Codebase list getfem++ / HEAD tests / integration.cc
HEAD

Tree @HEAD (Download .tar.gz)

integration.cc @HEADraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*===========================================================================

 Copyright (C) 2002-2017 Yves Renard, Julien Pommier.

 This file is a part of GetFEM++

 GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

===========================================================================*/
#include <numeric>
#include "getfem/getfem_integration.h"
#include "getfem/bgeot_comma_init.h"
#include "getfem/getfem_mesh_fem.h"
#include "getfem/getfem_mat_elem.h"
#include <iomanip>
#include <map>
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
template <typename T> std::ostream &operator <<
  (std::ostream &o, const std::vector<T>& m) { gmm::write(o,m); return o; }

using getfem::size_type;
using getfem::short_type;
using bgeot::base_tensor;
using bgeot::base_matrix;
using bgeot::base_vector;
using bgeot::base_node;
using bgeot::scalar_type;
using bgeot::opt_long_scalar_type;
using bgeot::dim_type;

void print_method(getfem::pintegration_method ppi) {
  cout << "methode : " << getfem::name_of_int_method(ppi) << endl;
  getfem::papprox_integration pai = ppi->approx_method();
  cout << "Nb points on convex " << pai->nb_points_on_convex() << endl;
  for (short_type k = 0; k < pai->structure()->nb_faces(); ++k)
    cout << "Nb points on face " << k << " : "
	 <<  pai->nb_points_on_face(k) << endl;
  for (size_type k = 0; k < pai->nb_points(); ++k) {
    cout << "Coeff " << k << " : " << pai->integration_coefficients()[k];
    cout << "\t point : " << (*(pai->pintegration_points()))[k] << endl;
  }
  cout << endl << endl;
}

class matrix_collection {
public:
  std::vector<base_vector> lst;
  std::vector<std::string> im_names;
};

struct pgt_K_f_idx {
  bgeot::pgeometric_trans pgt;
  size_type K;
  int f;
  pgt_K_f_idx(bgeot::pgeometric_trans pgt_, size_type K_, int f_ = -1) :
    pgt(pgt_), K(K_), f(f_) {}
  bool operator<(const pgt_K_f_idx& other) const {
    if (pgt->dim() < other.pgt->dim()) return true;
    if (pgt->dim() > other.pgt->dim()) return false;
    if (pgt->nb_points() < other.pgt->nb_points()) return true;
    if (pgt->nb_points() > other.pgt->nb_points()) return false;
    if (pgt < other.pgt) return true;
    if (!(pgt == other.pgt)) return false;
    if (K < other.K) return true;
    if (K > other.K) return false;
    if (f < other.f) return true;
    if (f > other.f) return false;
    return false;
  }
};

std::map<pgt_K_f_idx, matrix_collection> ME;

static void check_method(const std::string& im_name, getfem::pintegration_method ppi, size_type k, bgeot::pgeometric_trans pgt) {

  getfem::mesh m; 
  getfem::mesh_fem mf1(m);
  getfem::mesh_fem mf2(m);
  assert(ppi!=0); assert(pgt!=0);
  cout << "checking " << im_name << "..." << std::flush; 
  m.add_convex_by_points(pgt, pgt->convex_ref()->points().begin());
  mf1.set_finite_element(m.convex_index(),
			 getfem::classical_fem(pgt,short_type(k/2)));
  mf2.set_finite_element(m.convex_index(),
			 getfem::classical_fem(pgt,short_type(k-k/2)));

  getfem::pmat_elem_type pme
    = getfem::mat_elem_product
    (getfem::mat_elem_base(mf1.fem_of_element(0)),
     getfem::mat_elem_base(mf2.fem_of_element(0)));
  getfem::pmat_elem_computation pmec = getfem::mat_elem(pme, ppi, pgt);
  base_tensor t;

  matrix_collection &mc = ME[pgt_K_f_idx(pgt,k)];
  pmec->gen_compute(t, m.points_of_convex(0), 0);
  mc.lst.push_back(t);
  mc.im_names.push_back(im_name);
  
