Codebase list gfan / upstream/0.5 gfanlib_zcone.cpp
upstream/0.5

Tree @upstream/0.5 (Download .tar.gz)

gfanlib_zcone.cpp @upstream/0.5raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
/*
 * lib_cone.cpp
 *
 *  Created on: Sep 29, 2010
 *      Author: anders
 */

#include "gfanlib_zcone.h"

#include <vector>
#include <set>

#include "setoper.h"
#include "cdd.h"

namespace gfan{

  static void cddinitGmp()
  {
    static bool initialized;
    if(!initialized)
      {
        dd_set_global_constants();  /* First, this must be called. */
        initialized=true;
      }
  }


class LpSolver
{
  static dd_MatrixPtr ZMatrix2MatrixGmp(ZMatrix const &g, dd_ErrorType *Error)
  {
    int n=g.getWidth();
    dd_MatrixPtr M=NULL;
    dd_rowrange m_input,i;
    dd_colrange d_input,j;
    dd_RepresentationType rep=dd_Inequality;
    dd_boolean found=dd_FALSE, newformat=dd_FALSE, successful=dd_FALSE;
    char command[dd_linelenmax], comsave[dd_linelenmax];
    dd_NumberType NT;

    (*Error)=dd_NoError;

    rep=dd_Inequality; newformat=dd_TRUE;

    m_input=g.getHeight();
    d_input=n+1;

    NT=dd_Rational;

    M=dd_CreateMatrix(m_input, d_input);
    M->representation=rep;
    M->numbtype=NT;

    for (i = 0; i < m_input; i++) {
      dd_set_si(M->matrix[i][0],0);
      for (j = 1; j < d_input; j++) {
        g[i][j-1].setGmp(mpq_numref(M->matrix[i][j]));
        mpz_init_set_ui(mpq_denref(M->matrix[i][j]), 1);
        mpq_canonicalize(M->matrix[i][j]);
      }
    }

    successful=dd_TRUE;

    return M;
  }
  static dd_MatrixPtr ZMatrix2MatrixGmp(ZMatrix const &inequalities, ZMatrix const &equations, dd_ErrorType *err)
  {
    ZMatrix g=inequalities;
    g.append(equations);
    int numberOfInequalities=inequalities.getHeight();
    int numberOfRows=g.getHeight();
    dd_MatrixPtr A=NULL;
    cddinitGmp();
    A=ZMatrix2MatrixGmp(g, err);
    for(int i=numberOfInequalities;i<numberOfRows;i++)
      set_addelem(A->linset,i+1);
    return A;
  }
  static ZMatrix getConstraints(dd_MatrixPtr A, bool returnEquations)
  {
    int rowsize=A->rowsize;
    int n=A->colsize-1;

    ZMatrix ret(0,n);
    for(int i=0;i<rowsize;i++)
      {
        bool isEquation=set_member(i+1,A->linset);
        if(isEquation==returnEquations)
          {
            QVector v(n);
            for(int j=0;j<n;j++)v[j]=Rational(A->matrix[i][j+1]);
            ret.appendRow(QToZVectorPrimitive(v));
          }
      }
    return ret;
  }
  static bool isFacet(ZMatrix const &g, int index)
  {
    bool ret;
    dd_MatrixPtr M=NULL,M2=NULL,M3=NULL;
    dd_colrange d;
    dd_ErrorType err=dd_NoError;
    dd_rowset redrows,linrows,ignoredrows, basisrows;
    dd_colset ignoredcols, basiscols;
    dd_DataFileType inputfile;
    FILE *reading=NULL;

    cddinitGmp();

    M=ZMatrix2MatrixGmp(g, &err);
    if (err!=dd_NoError) goto _L99;

    d=M->colsize;

    static dd_Arow temp;
    dd_InitializeArow(g.getWidth()+1,&temp);

    ret= !dd_Redundant(M,index+1,temp,&err);

    dd_FreeMatrix(M);
    dd_FreeArow(g.getWidth()+1,temp);

    if (err!=dd_NoError) goto _L99;
    return ret;
   _L99:
    assert(0);
    return false;
  }

