [dpos + COVER_LEN, apos - COVER_LEN] where apos = queue[first].pos
                //    and dpos = queue[last].pos, i.e. the entry and exit into the low
                //    truncated cover interval.  However, walls induced by repeat boundaries
                //    and/or uneveness in the end-points of LA's can cause the above to be
                //    quite far off.  So ...


                //  First try the average of the 2nd and 3rd quartile of the nend RGT events
                //    before dpos.   The requisite number of events must exist by the definition
                //    of nend.  While one is at it determine the index of the first of the
                //    nend RGT events in lflank.

                { int64 sum;
                  int   q1, q3, n;
                  int   a, d, k;
                  int   acov, dcov;

                  q1  = nend/4;
                  q3  = (3*nend)/4;
                  sum = 0;
                  n   = 0;
                  for (lflank = first; n < nend; lflank--)
                    if (queue[lflank].type == RGT || queue[lflank].type == CTR)
                      { if (n >= q1 && n < q3)
                          sum += queue[lflank].pos;
                        n += 1;
                      }
                  dpos = sum/(q3-q1);
                  lflank += 1;

#ifdef DEBUG_HOLE_FINDER
                  printf("  Dev %5d-%3d-%5d -> %5d",queue[lflank].pos,nend,queue[first].pos,dpos);
#endif

                //  Second, look for the leftmost RGT-(LFT-)wall that overlaps the left (right)
                //    flank, i.e. queue[lflank,first].pos (queue[last,rflank].pos), and if found
                //    take the average position of the flank position within the wall.

                  for (d = dnum-1; d >= 0; d--)
                    if (dwall[d].beg <= queue[first].pos)
                      break;
                  if (d >= 0 && dwall[d].end >= queue[lflank].pos)
                    { sum = 0;
                      n   = 0;
                      for (k = first; k >= lflank; k--)
                        if (queue[k].type == RGT || queue[k].type == CTR)
                          { if (queue[k].pos < dwall[d].beg)
                              break;
                            if (queue[k].pos <= dwall[d].end)
                              { sum += queue[k].pos;
                                n += 1;
                              }
                          }
                      dpos = sum/n;
#ifdef DEBUG_HOLE_FINDER
                      printf(" Map [%5d,%5d] -> %4d\n",dwall[d].beg,dwall[d].end,dpos);
#endif
                      dcov = dwall[d].cov + dwall[d].cnt;
		      d -= 1;
		    }
                  else
                    { dcov = nend + MIN_COVER;
#ifdef DEBUG_HOLE_FINDER
                      printf(" No wall mapping\n");
#endif
                    }

                // First try on LFT events (replace nend with nbeg, RGT with LFT, before
                //   with after, and dpos with apos, first with last, and lflank with rflank.

                  q1  = nbeg/4;
                  q3  = (3*nbeg)/4;
                  sum = 0;
                  n   = 0;
                  for (rflank = last; n < nbeg; rflank++)
                    if (queue[rflank].type == LFT || queue[rflank].type == CTR)
                      { if (n >= q1 && n < q3)
                          sum += queue[rflank].pos;
                        n += 1;
                      }
                  apos = sum/(q3-q1);
                  rflank -= 1;

#ifdef DEBUG_HOLE_FINDER
                  printf("  Aev %5d-%3d-%5d -> %5d",queue[i].pos,nbeg,queue[rflank].pos,apos);
#endif

                // Second look at LFT events.

                  for (a = 0; a < anum; a++)
                    if (awall[a].end >= queue[i].pos)
                      break;
                  if (a < anum && awall[a].beg <= queue[rflank].pos) 
                    { sum = 0;
                      n   = 0;
                      for (k = i; k <= rflank; k++)
                        if (queue[k].type == LFT || queue[k].type == CTR)
                          { if (queue[k].pos > awall[a].end)
                              break;
                            if (queue[k].pos >= awall[a].beg)
                              { sum += queue[k].pos;
                                n += 1;
                              }
                          }
                      apos = sum/n;
#ifdef DEBUG_HOLE_FINDER
                      printf(" Map [%5d,%5d] -> %4d\n",awall[a].beg,awall[a].end,apos);
#endif
                      acov = awall[a].cov + awall[a].cnt;
                      a += 1;
                    }
                  else
                    { acov = nbeg + MIN_COVER;
#ifdef DEBUG_HOLE_FINDER
                      printf(" No wall mapping\n");
#endif
                    }

                // If apos and dpos are still so close that the implied hole boundaries
                //   are out of order by 50 or more bases, then walk back through ascending
                //   walls (if present) until this is no longer true or there are no more
                //   more walls left.  If both left and right options exist, always take
                //   the wall starting at the lower current height.

                  while (apos - dpos < 2*COVER_LEN - 50)
                    { if (d >= 0 && dwall[d].cov >= dcov)
                        if (a < anum && awall[a].cov >= acov)
                          { if (dcov < acov)
                              { dcov = dwall[d].cov + dwall[d].cnt;
                                dpos = dwall[d--].beg;
#ifdef DEBUG_HOLE_FINDER
                                printf("  Push <- %d\n",dpos);
#endif
                              }
                            else
                              { acov = awall[a].cov + awall[a].cnt;
                                apos = awall[a++].end;
#ifdef DEBUG_HOLE_FINDER
                                printf("  Push -> %d\n",apos);
#endif
                              }
                          }
                        else
                          { dcov = dwall[d].cov + dwall[d].cnt;
                            dpos = dwall[d--].beg;
#ifdef DEBUG_HOLE_FINDER
                            printf("  Push <- %d\n",dpos);
#endif
                          }
                      else
                        if (a < anum && awall[a].cov >= acov)
                          { acov = awall[a].cov + awall[a].cnt;
                            apos = awall[a++].end;
#ifdef DEBUG_HOLE_FINDER
                            printf("  Push -> %d\n",apos);
#endif
                          }
                        else
                          {
#ifdef DEBUG_HOLE_FINDER
                            printf("  FAULT\n");
#endif
                            break;
                          }
                    }
                }

                // Finalize and record the hole boundaries.

                holes[nhole].beg = dpos + COVER_LEN;
                holes[nhole].end = apos - COVER_LEN;
                nhole += 1;
              }
            in   = 0;
          }
      }
  }

  //  See if the holes remove or split any HQ-blocks and build the revised list
  //    in newblk[0..q).

  { int i, p, q, x;
    int lhang, rhang;
#ifdef DEBUG_HOLE_FINDER
    int reverse;
#endif

    //  For each hole in left-to-right order

    p = q = 0;
    for (i = 0; i < nhole; i++)
      { if (holes[i].beg > holes[i].end)
          { x = holes[i].beg;
            holes[i].beg = holes[i].end;
            holes[i].end = x;
#ifdef DEBUG_HOLE_FINDER
            reverse = 1;
#endif
          }
#ifdef DEBUG_HOLE_FINDER
        else
          reverse = 0;
#endif

        //  Advance to the next block p that intersects with or is to the right of hole
        //    moving blocks being skipped over to the new block list

        while (p < nblk && block[p].end <= holes[i].beg)
          nwblk[q++] = block[p++];

#ifdef DEBUG_HOLE_FINDER
        printf("  HOLE: %5d [%5d,%5d]\n",
               aread+1,holes[i].beg,holes[i].end);
#endif
      
        //  While the current block intersects the current hole

        while (p < nblk && block[p].beg < holes[i].end)
          { lhang = (holes[i].beg < block[p].beg);
            rhang = (holes[i].end > block[p].end);
            if (lhang)
              { if (rhang)

                  //  Hole i contains block p: remove it if coverage <= 4 at both ends

                  { if (block[p].end - block[p].beg >= MIN_BLOCK &&
                          (cover[p].beg > 4 || cover[p].end > 4))
                      nwblk[q++] = block[p];
                    p += 1;
#ifdef DEBUG_HOLE_FINDER
                    printf("      INTERSECT %5d S [%5d,%5d] %3d %3d",
                           aread+1,block[p-1].beg,block[p-1].end,cover[p-1].beg,cover[p-1].end);
                    if (reverse)
                      printf(" REV");
                    printf("\n");
#endif
                  }

                 //  Hole i intersect the left tip of block p: nothing to do

                else
                  {
#ifdef DEBUG_HOLE_FINDER
                    printf("      INTERSECT %5d Z %5d [..,%5d] %3d",
                           aread+1,holes[i].end-block[p].beg,holes[i].end,cover[p].beg);
                    if (reverse)
                      printf(" REV");
                    printf("\n");
#endif
                    break;
                  }
              }
            else
              if (rhang)

                //  Hole i intersect the right tip of block p: move p to new block list

                { nwblk[q++] = block[p++];
#ifdef DEBUG_HOLE_FINDER
                  printf("      INTERSECT %5d Z %5d [%5d,..] %3d",
                         aread+1,block[p-1].end-holes[i].beg,holes[i].beg,cover[p-1].end);
                  if (reverse)
                    printf(" REV");
                  printf("\n");
#endif
                }
              else

                //  Hole i is contained within block p:  Break block into two parts at
                //    TRACE_SPACING ticks left and right of hole, and keep each piece
                //    if they are greater than MIN_BLOCK long.