  for (short_type f = 0; f < m.structure_of_convex(0)->nb_faces(); ++f) {
    pmec->gen_compute_on_face(t, m.points_of_convex(0), f, 0);
    std::stringstream s; s << im_name << "/FACE" << f;
    matrix_collection &mcf = ME[pgt_K_f_idx(pgt,k,f)];
    mcf.lst.push_back(t);
    mcf.im_names.push_back(s.str());
    cout << "F" << f << std::flush;
  }
  cout << "\n";
}

static void check_im_order(const std::string& s/*, size_type expected_pk=size_type(-1), size_type expected_qk=size_type(-1)*/) {
  getfem::pintegration_method ppi = getfem::int_method_descriptor(s);
  size_type pk = 10000, qk = 10000;
  size_type pts_on_boundary = 0;
  size_type pts_outside = 0;
  if (ppi->type() == getfem::IM_APPROX) {
    short_type dim = ppi->approx_method()->dim();
    for (bgeot::power_index idx(dim); idx.degree() <= pk; ++idx) {
      opt_long_scalar_type sum = 0, realsum = 1.;
      for (size_type i=0; i < ppi->approx_method()->nb_points_on_convex(); ++i) {
	opt_long_scalar_type prod = ppi->approx_method()->coeff(i);
	for (size_type d=0; d < dim; ++d) 
	  prod *= pow(opt_long_scalar_type(ppi->approx_method()->point(i)[d]), idx[d]);
	sum += prod;
      }
      if (bgeot::basic_structure(ppi->structure()) == bgeot::simplex_structure(bgeot::dim_type(dim))) {        
        size_type fa = 1;
        for (size_type z = 0; z < dim; z++)
          for (size_type k = 1; k <= idx[z]; ++k, ++fa)
            realsum *= opt_long_scalar_type(scalar_type(k)) / opt_long_scalar_type(scalar_type(fa));
        for (size_type k = 0; k < dim; k++) { realsum /= opt_long_scalar_type(scalar_type(fa)); fa++; }
    /*	for (size_type d=dim-1, c=0; d+1 != 0; --d) { c += idx[d]+1; realsum *= opt_long_scalar_type(c); }
      realsum = opt_long_scalar_type(1.)/realsum;*/
      } else if (bgeot::basic_structure(ppi->structure()) == bgeot::parallelepiped_structure(bgeot::dim_type(dim))) {
	for (size_type d=0; d < dim; ++d) realsum *= opt_long_scalar_type(idx[d]+1);
	realsum = opt_long_scalar_type(1.)/realsum;
      }
      if (gmm::abs((realsum - sum)/realsum) > 1e-9) { 
        /*	cout << "degree=" << idx.degree() << ", idx=";
          for (size_type d=0; d < dim; ++d) cout << idx[d] << " "; cout << ", realsum=" << realsum << ", sum = " << sum << "\n";*/
	pk = std::min<size_type>(pk,idx.degree()-1);
	qk = std::min<size_type>(qk, *std::max_element(idx.begin(),idx.end()));
	break;
      }
    }
    for (size_type i=0; i < ppi->approx_method()->nb_points_on_convex(); ++i) {
      const base_node& P = ppi->approx_method()->point(i);
      if (ppi->approx_method()->ref_convex()->is_in(P) > 1e-8) pts_outside++;
      for (short_type f = 0; f < ppi->approx_method()->structure()->nb_faces(); ++f) {
	if (gmm::abs(ppi->approx_method()->ref_convex()->is_in_face(f,P)) < 1e-8) {
	  pts_on_boundary++; break;
	}
      }
    }
  }
  cout << std::setw(70) << getfem::name_of_int_method(ppi) << ", PK DEGREE=" << std::setw(2) << pk
       << ", QK DEGREE=" << std::setw(2) << qk-1;
  if (pts_on_boundary || pts_outside) cout << " CAUTION: uses " << pts_on_boundary << " points on the convex boundary, and " << pts_outside << " points outside the convex";
  cout << "\n";
}