  /*
    Heuristic for checking if inequality of full dimensional cone is a
    facet. If the routine returns true then the inequality is a
    facet. If it returns false it is unknown.
   */
  static bool fastIsFacetCriterion(ZMatrix const &normals, int i)
  {
    int n=normals.getWidth();
    for(int j=0;j<n;j++)
      if(normals[i][j].sign()!=0)
        {
          int sign=normals[i][j].sign();
          bool isTheOnly=true;
          for(int k=0;k<normals.getHeight();k++)
            if(k!=i)
              {
                if(normals[i][j].sign()==sign)
                  {
                    isTheOnly=false;
                    break;
                  }
              }
          if(isTheOnly)return true;
        }
    return false;
  }

  static bool fastIsFacet(ZMatrix const &normals, int i)
  {
    if(fastIsFacetCriterion(normals,i))return true;
    return isFacet(normals,i);
  }

  class MyHashMap
  {
    typedef std::vector<std::set<ZVector> > Container;
    Container container;
    int tableSize;
  public:
    class iterator
    {
      class MyHashMap &hashMap;
      int index; // having index==-1 means that we are before/after the elements.
      std::set<ZVector>::iterator i;
    public:
      bool operator++()
      {
        if(index==-1)goto search;
        i++;
        while(i==hashMap.container[index].end())
          {
            search:
            index++;
            if(index>=hashMap.tableSize){
              index=-1;
              return false;
            }
            i=hashMap.container[index].begin();
          }
        return true;
      }
      ZVector const & operator*()const
      {
        return *i;
      }
      ZVector operator*()
      {
        return *i;
      }
      iterator(MyHashMap &hashMap_):
        hashMap(hashMap_)
        {
          index=-1;
        }
    };
    unsigned int function(const ZVector &v)
    {
      unsigned int ret=0;
      int n=v.size();
      for(int i=0;i<n;i++)
        ret=(ret<<3)+(ret>>29)+v.UNCHECKEDACCESS(i).hashValue();
      return ret%tableSize;
    }
    MyHashMap(int tableSize_):
      container(tableSize_),
      tableSize(tableSize_)
      {
        assert(tableSize_>0);
      }
    void insert(const ZVector &v)
    {
      container[function(v)].insert(v);
    }
    void erase(ZVector const &v)
    {
      container[function(v)].erase(v);
    }
    iterator begin()
    {
      iterator ret(*this);
      ++    ret;
      return ret;
    }
    int size()
    {
      iterator i=begin();
      int ret=0;
      do{ret++;}while(++i);
      return ret;
    }
  };


  static ZMatrix normalizedWithSumsAndDuplicatesRemoved(ZMatrix const &a)
  {
    // TODO: write a version of this function which will work faster if the entries fit in 32bit
    if(a.getHeight()==0)return a;
    int n=a.getWidth();
    ZVector temp1(n);
//    ZVector temp2(n);
    ZMatrix ret(0,n);
    MyHashMap b(a.getHeight());

    for(int i=0;i<a.getHeight();i++)
      {
        assert(!(a[i].isZero()));
        b.insert(a[i].normalized());
      }

      {
        MyHashMap::iterator i=b.begin();

        do
          {
            MyHashMap::iterator j=i;
            while(++j)
              {
                ZVector const &I=*i;
                ZVector const &J=*j;
                for(int k=0;k<n;k++)temp1[k]=I.UNCHECKEDACCESS(k)+J.UNCHECKEDACCESS(k);
//                normalizedLowLevel(temp1,temp2);
//                b.erase(temp2);//this can never remove *i or *j
                b.erase(temp1.normalized());//this can never remove *i or *j
              }
          }
          while(++i);
      }
    ZMatrix original(0,n);
    {
      MyHashMap::iterator i=b.begin();
      do
        {
          original.appendRow(*i);
        }
      while(++i);
    }