                { int beg, end;

#ifdef DEBUG_HOLE_FINDER
                  printf("      INTERSECT %5d C %5d [%5d,%5d]",
                         aread+1,holes[i].end-holes[i].beg,block[p].beg,block[p].end);
                  if (reverse)
                    printf(" REV");
		  printf("\n");
#endif
                  beg = (holes[i].beg/TRACE_SPACING);
                  end = (holes[i].end-1)/TRACE_SPACING+1;
                  if (beg == end)
                    { beg -= 1; end += 1; }
                  beg *= TRACE_SPACING;
                  end *= TRACE_SPACING;
                  if (beg - block[p].beg >= MIN_BLOCK)
                    { nwblk[q].beg = block[p].beg;
                      nwblk[q++].end = beg;
                    }
                  if (block[p].end - end >= MIN_BLOCK)
                    block[p].beg = end;
                  else
                    p += 1;
                  break;
                }
          }
      }

    //  Remove any remaining blocks to the new list

    while (p < nblk)
      nwblk[q++] = block[p++];
    nblk = q;

    //  Transfer new blocks to original block vector

    for (i = 0; i < nblk; i++)
      block[i] = nwblk[i];
  }

#ifdef ANNOTATE
  { int i;

    for (i = 0; i < nhole; i++)
      if (holes[i].end - holes[i].beg < 75)
        { holes[i].end += 50;
          holes[i].beg -= 50;
          fwrite(&(holes[i].beg),sizeof(int),1,HL_DFILE);
          fwrite(&(holes[i].end),sizeof(int),1,HL_DFILE);
          holes[i].end -= 50;
          holes[i].beg += 50;
        }
      else
        { fwrite(&(holes[i].beg),sizeof(int),1,HL_DFILE);
          fwrite(&(holes[i].end),sizeof(int),1,HL_DFILE);
        }
    HL_INDEX += 2*nhole*sizeof(int);
    fwrite(&HL_INDEX,sizeof(int64),1,HL_AFILE);
  }
#endif

  // Return the list of holes holes[0..nhole) and the new list of blocks, nwblk[0..nblk)

  return (nblk);
}


/*******************************************************************************************
 *
 *  FIND ANY UNREMOVED ADAPTER (OR POLYMERASE SWITCHES) AND TRIM SMALLER PARTS
 *
 ********************************************************************************************/

typedef struct
  { int lidx;    //  left LA index
    int ridx;    //  right LA index
    int delta;   //  Difference between A-gap and B-gap
    int soft;    //  0 (soft) = pair is not close to gap border or adjacent gap border on both sides
                 //  1 (anciliary) = pair is not close to gap border but is to adjacent gap border
                 //  2 (hard) = pair is close to gap border on both sides
  } Spanner;

typedef struct
  { int bread;   //  bread^comp[beg..end] is the patch sequence
    int comp;
    int beg;
    int end;
    int anc;     //  maximum anchor interval match
    int bad;     //  number of segments that are bad
    int avg;     //  average QV of the patch
  } Patch;

static int GSORT(const void *l, const void *r)
{ Spanner *x = (Spanner *) l;
  Spanner *y = (Spanner *) r;

  return (x->delta - y->delta);
}

//  Return match score of lov->bread with "anchor" lov->aread[lft-TRACE_SPACING,lft]

static int eval_lft_anchor(int lft, Overlap *lov)
{ uint16  *tr;
  int      te;

  if (lft > lov->path.aepos)
    return (50);
  tr = (uint16 *) lov->path.trace;
  te = 2 * (((lft + (TRACE_SPACING-1)) - lov->path.abpos)/TRACE_SPACING);
  if (te <= 0)
    return (50);
  return (tr[te-2]);
}

//  Return match score of lov->bread with "anchor" lov->aread[rgt,rgt+TRACE_SPACING]

static int eval_rgt_anchor(int rgt, Overlap *rov)
{ uint16  *tr;
  int      te;

  if (rgt < rov->path.abpos)
    return (50);
  tr = (uint16 *) rov->path.trace;
  te = 2 * (((rgt + (TRACE_SPACING-1)) - rov->path.abpos)/TRACE_SPACING);
  if (te >= rov->path.tlen)
    return (50);
  return (tr[te]);
}

//  Evaluate the quality of lov->bread = rov->bread spaning [lcv,rcv] as a patch

static Patch *compute_patch(int lft, int rgt, Overlap *lov, Overlap *rov)
{ static Patch ans;

  uint16  *tr;
  int      bread, bcomp, blen;
  int      bb, be;
  int      t, te;
  int      bl, br;
  uint8   *qb;
  int      avg, anc, bad;

  bread = lov->bread;
  bcomp = COMP(lov->flags);
  blen  = DB->reads[bread].rlen;

  if (blen < HGAP_MIN)
    return (NULL);

  if (lft > lov->path.aepos || rgt < rov->path.abpos)   // Cannot anchor
    return (NULL);
  if (lov->path.abpos > lft-TRACE_SPACING || rgt+TRACE_SPACING > rov->path.aepos)
    return (NULL);

  //  Get max of left and right anchors as anchor score

  tr = (uint16 *) lov->path.trace;
  te = 2 * (((lft + (TRACE_SPACING-1)) - lov->path.abpos)/TRACE_SPACING);
  if (te == 0)
    return (NULL);
  anc = tr[te-2];

  bb = lov->path.bbpos;
  for (t = 1; t < te; t += 2)
    bb += tr[t];

  tr = (uint16 *) rov->path.trace;
  te = 2 * (((rgt + (TRACE_SPACING-1)) - rov->path.abpos)/TRACE_SPACING);
  if (te >= rov->path.tlen)
    return (NULL);
  if (tr[te] > anc)
    anc = tr[te];

  be = rov->path.bepos;
  for (t = rov->path.tlen-1; t > te; t -= 2)
    be -= tr[t];

  if (bb >= be)
    return (NULL);

  ans.bread = bread;
  ans.comp  = bcomp;
  ans.beg   = bb;
  ans.end   = be;
  ans.anc   = anc;

  //  Compute metrics for b-read patch

  if (bcomp)
    { t  = blen - be;
      be = blen - bb;
      bb = t;
    }

  bl = bb/TRACE_SPACING;
  br = (be+(TRACE_SPACING-1))/TRACE_SPACING;
  qb = QV + QV_IDX[bread];
  if (bl >= br)
    { avg = qb[bl];
      if (avg >= BAD_QV)
        bad = 1;
      else
        bad = 0;
    }
  else
    { avg = 0;
      bad = 0;
      for (t = bl; t < br; t++)
        { avg += qb[t];
          if (qb[t] >= BAD_QV)
            bad += 1;
        }
      avg /= (br-bl);
    }

  ans.bad   = bad;
  ans.avg   = avg;

  return (&ans);
}

//  Examine the spanning pairs for a gap.  Group those with sufficient density
//    i.e. with 20 + 10% of the last one.  If test == 1, keep groups that have at
//    least 4 members, and are either 60% hard or at least 8 hard pairs, but trim
//    away any extremal non-hard pairs.  If test == 0, keep the largest group that has
//    at least 4 members, and is either 60% not soft or at least 8 non-soft pairs,
//    but trim awya ny extermal soft pairs.  If "move" is non-zero then compress gsort
//    accordingly, return the size of gsort after trimming in all instances.

static int analyze_gap_pairs(int gsize, Spanner *gsort, Overlap *ovls,
                             int gcnt, int scnt, int test, int move)
{ int j, l, c, x, w;
  int bord, soft, keeper;
  int ncnt, biggest;