const std::vector<size_type>& TRIANGLE_D() { 
  static std::vector<size_type> i_d;
  if (i_d.size() == 0) bgeot::sc(i_d) += 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 17, 19;
  return i_d;
}
const std::vector<size_type>& TETRA_D() { 
  static std::vector<size_type> i_d;
  if (i_d.size() == 0) bgeot::sc(i_d) += 1, 2, 3, 5, 6, 8;
  return i_d;
}
const std::vector<size_type>& SIMPLEX4_D() { 
  static std::vector<size_type> i_d;
  if (i_d.size() == 0) bgeot::sc(i_d) += 3;
  return i_d;
}
const std::vector<size_type>& QUAD_D() { 
  static std::vector<size_type> i_d;
  if (i_d.size() == 0) bgeot::sc(i_d) += 2, 3, 5, 7, 9, 17;
  return i_d;
}
const std::vector<size_type>& HEXA_D() { 
  static std::vector<size_type> i_d;
  if (i_d.size() == 0) bgeot::sc(i_d) += 5,9,11;
  return i_d;
}
const std::vector<size_type>& CUBE4D_D() { 
  static std::vector<size_type> i_d;
  if (i_d.size() == 0) bgeot::sc(i_d) += 5,9;
  return i_d;
}

static void check_orders() {
  char s[512];
  for (int k=1; k < 20; k+=6) {
    sprintf(s,"IM_GAUSS1D(%d)",k); check_im_order(s);
    sprintf(s,"IM_GAUSSLOBATTO1D(%d)",k); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = TRIANGLE_D().begin(); it != TRIANGLE_D().end(); ++it) {
    sprintf(s,"IM_TRIANGLE(%d)",int(*it)); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = TETRA_D().begin(); it != TETRA_D().end(); ++it) {
    sprintf(s,"IM_TETRAHEDRON(%d)",int(*it)); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = QUAD_D().begin(); it != QUAD_D().end(); ++it) {
    sprintf(s,"IM_QUAD(%d)",int(*it)); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = TETRA_D().begin(); it != TETRA_D().end(); ++it) {
    sprintf(s,"IM_TETRAHEDRON(%d)",int(*it)); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = SIMPLEX4_D().begin(); it != SIMPLEX4_D().end(); ++it) {
    sprintf(s,"IM_SIMPLEX4D(%d)",int(*it)); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = HEXA_D().begin(); it != HEXA_D().end(); ++it) {
    sprintf(s,"IM_HEXAHEDRON(%d)",int(*it)); check_im_order(s);
  }
  for (std::vector<size_type>::const_iterator it = CUBE4D_D().begin(); it != CUBE4D_D().end(); ++it) {
    sprintf(s,"IM_CUBE4D(%d)",int(*it)); check_im_order(s);
  }
}

static void check_methods() {
  char s[512];
  getfem::pintegration_method ppi;
  for (size_type k=0; k < 15; ++k) {
    sprintf(s,"IM_GAUSS1D(%d)",int(k)); ppi = getfem::int_method_descriptor(s);
    check_method(s,ppi,k,bgeot::simplex_geotrans(1,1));
    sprintf(s,"IM_NC(1,%d)",int(k)); ppi = getfem::int_method_descriptor(s);
    check_method(s,ppi,k,bgeot::simplex_geotrans(1,1));
    sprintf(s,"IM_EXACT_SIMPLEX(1)"); ppi = getfem::int_method_descriptor(s);
    check_method(s,ppi,k,bgeot::simplex_geotrans(1,1));
  }

  

  for (size_type d=2; d < 5; ++d) {
    for (size_type k=0; k < 7-d; ++k) {
      sprintf(s,"IM_EXACT_SIMPLEX(%d)",int(d)); ppi = getfem::int_method_descriptor(s);
      check_method(s,ppi,k,bgeot::simplex_geotrans(d,1));
    }
  }

  for (std::vector<size_type>::const_iterator it = TRIANGLE_D().begin(); it != TRIANGLE_D().end(); ++it) {
    sprintf(s,"IM_TRIANGLE(%d)",int(*it)); ppi = getfem::int_method_descriptor(s);
    for (size_type k=1; k <= *it; ++k) { 
      check_method(s,ppi,k,bgeot::simplex_geotrans(2,1));
    }
  }

  for (size_type d=2; d < 5; ++d) {
    for (size_type i=1; i < 8; ++i) {
      for (size_type k=0; k < std::min(i,5-d); ++k) {
	sprintf(s,"IM_NC(%d,%d)",int(d),int(i)); ppi = getfem::int_method_descriptor(s);
	check_method(s,ppi,k,bgeot::simplex_geotrans(d,1));
      }
    }
  }
  for (std::vector<size_type>::const_iterator it = TETRA_D().begin(); it != TETRA_D().end(); ++it) {
    sprintf(s,"IM_TETRAHEDRON(%d)",int(*it)); ppi = getfem::int_method_descriptor(s);
    for (size_type k=1; k <= *it; ++k) { 
      check_method(s,ppi,k,bgeot::simplex_geotrans(3,1));
    }
  }
  for (std::vector<size_type>::const_iterator it = SIMPLEX4_D().begin(); it != SIMPLEX4_D().end(); ++it) {
    sprintf(s,"IM_SIMPLEX4D(%d)",int(*it)); ppi = getfem::int_method_descriptor(s);
    for (size_type k=1; k <= *it; ++k) { 
      check_method(s,ppi,k,bgeot::simplex_geotrans(4,1));
    }
  }
  
  for (size_type d=1; d < 5; ++d) {
    size_type kmax = 0;
    switch (d) {
    case 1: kmax = 10; break;
    case 2: kmax = 10; break;
    case 3: kmax = 6; break;
    default: kmax = 3; break;
    }
    for (size_type k=0; k < kmax; ++k) {
      sprintf(s,"IM_EXACT_PARALLELEPIPED(%d)",int(d)); ppi = getfem::int_method_descriptor(s);
      check_method(s,ppi,k,bgeot::parallelepiped_linear_geotrans(d));
      sprintf(s,"IM_GAUSS_PARALLELEPIPED(%d,%d)",int(d),int(k)); ppi = getfem::int_method_descriptor(s);
      check_method(s,ppi,k,bgeot::parallelepiped_linear_geotrans(d));
      sprintf(s,"IM_NC_PARALLELEPIPED(%d,%d)",int(d),int(k)); ppi = getfem::int_method_descriptor(s);
      check_method(s,ppi,k,bgeot::parallelepiped_linear_geotrans(d));
      if (d>1) {
	sprintf(s,"IM_PRODUCT(IM_GAUSS_PARALLELEPIPED(%d,%d),IM_NC(1,%d))",int(d-1),int(k),int(k)); 
	ppi = getfem::int_method_descriptor(s);
	check_method(s,ppi,k,bgeot::parallelepiped_linear_geotrans(d));
      }
    }
  }
  for (std::vector<size_type>::const_iterator it = QUAD_D().begin(); it != QUAD_D().end(); ++it) {
    sprintf(s,"IM_QUAD(%d)",int(*it)); ppi = getfem::int_method_descriptor(s);
    for (size_type k=1; k <= size_type(sqrt(scalar_type(*it))); k++) { 
      check_method(s,ppi,k,bgeot::parallelepiped_linear_geotrans(2));
    }
  }
  for (std::vector<size_type>::const_iterator it = HEXA_D().begin(); it != HEXA_D().end(); ++it) {
    sprintf(s,"IM_HEXAHEDRON(%d)",int(*it)); ppi = getfem::int_method_descriptor(s);
    check_method(s,ppi,size_type(::pow(scalar_type(*it),1./3.)), bgeot::parallelepiped_linear_geotrans(3));
  }
  for (std::vector<size_type>::const_iterator it = CUBE4D_D().begin(); it != CUBE4D_D().end(); ++it) {
    sprintf(s,"IM_CUBE4D(%d)", int(*it)); ppi = getfem::int_method_descriptor(s);
    check_method(s,ppi,1,bgeot::parallelepiped_linear_geotrans(4));
  }

  for (size_type d=2; d < 5; ++d) {
    for (size_type k=0; k < 7-d; ++k) {
      sprintf(s,"IM_EXACT_PRISM(%d)",int(d));
      ppi = getfem::int_method_descriptor(s);
      
      check_method(s, getfem::int_method_descriptor(s), k,
		   bgeot::prism_linear_geotrans(d));
      sprintf(s,"IM_NC_PRISM(%d,%d)", int(d),int(k));
      ppi = getfem::int_method_descriptor(s);
      check_method(s, getfem::int_method_descriptor(s), k,
		   bgeot::prism_geotrans(d, short_type(std::max(k, size_type(1)))));
    
      if (d == 3) {	
	sprintf(s,"IM_PRODUCT(IM_TRIANGLE(6),IM_GAUSS1D(6))");
	ppi = getfem::int_method_descriptor(s);
	check_method(s, getfem::int_method_descriptor(s), k,
		     bgeot::prism_geotrans(d,short_type(std::max<size_type>(k,1))));
      }
    }
  }