  (void) ovls;

  biggest = 0;
  ncnt = 0;
#ifdef SHOW_PAIRS
  if (move)
    printf("  Gsort: %d\n",gsize);
#endif
  if (gcnt > 0)
    c = gsize - gsort[0].delta;
  else
    c = gsize;
  w = 0;
  for (j = 0; j <= gcnt; j++)
    { l = c;
      if (j >= gcnt)
        bord = 1;
      else
        { c = gsize - gsort[j].delta;
          if (l < 0)
            bord = (l-c >= 20-.1*c);
          else
            bord = (l-c >= 20+.1*l);
        }
      if (bord)
        { soft = 0;
          for (x = w; x < j; x++)
            soft += (gsort[x].soft <= test);
          keeper = (j-w >= 4 && (soft < .4*(j-w) || (j-w)-soft >= 8));
          if (test == 0)
            { if (keeper && j-w > biggest)
                { biggest = j-w;
                  ncnt = 0;
                }
              else
                keeper = 0;
            }
#ifdef SHOW_PAIRS
          if (move)
            { printf("----\n");
              for (x = w; x < j; x++)
                { printf("  %3d: %5d %5d",x,gsort[x].delta,gsize-gsort[x].delta);
                  printf(" %5d",ovls[gsort[x].lidx].bread);
                  if (gsort[x].soft == 0)
                    printf(" @");
                  else if (gsort[x].soft == 1)
                    printf(" #");
                  else
                    printf("  ");
                  if (!keeper)
                    printf(" X");
                  printf("\n");
                }
            }
#endif
          if (keeper)
            { for (x = w; x < j; x++)
                if (gsort[x].soft > test)
                  break;
              for (w = j; gsort[w-1].soft <= test; w--)
                ;
              if (move)
                while (x < w)
                  gsort[ncnt++] = gsort[x++];
              else
                ncnt += w-x;
            }
          w = j;
        }
    }
  if (move)
    for (x = gcnt; x < gcnt+scnt; x++)
      gsort[ncnt++] = gsort[x];
  else
    ncnt += scnt;

  return (ncnt);
}

//  Categorize each gap and if appropriate return the best patch for each

static int gap_status(Overlap *ovls, int novl, Interval *lblock, Interval *rblock,
                      int *p_lft, int *p_rgt)
{ static int  nmax = 0;

  static Spanner *gsort = NULL;   //  A-B delta and idx-pair for all B-reads spanning a gap

  static int      ANCHOR_THRESH;

  static Interval *FirstB;
  static Interval *LastB;

  int j;
  int lft, rgt;
  int lcv, rcv; 
  int cnt;

  if (p_lft == NULL)
    { if (novl > nmax)
        { nmax = 1.2*novl + 500;
          gsort = (Spanner *) Realloc(gsort,nmax*sizeof(Spanner),"Allocating gap vector");
          if (gsort == NULL)
            exit (1);
          ANCHOR_THRESH = ANCHOR_MATCH * TRACE_SPACING;
        }

      FirstB = lblock;
      LastB  = rblock-1;
      return (0);
    }

  lft = lblock->end;
  rgt = rblock->beg;
  lcv = lft - COVER_LEN;
  rcv = rgt + COVER_LEN;
  if (lcv < lblock->beg)
    lcv = lblock->beg;
  if (rcv > rblock->end)
    rcv = rblock->end;

#ifdef DEBUG_GAP_STATUS
  printf("  GAP [%5d,%5d]  <%5d,%5d>\n",lft,rgt,lcv,rcv);
#endif

  //  If the gap flank [lcv,rcv] is covered by 10 or more LAs, then a LOWQ gap

  cnt = 0;
  for (j = 0; j < novl; j++)
    if (ovls[j].path.abpos <= lcv && ovls[j].path.aepos >= rcv)
      { cnt += 1;
        if (cnt >= 10)
          break;
      }

  //  If so and it is patchable then report LOWQ

  if (cnt >= 10)
    { for (j = 0; j < novl; j++)
        if (ovls[j].path.abpos <= lcv && ovls[j].path.aepos >= rcv)
          { Patch *can;

            can = compute_patch(lft,rgt,ovls+j,ovls+j);
            
            if (can == NULL) continue;

            if (can->anc <= ANCHOR_THRESH && can->avg <= GOOD_QV && can->bad == 0)
              {
#ifdef DEBUG_GAP_STATUS
                printf("    LOWQ  PATCHABLE = %d%c[%d..%d]  %d (%d)\n",
                       can->bread,can->comp?'c':'n',can->beg,
                       can->end,can->anc,can->avg);
#endif
                return (LOWQ);
              }
          }
#ifdef DEBUG_GAP_STATUS
      printf("    FAILING TO PATCH_LOWQ\n");
#endif
    }

  { int bread, bcomp, blen, blast;
    int ab, ae;
    int lstack[10], ltop;
    int rstack[10], rtop;
    int lcnt, rcnt, scnt, gcnt, acnt;
    int lidx, ridx, sidx, Lidx, Ridx;
    int k;

    //  Find LA pairs or LAs spanning the gap flank [lcv,rcv]

    bread = -1;
    lidx = ridx = -1;
    lcnt = rcnt = scnt = gcnt = acnt = 0;
    for (j = 0; j < novl; j = k)
      { blast = bread;
        bread = ovls[j].bread;
        blen  = DB->reads[bread].rlen;
        bcomp = COMP(ovls[j].flags);
        Lidx  = lidx;
        Ridx  = ridx;

        ltop = rtop = 0;
        lidx = ridx = sidx = -1;    //  For all LA's with same b-read
        for (k = j; k < novl; k++)
          { if (ovls[k].bread != bread)
              break;
            if (COMP(ovls[k].flags) != (uint32) bcomp)   //  Note when b switches orientation
              break;
            ab = ovls[k].path.abpos;
            ae = ovls[k].path.aepos;

#ifdef SHOW_PAIRS
            printf("\n %5d [%5d,%5d] %c",bread,ab,ae,COMP(ovls[k].flags)?'c':'n');
            if (ab <= lcv && ae >= rcv)
              printf("s");
            else
              printf(" ");
#endif

            //  Is LA a spanner, left-partner, or right partner
            //    A partner is hard if end=point is within COVER_LEN of the gap boundary
            //    Record rigthmost/leftmost left/right hard partners (if any)

            if (ab <= lcv && ae >= rcv)
              { sidx = k;
                lidx = ridx = -1;
                ltop = rtop = 0;
                continue;
              }

            if (sidx >= 0)
              continue;
            
            if (ae >= rcv && ab > lft)
              { if (rtop < 10)
                  rstack[rtop++] = k;
#ifdef SHOW_PAIRS
                printf("r");
#endif
                if (ab <= rcv && ridx < 0)
                  { ridx = k;
#ifdef SHOW_PAIRS
                    printf("+");
#endif
                  }
              }

            if (ab <= lcv && ae < rgt)
              { if (ltop < 10)
                  lstack[ltop++] = k;
#ifdef SHOW_PAIRS
                printf("l");
#endif
                if (ae >= lcv)
                  { lidx = k;
#ifdef SHOW_PAIRS
                    printf("+");
#endif
                  }
	      }
          }

        //  Check for a hard contra pair and if found add
        //  Then check for a spanner and if so then add to gsort list.
        //  Then check for a spanning pair: use hard pair if available, otherwise
        //    use tightest pair and term it anciliary if endpoints are within an adjacent
        //    gap boundary, or soft otherwise.
        //  Finally, if left or right hard (but unpaired) then record as a conflict if
        //    projection extends MIN_OVERLAP past the other side.

        if (blast == bread)
          { if (ridx < 0)
              { if (lidx >= 0 && Ridx >= 0 && Lidx < 0)
                  { acnt += 1;
                    if (Ridx >= 0 && ovls[Ridx].path.abpos - ovls[Ridx].path.bbpos
                                             <= lft - MIN_OVERLAP)
                      rcnt -= 1;
#ifdef SHOW_PAIRS
                    printf(" = A");
#endif
                    continue;
                  }
              }
            else
              { if (lidx < 0 && Ridx < 0 && Lidx >= 0)
                  { acnt += 1;
                    if (Lidx >= 0 && ovls[Lidx].path.aepos + (blen-ovls[Lidx].path.bepos)
                                            >= rgt + MIN_OVERLAP)
                      lcnt -= 1;
#ifdef SHOW_PAIRS
                    printf(" = A");
#endif
                    continue;
                  }
              }
          }

        if (sidx >= 0)
          { gsort[gcnt].delta = DB->maxlen;
            gsort[gcnt].lidx  = sidx;
            gsort[gcnt].ridx  = sidx;
            gcnt += 1;
            scnt += 1;
#ifdef SHOW_PAIRS
            printf(" = S");
#endif
            continue;
          }

        if (ltop > 0 && rtop > 0)
          { int lok, rok, x;

            if (lidx < 0 || ridx < 0)
              { int dif, bst;
                int x, y;