  {
    sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_GAUSS1D(3),4)");
    check_method(s, getfem::int_method_descriptor(s), 3, bgeot::simplex_geotrans(1,1));
    sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(3),4)");
    check_method(s, getfem::int_method_descriptor(s), 3,bgeot::simplex_geotrans(2,1));
    sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_TETRAHEDRON(5),3)");
    check_method(s, getfem::int_method_descriptor(s), 5,bgeot::simplex_geotrans(3,1));
    /* // not implemented ...
      sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_NC(4,2),3)");
      check_method(s, getfem::int_method_descriptor(s), 2,bgeot::simplex_geotrans(4,1));
    */
    sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_QUAD(5),10)"); // QUAD(5) can't integrate Q5 polynomials, but it is sufficiently refined...
    check_method(s, getfem::int_method_descriptor(s), 5, bgeot::parallelepiped_linear_geotrans(2));
    sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(3,2),2)");
    check_method(s, getfem::int_method_descriptor(s), 2, bgeot::parallelepiped_linear_geotrans(3));
    sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(4,2),2)");
    check_method(s, getfem::int_method_descriptor(s), 2, bgeot::parallelepiped_linear_geotrans(4));
    cerr << "FIXME:  structured_mesh not implemented for prisms\n";
    /*sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_NC_PRISM(3,3),2)");
      check_method(s, getfem::int_method_descriptor(s), 2, bgeot::prism_geotrans(3,1));*/
    sprintf(s, "IM_QUASI_POLAR(IM_GAUSS_PARALLELEPIPED(2,8), 2)");
    check_method(s, getfem::int_method_descriptor(s), 2, bgeot::simplex_geotrans(2,1));
    sprintf(s, "IM_QUASI_POLAR(IM_PRODUCT(IM_TRIANGLE(4), IM_GAUSS1D(4)), 2, 3)");
    check_method(s, getfem::int_method_descriptor(s), 1, bgeot::simplex_geotrans(3,1));
    sprintf(s, "IM_QUASI_POLAR(IM_PRODUCT(IM_TRIANGLE(4), IM_GAUSS1D(4)), 1)");
    check_method(s, getfem::int_method_descriptor(s), 1, bgeot::simplex_geotrans(3,1));
    sprintf(s, "IM_QUASI_POLAR(IM_TETRAHEDRON(8), 2)");
    check_method(s, getfem::int_method_descriptor(s), 2, bgeot::simplex_geotrans(3,1));
  }
}

static int inspect_results() {
  static int failcnt = 0;
  for (std::map<pgt_K_f_idx, matrix_collection>::const_iterator it = ME.begin();
       it != ME.end(); ++it) {
    size_type K = (*it).first.K;
    int f = (*it).first.f;
    bgeot::pgeometric_trans pgt = (*it).first.pgt;
    const matrix_collection &mc = (*it).second;
    if (f == -1) {
      cout << "inspecting " << bgeot::name_of_geometric_trans(pgt)
	   << "/K=" << K << "\n" << "  VOLUME:\n";
    } else {
      cout << "  FACE " << f << ":\n";
    }
    //<< " : " << mc.im_names.size() << " integration results\n";
    scalar_type sumref = std::accumulate(mc.lst.at(0).begin(), mc.lst[0].end(),0.);
    cout << "    reference" << std::setw(70) << mc.im_names[0] << " : sum= " << std::setw(6) << sumref << "\n";    
    for (size_type i = 1; i < mc.im_names.size(); ++i) {
      scalar_type sum = std::accumulate(mc.lst[i].begin(), mc.lst[i].end(),0.);
      scalar_type dist = gmm::vect_dist2(mc.lst[0],mc.lst[i]);
      bool ok  = (gmm::abs(sum-sumref) < 1e-5 && gmm::abs(dist) < 1e-5);
      if (ok)  cout << "    [OK]     ";
      else     cout << "    [ERROR!] ";
      cout << std::setw(70) << mc.im_names[i] << " : sum= " << std::setw(6) << sum << ", dist=" << std::setw(9) << dist << "\n";
      if (!ok) {
	 cerr << mc.lst[0] << "\n" << mc.lst[i] << "\n";
	 cerr << " !!integration: error with " << mc.im_names[i]
	      << " or " << mc.im_names[0] << "\n";
		getchar();
	++failcnt;
      }
    }
  }
  return failcnt;
}