                bst = 0x7fffffff;
                for (ltop--; ltop >= 0; ltop--)
                  { x = lstack[ltop];
                    for (rtop--; rtop >= 0; rtop--)
                      { y = rstack[rtop];
                        dif = (ovls[y].path.abpos - ovls[x].path.aepos)
                           - (ovls[y].path.bbpos - ovls[x].path.bepos);
                        dif = abs(dif);
                        if (dif < bst)
                          { bst  = dif;
                            lidx = x;
                            ridx = y;
                            dif = (ovls[ridx].path.abpos - ovls[lidx].path.aepos)
                                - (ovls[ridx].path.bbpos - ovls[lidx].path.bepos);
#ifdef SHOW_PAIRS
                            printf(" C(%d,%d = %d)",x,y,dif);
#endif
                          }
                      }
                  }
              }

            lok = 2;
            if (ovls[lidx].path.aepos < lcv)
              { x = ovls[lidx].path.aepos;
                lok = (lblock > FirstB && x <= lblock->beg && x >= lblock[-1].end - COVER_LEN);
              }
            rok = 2;
            if (ovls[ridx].path.abpos > rcv)
              { x = ovls[ridx].path.abpos;
                rok = (rblock < LastB && x >= rblock->end && x <= rblock[1].beg + COVER_LEN);
              }
  
            if (lok >= 2 && rok >= 2)
              gsort[gcnt].soft = 2;
            else if (lok >= 1 && rok >= 1)
              gsort[gcnt].soft = 1;
            else
              gsort[gcnt].soft = 0;
            gsort[gcnt].delta = (ovls[ridx].path.abpos - ovls[lidx].path.aepos)
                              - (ovls[ridx].path.bbpos - ovls[lidx].path.bepos);
            gsort[gcnt].lidx  = lidx;
            gsort[gcnt].ridx  = ridx;
            gcnt += 1;
#ifdef SHOW_PAIRS
            printf(" = G%d",gsort[gcnt-1].delta);
#endif
            continue;
          }

        if (ridx >= 0 && ovls[ridx].path.abpos - ovls[ridx].path.bbpos <= lft - MIN_OVERLAP)
          { rcnt += 1;
#ifdef SHOW_PAIRS
            printf(" = R");
#endif
          }
        if (lidx >= 0 && ovls[lidx].path.aepos + (blen-ovls[lidx].path.bepos) >= rgt + MIN_OVERLAP)
          { lcnt += 1;
#ifdef SHOW_PAIRS
            printf(" = L");
#endif
          }
      }

#ifdef SHOW_PAIRS
    printf("\n");
#endif

    { int ccnt, ocnt;

      if (lcnt < rcnt)
        ccnt = lcnt;
      else
        ccnt = rcnt;

      //  Analyze pair list gsort: if standard analysis (only hard pairs count) does not yield
      //    a span, then consider anciliary pair spanners (rarely makes a difference but does
      //    save a few.
  
      qsort(gsort,gcnt,sizeof(Spanner),GSORT);
      gcnt -= scnt;

      ocnt = gcnt;
      gcnt = analyze_gap_pairs(rgt-lft,gsort,ovls,gcnt,scnt,1,0);
      if (scnt < 4 && gcnt < 10 && gcnt < ccnt)
        {
#ifdef SHOW_PAIRS
          printf("  SPECIAL\n");
#endif
          gcnt = analyze_gap_pairs(rgt-lft,gsort,ovls,ocnt,scnt,0,1);
#ifdef SHOW_PAIRS
          if (gcnt >= 10 || gcnt >= ccnt)
            printf("  SWITCH\n");
#endif
        }
      else
        analyze_gap_pairs(rgt-lft,gsort,ovls,ocnt,scnt,1,1);

#ifdef DEBUG_GAP_STATUS
      printf("    lcnt = %d  gcnt = %d  scnt = %d  rcnt = %d acnt = %d\n",
             lcnt,gcnt-scnt,scnt,rcnt,acnt);
#endif

      //  Lots of contra pairs and less spanning support, call it an adaptamer gap.
  
      if (acnt >= .3*ccnt && gcnt < acnt) 
        {
#ifdef DEBUG_GAP_STATUS
          printf("    ADAPT %3d (vs %d)\n",acnt,gcnt);
#endif
          return (ADAPT);
        }

      //  If there is insufficient evidence for a span, then split.

      if (scnt < 4 && gcnt < 10 && gcnt <= ccnt)
        {
#ifdef DEBUG_GAP_STATUS
          if (ccnt >= 20)
            printf("    STRONG SPLIT\n");
          else
            printf("    WEAK SPLIT\n");
          if (gcnt >= 10)
            printf("  UNCERTAIN %5.1f %5d %3d\n",gcnt/(1.*ccnt),rgt-lft,gcnt);
#endif
          return (SPLIT);
        }

      //  Otherwise consider the gap spannable and try to find a viable patch, declaring a split
      //    iff all patch attemtps fail
  
      else
        { Patch    *can;
          int       ncand;
          uint8    *qa;
          Interval *clb, *crb;

          qa   = QV + QV_IDX[ovls[0].aread];
          clb  = lblock;
          crb  = rblock;

          //  First make sure enough partners provide anchors, and if not
          //     shift them back to the next good segment of A-read

          { int    nshort;

            nshort = 0;
            for (j = 0; j < gcnt; j++)
              { if (lft > ovls[gsort[j].lidx].path.aepos)
                  nshort += 1;
              }
            if (nshort > .2*gcnt)
              do
                { lft -= TRACE_SPACING;
                  if (lft <= clb->beg)
                    { if (clb <= FirstB)
                        break;
                      clb -= 1;
                      lft = clb->end;
                    }
                }
              while (qa[lft/TRACE_SPACING-1] > GOOD_QV);

            nshort = 0;
            for (j = 0; j < gcnt; j++)
              { if (rgt < ovls[gsort[j].ridx].path.abpos)
                  nshort += 1;
              }
            if (nshort > .2*gcnt)
              do
                { rgt += TRACE_SPACING;
                  if (rgt >= crb->end)
                    { if (crb >= LastB)
                        break;
                      crb += 1;
                      rgt = crb->beg;
                    }
                }
              while (qa[rgt/TRACE_SPACING] > GOOD_QV);

            //  Could not find primary anchor pair, then declare a SPLIT

            if (clb < FirstB || crb > LastB)
              {
#ifdef DEBUG_GAP_STATUS
                printf("    ANCHOR FAIL (BOUNDS)\n");
#endif
                return (SPLIT);
              }
          }

          //  Count all patch candidates that have a good anchor pair

          ncand  = 0;
          for (j = 0; j < gcnt; j++)
            { lidx = gsort[j].lidx;
              ridx = gsort[j].ridx;

#ifdef DEBUG_PATCHING
              if (lidx != ridx)
                printf("       %5d [%5d,%5d] [%5d,%5d] %4d",
                       ovls[lidx].bread,ovls[lidx].path.abpos,ovls[lidx].path.aepos,
                       ovls[ridx].path.abpos,ovls[ridx].path.aepos,gsort[j].delta);
              else
                printf("       %5d [%5d,%5d] SSS",
                       ovls[lidx].bread,ovls[lidx].path.abpos,ovls[lidx].path.aepos);
#endif

              can = compute_patch(lft,rgt,ovls+lidx,ovls+ridx);

              if (can != NULL)
                {
#ifdef DEBUG_PATCHING
                  printf(" %d",can->end-can->beg);
#endif
                  if (can->anc <= ANCHOR_THRESH)
                    { ncand += 1;
#ifdef DEBUG_PATCHING
                      printf("  AA %d %d(%d)",can->anc,can->bad,can->avg);
#endif
                    }
                }
#ifdef DEBUG_PATCHING
              printf("\n");
#endif
            } 

          //  If there are less than 5 of them, then seek better anchor points a bit
          //    further back

          if (ncand < 5)
            { int x, best, nlft, nrgt;
              int nanchor, ntry;

#ifdef DEBUG_PATCHING
              printf("     NOT ENOUGH\n");
#endif

              //  Try 4 additional anchor spots located at good intervals of A (if available)
              //     One can cross other gaps in the search.  Try the one with the most
              //     partners having match scores below the anchor threshold.  Do this to the
              //     left and right.  (A better search could be arranged (i.e. find smallest
              //     spanning pair of adjusted anchors, but this situation happens 1 in 5000
              //     times, so felt it was not worth it).