static void print_some_methods() {
  char meth[500];
  cout.precision(8);
    
  for (size_type i = 1; i < 15; ++i) {
    sprintf(meth, "IM_GAUSS1D(%d)", int(2*(i - 1)));
    print_method(getfem::int_method_descriptor(meth));
  }

  /*sprintf(meth, "IM_PRODUCT(IM_GAUSS1D(2),IM_GAUSS1D(2))");
  print_method(getfem::int_method_descriptor(meth));
    
  for (size_type n = 1; n < 6; n++) {
    for (size_type i = 0; i < 3; ++i) {
      sprintf(meth, "IM_NC(%d,%d)", int(n), int(i));
      print_method(getfem::int_method_descriptor(meth));
    }
  }

  sprintf(meth, "IM_NC(2, 2)");
  print_method(getfem::int_method_descriptor(meth));

  sprintf(meth, "IM_STRUCTURED_COMPOSITE(IM_NC(2, 2), 1)");
  print_method(getfem::int_method_descriptor(meth));

  sprintf(meth, "IM_STRUCTURED_COMPOSITE(IM_QUAD(2),3)");
  print_method(getfem::int_method_descriptor(meth));
  */

  //sprintf(meth, "IM_QUASI_POLAR(IM_GAUSS_PARALLELEPIPED(2, 5),2)");
  //sprintf(meth, "IM_QUASI_POLAR(IM_PRODUCT(IM_TRIANGLE(4), IM_GAUSS1D(4)), 2, 3)");
  //sprintf(meth, "IM_QUASI_POLAR(IM_TETRAHEDRON(3), 2)");
  sprintf(meth, "IM_QUASI_POLAR(IM_PRODUCT(IM_TRIANGLE(4), IM_GAUSS1D(4)), 1)");
  print_method(getfem::int_method_descriptor(meth));

  print_method(getfem::classical_approx_im(bgeot::simplex_geotrans(3,2), 3));
  print_method(getfem::classical_approx_im(bgeot::product_geotrans(bgeot::product_geotrans(bgeot::simplex_geotrans(2,2), bgeot::simplex_geotrans(2,2)), bgeot::simplex_geotrans(1,1)), 3));
}

int main(/* int argc, char **argv */) {

  FE_ENABLE_EXCEPT;        // Enable floating point exception for Nan.

  try {
    /*char s[600]; sprintf(s,"IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(3,2),2)");
    //check_method(s, getfem::int_method_descriptor(s), 2, bgeot::parallelepiped_linear_geotrans(3));
    getfem::pfem pf = getfem::QK_fem(2,1); //getfem::classical_fem(bgeot::parallelepiped_linear_geotrans(2),1);
    return 100;*/

    int ok = 0;
    getfem::pintegration_method im_none = getfem::int_method_descriptor("IM_NONE()");
    try {
      cout << "nbpts=" << im_none->structure()->nb_points() << "\n";
    } catch (const gmm::gmm_error &e) {
      ok = 1;
    }
    GMM_ASSERT1(ok, "IM_NONE failed");
    print_some_methods();
    check_orders();
    check_methods();
    int failcnt = inspect_results();
    cout << "\nOrders of some approximate integration methods:\n";
    //check_orders();
    if (failcnt) { cerr << "an error occured with " << failcnt << " integration methods\n"; return 1; }
  }
  GMM_STANDARD_CATCH_ERROR;
  
  return 0;

}