              ntry = 0;
              nlft = lft;
              best = -1;
              for (x = lft; ntry < 5; x -= TRACE_SPACING)
                if (x <= clb->beg)
                  { if (clb <= FirstB)
                      break;
                    clb -= 1;
                    x = clb->end + TRACE_SPACING;
                  }
                else if (qa[x/TRACE_SPACING-1] <= GOOD_QV)
                  { ntry += 1;
                    nanchor = 0;
                    for (j = 0; j < gcnt; j++)
                      if (eval_lft_anchor(x,ovls+gsort[j].lidx) <= ANCHOR_THRESH)
                        nanchor += 1;
#ifdef DEBUG_PATCHING
                    printf("       %5d: %3d\n",x,nanchor);
#endif
                    if (nanchor > best)
                      { best = nanchor;
                        nlft = x;
                      }
                  }
#ifdef DEBUG_PATCHING
              printf("          %5d->%5d\n",lft,nlft);
#endif

              ntry = 0;
              nrgt = rgt;
              best = -1;
              for (x = rgt; ntry < 5; x += TRACE_SPACING)
                if (x >= crb->end)
                  { if (crb >= LastB)
                      break;
                    crb += 1;
                    x = crb->beg - TRACE_SPACING;
                  }
                else if (qa[x/TRACE_SPACING] <= GOOD_QV)
                  { ntry += 1;
                    nanchor = 0;
                    for (j = 0; j < gcnt; j++)
                      if (eval_rgt_anchor(x,ovls+gsort[j].ridx) <= ANCHOR_THRESH)
                        nanchor += 1;
#ifdef DEBUG_PATCHING
                    printf("       %5d: %3d\n",x,nanchor);
#endif
                    if (nanchor > best)
                      { best = nanchor;
                        nrgt = x;
                      }
                  }
#ifdef DEBUG_PATCHING
              printf("          %5d->%5d\n",rgt,nrgt);
#endif

              //  If a better candidate pair of anchor points does not exist, then split.

              if (lft == nlft && rgt == nrgt)
                {
#ifdef DEBUG_GAP_STATUS
                  printf("    ANCHOR FAIL (ONCE) %d\n",ncand);
#endif
                  return (SPLIT);
                }
              lft = nlft;
              rgt = nrgt;

              //  Check out if the new anchor pair has 5 or more candidate patches

              ncand  = 0;
              for (j = 0; j < gcnt; j++)
                { lidx = gsort[j].lidx;
                  ridx = gsort[j].ridx;

#ifdef DEBUG_PATCHING
                  if (lidx != ridx)
                    printf("       %5d [%5d,%5d] [%5d,%5d] %4d",
                           ovls[lidx].bread,ovls[lidx].path.abpos,ovls[lidx].path.aepos,
                           ovls[ridx].path.abpos,ovls[ridx].path.aepos,gsort[j].delta);
                  else
                    printf("       %5d [%5d,%5d] SSS",
                           ovls[lidx].bread,ovls[lidx].path.abpos,ovls[lidx].path.aepos);
#endif

                  if (lft <= ovls[lidx].path.aepos && rgt >= ovls[ridx].path.abpos)
                    { can = compute_patch(lft,rgt,ovls+lidx,ovls+ridx);
    
                      if (can != NULL)
                        {
#ifdef DEBUG_PATCHING
                          printf(" %d",can->end-can->beg);
#endif
                          if (can->anc <= ANCHOR_THRESH)
                            { ncand += 1;
#ifdef DEBUG_PATCHING
                              printf("  AA %d %d(%d)",can->anc,can->bad,can->avg);
#endif
                            }
                        }
                    }
#ifdef DEBUG_PATCHING
                  printf("\n");
#endif
                } 

              //  Could not arrange 5 patch candidates, give up and split.

              if (ncand < 5)
                {
#ifdef DEBUG_GAP_STATUS
                  printf("    ANCHOR FAIL (TWICE) %d\n",ncand);
#endif
                  return (SPLIT);
                }
            }

          *p_lft = lft;
          *p_rgt = rgt;

#ifdef DEBUG_GAP_STATUS
          printf("    SPAN %5d:  PATCHABLE\n",rgt-lft);
#endif
          return (SPAN);
        }
    }
  }
}

static int *GAP_ANALYSIS(int aread, Overlap *ovls, int novl, Interval *block, int *p_nblk)
{ static int  bmax = 0;
  static int *status = NULL;      //  Status of gaps between HQ_blocks
 
#if defined(DEBUG_SUMMARY) || defined(DEBUG_CLASS)
  static char *status_string[4] = { "LOWQ", "SPAN", "SPLIT", "ADAPT" };
#endif

  int nblk;
  int i, j;
  int slft = 0, srgt = 0;

  (void) aread;

  nblk = *p_nblk;
  if (nblk > bmax)
    { bmax = 1.2*nblk + 100;
      status = (int *) Realloc(status,bmax*sizeof(int),"Allocating status vector");
      if (status == NULL)
        exit (1);
    }

  gap_status(ovls,novl,block,block+nblk,NULL,NULL);  //  Initialization call
  j = 0;
  for (i = 1; i < nblk; i++)
    { status[i] = gap_status(ovls,novl,block+j,block+i,&slft,&srgt);
      if (status[i] == SPAN)
        { while (slft < block[j].beg)
            j -= 1;
          block[j].end = slft;
          j += 1;
          status[j] = status[i];
          while (srgt > block[i].end)
            i += 1;
          block[j] = block[i];
          block[j].beg = srgt;
        }
      else
        { j += 1;
          status[j] = status[i];
          block[j]  = block[i];
        }
    }
  nblk = j+1;

#ifdef DEBUG_SUMMARY
#ifdef DEBUG_GAP_STATUS
  printf("  FINAL:\n");
#endif
  printf("    [%d,%d]",block[0].beg,block[0].end);
  for (i = 1; i < nblk; i++)
    printf(" %s [%d,%d]",status_string[status[i]],block[i].beg,block[i].end);
#endif

#ifdef DEBUG_CLASS
  for (i = 1; i < nblk; i++)
    printf("AREAD %d  %s  [%d,%d]\n",aread,status_string[status[i]],block[i-1].end,block[i].beg);
#endif
  
  *p_nblk  = nblk;
  return (status);
}


/*******************************************************************************************
 *
 *  SCRUB EACH PILE:
 *     Trim low-quality tips of reads and patch low quality intervals within a sequence
 *     Trim adapter (and associated redundant prefix or suffix)
 *     Break chimers or all unscaffoldable no-coverage gaps of reads
 *
 ********************************************************************************************/

//  Analyze all the gaps between the good patches found in the first pass.
//  Consider a hole between two good intervals [lb,le] and [rb,re].  An overlap
  //    is anchored to the left of the whole if abpos <= le-COVER_LEN and aepos >= rb+COVER_LEN

static void GAPS(int aread, Overlap *ovls, int novl)
{ int       alen;

  int       nblk;
  Interval *block;
  int      *status;

#if defined(DEBUG_HQ_BLOCKS) || defined(DEBUG_HOLE_FINDER) || defined(DEBUG_GAP_STATUS) || defined(DEBUG_SUMMARY)
  printf("\n");
  printf("AREAD %d\n",aread);
#endif

  alen = DB->reads[aread].rlen;
  if (alen < HGAP_MIN)
    {
#ifdef ANNOTATE
      fwrite(&HQ_INDEX,sizeof(int64),1,HQ_AFILE);
      fwrite(&SN_INDEX,sizeof(int64),1,SN_AFILE);
      fwrite(&SP_INDEX,sizeof(int64),1,SP_AFILE);
      fwrite(&AD_INDEX,sizeof(int64),1,AD_AFILE);

      fwrite(&HL_INDEX,sizeof(int64),1,HL_AFILE);

      fwrite(&KP_INDEX,sizeof(int64),1,KP_AFILE);
#endif

      fwrite(&TR_INDEX,sizeof(int64),1,TR_AFILE);
      return;
    }

  nreads += 1;
  totlen += alen;

  //  Partition into HQ-blocks

  block = HQ_BLOCKS(aread,&nblk);

  //  Find holes and modify HQ-blocks if necessary

  if (nblk > 0)
    nblk = FIND_HOLES(aread,ovls,novl,block,nblk);

  //  Determine the status of each gap between a pair of blocks

  if (nblk > 0)
    status = GAP_ANALYSIS(aread,ovls,novl,block,&nblk);

  //  No blocks? ==> nothing to do

  if (nblk <= 0)
    { nelim += 1;
      nelimbp += alen;
#ifdef ANNOTATE
      fwrite(&HQ_INDEX,sizeof(int64),1,HQ_AFILE);
      fwrite(&SN_INDEX,sizeof(int64),1,SN_AFILE);
      fwrite(&SP_INDEX,sizeof(int64),1,SP_AFILE);
      fwrite(&AD_INDEX,sizeof(int64),1,AD_AFILE);

      fwrite(&HL_INDEX,sizeof(int64),1,HL_AFILE);

      fwrite(&KP_INDEX,sizeof(int64),1,KP_AFILE);
#endif

      fwrite(&TR_INDEX,sizeof(int64),1,TR_AFILE);
      return;
    }

#ifdef ANNOTATE
  { int i;

    for (i = 0; i < nblk; i++)
      { fwrite(&(block[i].beg),sizeof(int),1,HQ_DFILE);
        fwrite(&(block[i].end),sizeof(int),1,HQ_DFILE);
        if (i > 0)
          { if (status[i] == SPAN || status[i] == LOWQ)
              { fwrite(&(block[i-1].end),sizeof(int),1,SN_DFILE);
                fwrite(&(block[i].beg),sizeof(int),1,SN_DFILE);
                SN_INDEX += 2*sizeof(int);
              }
            else if (status[i] == SPLIT)
              { fwrite(&(block[i-1].end),sizeof(int),1,SP_DFILE);
                fwrite(&(block[i].beg),sizeof(int),1,SP_DFILE);
                SP_INDEX += 2*sizeof(int);
              }
            else //  status[i] == ADAPT 
              { fwrite(&(block[i-1].end),sizeof(int),1,AD_DFILE);
                fwrite(&(block[i].beg),sizeof(int),1,AD_DFILE);
                AD_INDEX += 2*sizeof(int);
              }
          }
      }
    HQ_INDEX += 2*sizeof(int)*nblk;
    fwrite(&HQ_INDEX,sizeof(int64),1,HQ_AFILE);
    fwrite(&SN_INDEX,sizeof(int64),1,SN_AFILE);
    fwrite(&SP_INDEX,sizeof(int64),1,SP_AFILE);
    fwrite(&AD_INDEX,sizeof(int64),1,AD_AFILE);
  }
#endif

  //   Find largest non-adaptemer/subread range: block[abeg..aend)

  { int cmax, amax, abeg = 0, aend = 0;
    int p, i;

    amax = 0;
    p = 0;
    cmax = block[0].end-block[0].beg;
    for (i = 1; i < nblk; i++)
      if (status[i] == ADAPT)
        { if (cmax > amax)
            { amax = cmax;
              abeg = p;
              aend = i;
            }
          p = i;
          cmax = block[i].end - block[i].beg; 
        }
      else if (status[i] != SPLIT)
        cmax += block[i].end - block[i-1].end;
      else
        cmax += block[i].end - block[i].beg;
    if (cmax > amax)
      { amax = cmax;
        abeg = p;
        aend = nblk;
      }

    if (block[aend-1].end - block[aend-1].beg < TRACE_SPACING)
      { aend -= 1;
        nblk -= 1;  // assert: aend == nblk && status[aend-1] = SPLIT
      }
    if (block[aend-1].end == alen)
      block[aend-1].end = (alen/TRACE_SPACING)*TRACE_SPACING;
 
#ifdef DEBUG_SUMMARY
    printf("  :::  Keeping [%d,%d]\n",block[abeg].beg,block[aend-1].end);
#endif

  //  Accummulate statistics

    if (block[0].beg > 0)
      { n5trm += 1;
        n5trmbp += block[0].beg;
      }
    if (block[nblk-1].end < alen)
      { n3trm += 1;
        n3trmbp += alen - block[nblk-1].end;
      }
    if (abeg > 0)
      { natrm   += 1;
        natrmbp += block[abeg].beg - block[0].beg;
      }
    if (aend < nblk)
      { natrm   += 1;
        natrmbp += (block[nblk-1].end - block[aend-1].end);
      }
    for (i = abeg+1; i < aend; i++)
      { ngaps += 1;
        ngapsbp += block[i].beg - block[i-1].end;
        if (status[i] == LOWQ)
          { nlowq   += 1;
            nlowqbp += block[i].beg - block[i-1].end;
          }
        else if (status[i] == SPAN)
          { nspan   += 1;
            nspanbp += block[i].beg - block[i-1].end;
          }
        else // status[i] == SPLIT
          { nchim   += 1;
            nchimbp += block[i].beg - block[i-1].end;
          }
      }

#ifdef ANNOTATE
    fwrite(&(block[abeg].beg),sizeof(int),1,KP_DFILE);
    for (i = abeg+1; i < aend; i++)
      if (status[i] == SPLIT)
        { fwrite(&(block[i-1].end),sizeof(int),1,KP_DFILE);
          fwrite(&(block[i].beg),sizeof(int),1,KP_DFILE);
          KP_INDEX += 2*sizeof(int);
        }
    fwrite(&(block[aend-1].end),sizeof(int),1,KP_DFILE);
    KP_INDEX += 2*sizeof(int);
    fwrite(&KP_INDEX,sizeof(int64),1,KP_AFILE);
#endif

  //  Output .trim track for this read

    fwrite(&(block[abeg].beg),sizeof(int),1,TR_DFILE);
    fwrite(&(block[abeg].end),sizeof(int),1,TR_DFILE);
    TR_INDEX += 2*sizeof(int);
    for (i = abeg+1; i < aend; i++)
      { fwrite(status+i,sizeof(int),1,TR_DFILE);
        fwrite(&(block[i].beg),sizeof(int),1,TR_DFILE);
        fwrite(&(block[i].end),sizeof(int),1,TR_DFILE);
        TR_INDEX += 3*sizeof(int);
      }
    fwrite(&TR_INDEX,sizeof(int64),1,TR_AFILE);
  }
}


  //  Read in each successive pile and call ACTION on it.  Read in the traces only if
  //   "trace" is nonzero

static int make_a_pass(FILE *input, void (*ACTION)(int, Overlap *, int), int trace)
{ static Overlap *ovls = NULL;
  static int      omax = 500;
  static uint16  *paths = NULL;
  static int      pmax = 100000;

  int64 i, j, novl;
  int   n, a;
  int   pcur;
  int   max;
  int   tbytes;

  if (ovls == NULL)
    { ovls = (Overlap *) Malloc(sizeof(Overlap)*omax,"Allocating overlap buffer");
      if (ovls == NULL)
        exit (1);
    }
  if (trace && paths == NULL)
    { paths = (uint16 *) Malloc(sizeof(uint16)*pmax,"Allocating path buffer");
      if (paths == NULL)
        exit (1);
    }

  rewind(input);
  fread(&novl,sizeof(int64),1,input);
  fread(&TRACE_SPACING,sizeof(int),1,input);
  if (TRACE_SPACING <= TRACE_XOVR)
    tbytes = sizeof(uint8);
  else
    tbytes = sizeof(uint16);

  if (Read_Overlap(input,ovls) != 0)
    ovls[0].aread = INT32_MAX;
  else if (trace)
    { if (ovls[0].path.tlen > pmax)
        { pmax  = 1.2*(ovls[0].path.tlen)+10000;
          paths = (uint16 *) Realloc(paths,sizeof(uint16)*pmax,"Expanding path buffer");
          if (paths == NULL) exit (1);
        }
      fread(paths,tbytes,ovls[0].path.tlen,input);
      if (tbytes == 1)
        { ovls[0].path.trace = paths;
          Decompress_TraceTo16(ovls);
        }
    }
  else
    fseek(input,tbytes*ovls[0].path.tlen,SEEK_CUR);

  if (ovls[0].aread < DB_FIRST)
    { fprintf(stderr,"%s: .las file overlaps don't correspond to reads in block %d of DB\n",
                     Prog_Name,DB_PART);
      exit (1);
    }

  pcur = 0;
  n = max = 0;
  for (j = DB_FIRST; j < DB_LAST; j++)
    { ovls[0] = ovls[n];
      a = ovls[0].aread;
      if (a != j)
        n = 0;
      else
        { if (trace)
            memmove(paths,paths+pcur,sizeof(uint16)*ovls[0].path.tlen);
          n = 1;
          pcur = ovls[0].path.tlen;
          while (1)
            { if (Read_Overlap(input,ovls+n) != 0)
                { ovls[n].aread = INT32_MAX;
                  break;
                }
              if (trace)
                { if (pcur + ovls[n].path.tlen > pmax)
                    { pmax = 1.2*(pcur+ovls[n].path.tlen)+10000;
                      paths = (uint16 *) Realloc(paths,sizeof(uint16)*pmax,"Expanding path buffer");
                      if (paths == NULL) exit (1);
                    }
                  fread(paths+pcur,tbytes,ovls[n].path.tlen,input);
                  if (tbytes == 1)
                    { ovls[n].path.trace = paths+pcur;
                      Decompress_TraceTo16(ovls+n);
                    }
                }
              else
                fseek(input,tbytes*ovls[n].path.tlen,SEEK_CUR);
              if (ovls[n].aread != a)
                break;
              pcur += ovls[n].path.tlen;
              n    += 1;
              if (n >= omax)
                { omax = 1.2*n + 100;
                  ovls = (Overlap *) Realloc(ovls,sizeof(Overlap)*omax,"Expanding overlap buffer");
                  if (ovls == NULL) exit (1);
                }
            }

          if (n >= max)
            max = n;
          pcur = 0;
          for (i = 0; i < n; i++)
            { ovls[i].path.trace = paths+pcur;
              pcur += ovls[i].path.tlen;
            }
        }
      ACTION(j,ovls,n);
    }

  if (ovls[n].aread < INT32_MAX)
    { fprintf(stderr,"%s: .las file overlaps don't correspond to reads in block %d of DB\n",
                     Prog_Name,DB_PART);
      exit (1);
    }

  return (max);
}

int main(int argc, char *argv[])
{ char       *root, *dpwd;
  int64       novl;
  DAZZ_TRACK *track;
  int         c;

  DAZZ_EXTRA  ex_hgap, ex_cest;
  DAZZ_EXTRA  ex_good, ex_bad, ex_trim;

  char *good_name = "Good QV threshold";
  char *bad_name  = "Bad QV threshold";
  char *trim_name = "Trimming statistics";
  int64 good64, bad64, tstats[18];

  //  Process arguments

  { int  i, j, k;
    int  flags[128];
    char *eptr;

    ARG_INIT("DAStrim")

    BAD_QV    = -1;
    GOOD_QV   = -1;

    j = 1;
    for (i = 1; i < argc; i++)
      if (argv[i][0] == '-')
        switch (argv[i][1])
        { default:
            ARG_FLAGS("v")
            break;
          case 'b':
            ARG_NON_NEGATIVE(BAD_QV,"Minimum QV score for being considered bad")
            break;
          case 'g':
            ARG_NON_NEGATIVE(GOOD_QV,"Maximum QV score for being considered good")
            break;
        }
      else
        argv[j++] = argv[i];
    argc = j;

    VERBOSE = flags['v'];

    if (argc < 3)
      { fprintf(stderr,"Usage: %s %s\n",Prog_Name,Usage);
        fprintf(stderr,"\n");
        fprintf(stderr,"      -v: Verbose mode, output statistics as proceed.\n");
        fprintf(stderr,"      -g: Use as good qv threshold (and not auto-estimate).\n");
        fprintf(stderr,"      -b: Use as bad qv threshold (and not auto-estimate).\n");
        exit (1);
      }
  }

  //  Open trimmed DB and the qual-track

  { int status;

    status = Open_DB(argv[1],DB);
    if (status < 0)
      exit (1);
    if (status == 1)
      { fprintf(stderr,"%s: Cannot be called on a .dam index: %s\n",Prog_Name,argv[1]);
        exit (1);
      }
    if (DB->part)
      { fprintf(stderr,"%s: Cannot be called on a block: %s\n",Prog_Name,argv[1]);
        exit (1);
      }
    Trim_DB(DB);
  }

  //  Get .qual track and extras

  track = Open_Track(DB,"qual");
  if (track != NULL)
    { FILE       *afile;
      char       *aname;
      int         extra, tracklen, size;
      DAZZ_EXTRA  ex_qvs, ex_dif;

      Load_All_Track_Data(track);

      QV_IDX = (int64 *) track->anno;
      QV     = (uint8 *) track->data;

      aname = Strdup(Catenate(DB->path,".","qual",".anno"),"Allocating anno file");
      if (aname == NULL)
        exit (1);
      afile  = fopen(aname,"r");

      fread(&tracklen,sizeof(int),1,afile);
      fread(&size,sizeof(int),1,afile);
      fseeko(afile,0,SEEK_END);
      extra = ftell(afile) - (size*(tracklen+1) + 2*sizeof(int));
      fseeko(afile,-extra,SEEK_END);
      ex_hgap.nelem = 0;
      if (Read_Extra(afile,aname,&ex_hgap) != 0)
        { fprintf(stderr,"%s: Hgap threshold extra missing from .qual track?\n",Prog_Name);
          exit (1);
        }
      ex_cest.nelem = 0;
      if (Read_Extra(afile,aname,&ex_cest) != 0)
        { fprintf(stderr,"%s: Coverage estimate extra missing from .qual track?\n",Prog_Name);
          exit (1);
        }
      ex_qvs.nelem = 0;
      if (Read_Extra(afile,aname,&ex_qvs) != 0)
        { fprintf(stderr,"%s: QV histogram extra missing from .qual track?\n",Prog_Name);
          exit (1);
        }
      ex_dif.nelem = 0;
      if (Read_Extra(afile,aname,&ex_dif) != 0)
        { fprintf(stderr,"%s: Differences histogram extra missing from .qual track?\n",Prog_Name);
          exit (1);
        }
      fclose(afile);

      COVERAGE = (int) ((int64 *) (ex_cest.value))[0];
      HGAP_MIN = (int) ((int64 *) (ex_hgap.value))[0];

      //  Compute -g and -b parameters

      { int64  qsum, qtotal;
        int64 *qgram;
        int    i, maxqv;
        int    gv, bv;

        qgram = (int64 *) (ex_qvs.value);
        maxqv = ex_qvs.nelem - 1;

        qtotal = 0;
        for (i = 0; i < maxqv; i++)
          qtotal += qgram[i];

        bv = gv = -1;
        qsum = 0;
        for (i = maxqv-1; i >= 0; i--)
          if (qgram[i] > 0)
            { qsum += qgram[i];
              if ((100.*qsum)/qtotal > 7. && bv < 0)
                bv = i+1;
              if ((100.*qsum)/qtotal > 20. && gv < 0)
                gv = i+1;
            }

        if (GOOD_QV < 0)
          GOOD_QV = gv;
        if (BAD_QV < 0)
          BAD_QV = bv;
      }
    }
  else
    { fprintf(stderr,"%s: Must have a 'qual' track, run DASqv\n",Prog_Name);
      exit (1);
    }

  if (GOOD_QV > BAD_QV)
    { fprintf(stderr,"%s: Good QV threshold (%d) > Bad QV threshold (%d) ?\n",
                     Prog_Name,GOOD_QV,BAD_QV);
      exit (1);
    }

  //  Setup extras

  ex_good.vtype = DB_INT;     // Good QV threshold
  ex_good.nelem = 1;
  ex_good.accum = DB_EXACT;
  ex_good.name  = good_name;
  good64 = GOOD_QV;
  ex_good.value = &good64;

  ex_bad.vtype = DB_INT;      // Bad QV threshold
  ex_bad.nelem = 1;
  ex_bad.accum = DB_EXACT;
  ex_bad.name  = bad_name;
  bad64 = BAD_QV;
  ex_bad.value = &bad64;

  ex_trim.vtype = DB_INT;     // Trim statistics
  ex_trim.nelem = 16;
  ex_trim.accum = DB_SUM;
  ex_trim.name  = trim_name;
  ex_trim.value = &tstats;

  //  For each .las file do

  dpwd = PathTo(argv[1]);
  root = Root(argv[1],".db");

  for (c = 2; c < argc; c++)
    { Block_Looper *parse;
      FILE         *input;

      parse = Parse_Block_LAS_Arg(argv[c]);

      while ((input = Next_Block_Arg(parse)) != NULL)
        { DB_PART  = 0;
          DB_FIRST = 0;
          DB_LAST  = DB->nreads;

          //  Determine if overlap block is being processed and if so get first and last read
          //    from .db file

          { FILE *dbfile;
            char  buffer[2*MAX_NAME+100];
            char *p, *eptr;
            int   i, part, nfiles, nblocks, cutoff, all, oindx;
            int64 size;

            p = rindex(Block_Arg_Root(parse),'.');
            if (p != NULL)
              { part = strtol(p+1,&eptr,10);
                if (*eptr == '\0' && eptr != p+1)
                  { dbfile = Fopen(Catenate(dpwd,"/",root,".db"),"r");
                    if (dbfile == NULL)
                      exit (1);
                    if (fscanf(dbfile,DB_NFILE,&nfiles) != 1)
                      SYSTEM_READ_ERROR
                    for (i = 0; i < nfiles; i++)
                      if (fgets(buffer,2*MAX_NAME+100,dbfile) == NULL)
                        SYSTEM_READ_ERROR
                    if (fscanf(dbfile,DB_NBLOCK,&nblocks) != 1)
                      SYSTEM_READ_ERROR
                    if (fscanf(dbfile,DB_PARAMS,&size,&cutoff,&all) != 3)
                      SYSTEM_READ_ERROR
                    for (i = 1; i <= part; i++)
                      if (fscanf(dbfile,DB_BDATA,&oindx,&DB_FIRST) != 2)
                        SYSTEM_READ_ERROR
                    if (fscanf(dbfile,DB_BDATA,&oindx,&DB_LAST) != 2)
                      SYSTEM_READ_ERROR
                    fclose(dbfile);
                    DB_PART = part;
                  }
              }
          }

          //  Set up QV trimming track

#define SETUP(AFILE,DFILE,INDEX,anno,data,S)					\
{ int len, size;								\
										\
  if (DB_PART > 0)								\
    { AFILE = Fopen(Catenate(dpwd,PATHSEP,root,					\
                                Numbered_Suffix(".",DB_PART,anno)),"w");	\
      DFILE = Fopen(Catenate(dpwd,PATHSEP,root,					\
                                Numbered_Suffix(".",DB_PART,data)),"w");	\
    }										\
  else										\
    { AFILE = Fopen(Catenate(dpwd,PATHSEP,root,anno),"w");			\
      DFILE = Fopen(Catenate(dpwd,PATHSEP,root,data),"w");			\
    }										\
  if (AFILE == NULL || DFILE == NULL)						\
    exit (1);									\
										\
  len  = DB_LAST - DB_FIRST;							\
  size = S;									\
  fwrite(&len,sizeof(int),1,AFILE);						\
  fwrite(&size,sizeof(int),1,AFILE);						\
  INDEX = 0;									\
  fwrite(&INDEX,sizeof(int64),1,AFILE);						\
}

          SETUP(TR_AFILE,TR_DFILE,TR_INDEX,".trim.anno",".trim.data",8)

#ifdef ANNOTATE
          SETUP(HQ_AFILE,HQ_DFILE,HQ_INDEX,".hq.anno",".hq.data",0)
          SETUP(SN_AFILE,SN_DFILE,SN_INDEX,".span.anno",".span.data",0)
          SETUP(SP_AFILE,SP_DFILE,SP_INDEX,".split.anno",".split.data",0)
          SETUP(AD_AFILE,AD_DFILE,AD_INDEX,".adapt.anno",".adapt.data",0)

          SETUP(HL_AFILE,HL_DFILE,HL_INDEX,".hole.anno",".hole.data",0)

          SETUP(KP_AFILE,KP_DFILE,KP_INDEX,".keep.anno",".keep.data",0)
#endif

          //  Get trace point spacing information

          fread(&novl,sizeof(int64),1,input);
          fread(&TRACE_SPACING,sizeof(int),1,input);

          //  Initialize statistics gathering

          nreads  = 0;
          totlen  = 0;
          nelim   = 0;
          n5trm   = 0;
          n3trm   = 0;
          natrm   = 0;
          nelimbp = 0;
          n5trmbp = 0;
          n3trmbp = 0;
          natrmbp = 0;
          ngaps   = 0;
          nlowq   = 0;
          nspan   = 0;
          nchim   = 0;
          ngapsbp = 0;
          nlowqbp = 0;
          nspanbp = 0;
          nchimbp = 0;

          if (VERBOSE)
            { printf("\nDAStrim");
              if (HGAP_MIN  > 0)
                printf(" -H%d",HGAP_MIN);
              printf(" -c%d -g%d -b%d %s %s\n",
                     COVERAGE,GOOD_QV,BAD_QV,argv[1],Block_Arg_Root(parse));
            }

          //  Process each read pile

          make_a_pass(input,GAPS,1);

          //  Write out extras and close .trim track

          tstats[ 0] = nelim;
          tstats[ 1] = n5trm;
          tstats[ 2] = n3trm;
          tstats[ 3] = natrm;
          tstats[ 4] = nelimbp;
          tstats[ 5] = n5trmbp;
          tstats[ 6] = n3trmbp;
          tstats[ 7] = natrmbp;
          tstats[ 8] = ngaps;
          tstats[ 9] = nlowq;
          tstats[10] = nspan;
          tstats[11] = nchim;
          tstats[12] = ngapsbp;
          tstats[13] = nlowqbp;
          tstats[14] = nspanbp;
          tstats[15] = nchimbp;

          Write_Extra(TR_AFILE,&ex_hgap);
          Write_Extra(TR_AFILE,&ex_cest);
          Write_Extra(TR_AFILE,&ex_good);
          Write_Extra(TR_AFILE,&ex_bad);
          Write_Extra(TR_AFILE,&ex_trim);

          fclose(TR_AFILE);
          fclose(TR_DFILE);

#ifdef ANNOTATE
          fclose(HQ_AFILE);
          fclose(HQ_DFILE);

          fclose(SN_AFILE);
          fclose(SN_DFILE);

          fclose(SP_AFILE);
          fclose(SP_DFILE);

          fclose(AD_AFILE);
          fclose(AD_DFILE);

          fclose(HL_AFILE);
          fclose(HL_DFILE);

          fclose(KP_AFILE);
          fclose(KP_DFILE);
#endif

          fclose(input);

          //  If verbose output statistics summary to stdout

          if (VERBOSE)
            { printf("\n  Input:    ");
              Print_Number((int64) nreads,7,stdout);
              printf(" (100.0%%) reads     ");
              Print_Number(totlen,12,stdout);
              printf(" (100.0%%) bases");
              if (HGAP_MIN > 0)
                { printf(" (another ");
                  Print_Number((int64) ((DB_LAST-DB_FIRST)-nreads),0,stdout);
                  printf(" were < H-length)");
                }
              printf("\n");

              printf("  Trimmed:  ");
              Print_Number(nelim,7,stdout);
              printf(" (%5.1f%%) reads     ",(100.*nelim)/nreads);
              Print_Number(nelimbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*nelimbp)/totlen);

              printf("  5' trim:  ");
              Print_Number(n5trm,7,stdout);
              printf(" (%5.1f%%) reads     ",(100.*n5trm)/nreads);
              Print_Number(n5trmbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*n5trmbp)/totlen);

              printf("  3' trim:  ");
              Print_Number(n3trm,7,stdout);
              printf(" (%5.1f%%) reads     ",(100.*n3trm)/nreads);
              Print_Number(n3trmbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*n3trmbp)/totlen);

              printf("  Adapter:  ");
              Print_Number(natrm,7,stdout);
              printf(" (%5.1f%%) reads     ",(100.*natrm)/nreads);
              Print_Number(natrmbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*natrmbp)/totlen);

              printf("\n");

              printf("  Gaps:     ");
              Print_Number(ngaps,7,stdout);
              printf(" (%5.1f%%) gaps      ",(100.*(ngaps))/nreads);
              Print_Number(ngapsbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*(ngapsbp))/totlen);

              printf("    Low QV: ");
              Print_Number(nlowq,7,stdout);
              printf(" (%5.1f%%) gaps      ",(100.*(nlowq))/nreads);
              Print_Number(nlowqbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*(nlowqbp))/totlen);

              printf("    Span'd: ");
              Print_Number(nspan,7,stdout);
              printf(" (%5.1f%%) gaps      ",(100.*(nspan))/nreads);
              Print_Number(nspanbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*(nspanbp))/totlen);

              printf("    Break:  ");
              Print_Number(nchim,7,stdout);
              printf(" (%5.1f%%) gaps      ",(100.*(nchim))/nreads);
              Print_Number(nchimbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*(nchimbp))/totlen);

              printf("\n");

              printf("  Clipped:  ");
              Print_Number(n5trm+n3trm+nelim+natrm+nchim,7,stdout);
              printf(" clips              ");
              Print_Number(n5trmbp+n3trmbp+nelimbp+natrmbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*(n5trmbp+n3trmbp+nelimbp+natrmbp+nchimbp))/totlen);

              printf("  Patched:  ");
              Print_Number(nlowq+nspan,7,stdout);
              printf(" patches            ");
              Print_Number(nlowqbp+nspanbp,12,stdout);
              printf(" (%5.1f%%) bases\n",(100.*(nlowqbp+nspanbp))/totlen);
            }
        }

      Free_Block_Arg(parse);
    }

  free(dpwd);
  free(root);

  Close_DB(DB);
  free(Prog_Name);

  exit (0);
}