    for(int i=0;i!=original.getHeight();i++)
      for(int j=0;j!=a.getHeight();j++)
        if(!dependent(original[i],a[j]))
            {
              ZVector const &I=original[i];
              ZVector const &J=a[j];
              for(int k=0;k<n;k++)temp1[k]=I.UNCHECKEDACCESS(k)+J.UNCHECKEDACCESS(k);
//              normalizedLowLevel(temp1,temp2);
//              b.erase(temp2);//this can never remove *i or *j
              b.erase(temp1.normalized());//this can never remove *i or *j
            }
        {
          MyHashMap::iterator i=b.begin();
          do
          {
            ZVector temp=*i;
            ret.appendRow(temp);
          }
          while(++i);
      }
    return ret;
  }
public:
  static ZMatrix fastNormals(ZMatrix const &inequalities)
  {
    ZMatrix normals=normalizedWithSumsAndDuplicatesRemoved(inequalities);
    for(int i=0;i!=normals.getHeight();i++)
      if(!fastIsFacet(normals,i))
        {
          normals[i]=normals[normals.getHeight()-1];
          normals.eraseLastRow();
          i--;
        }
    return normals;
  }
  void removeRedundantRows(ZMatrix &inequalities, ZMatrix &equations, bool removeInequalityRedundancies)
  {
    cddinitGmp();
    int numberOfEqualities=equations.getHeight();
    int numberOfInequalities=inequalities.getHeight();
    int numberOfRows=numberOfEqualities+numberOfInequalities;

    if(numberOfRows==0)return;//the full space, so description is already irredundant

    dd_rowset r=NULL;
    ZMatrix g=inequalities;
    g.append(equations);

    dd_LPSolverType solver=dd_DualSimplex;
    dd_MatrixPtr A=NULL;
    dd_ErrorType err=dd_NoError;

    A=ZMatrix2MatrixGmp(g,&err);
    if (err!=dd_NoError) goto _L99;

    for(int i=numberOfInequalities;i<numberOfRows;i++)
      set_addelem(A->linset,i+1);

    A->objective=dd_LPmax;

    dd_rowset impl_linset;
    dd_rowset redset;
    dd_rowindex newpos;

    if(removeInequalityRedundancies)
      dd_MatrixCanonicalize(&A, &impl_linset, &redset, &newpos, &err);
    else
      dd_MatrixCanonicalizeLinearity(&A, &impl_linset, &newpos, &err);

    if (err!=dd_NoError) goto _L99;

    {
      int n=A->colsize-1;
      equations=ZMatrix(0,n);     //TODO: the number of rows needed is actually known
      inequalities=ZMatrix(0,n);  //is known by set_card(). That might save some copying.

      {
        int rowsize=A->rowsize;
        QVector point(n);
        for(int i=0;i<rowsize;i++)
          {
            for(int j=0;j<n;j++)point[j]=Rational(A->matrix[i][j+1]);
            ((set_member(i+1,A->linset))?equations:inequalities).appendRow(QToZVectorPrimitive(point));
          }
      }
      assert(set_card(A->linset)==equations.getHeight());
      assert(A->rowsize==equations.getHeight()+inequalities.getHeight());

      set_free(impl_linset);
      if(removeInequalityRedundancies)
        set_free(redset);
      free(newpos);

      dd_FreeMatrix(A);
      return;
    }
   _L99:
    assert(!"Cddlib reported error when called by Gfanlib.");
  }
  ZVector relativeInteriorPoint(const ZMatrix &inequalities, const ZMatrix &equations)
  {
    QVector retUnscaled(inequalities.getWidth());
    cddinitGmp();
    int numberOfEqualities=equations.getHeight();
    int numberOfInequalities=inequalities.getHeight();
    int numberOfRows=numberOfEqualities+numberOfInequalities;

    dd_rowset r=NULL;
    ZMatrix g=inequalities;
    g.append(equations);

    dd_LPSolverType solver=dd_DualSimplex;
    dd_MatrixPtr A=NULL;
    dd_ErrorType err=dd_NoError;

    A=ZMatrix2MatrixGmp(g,&err);
    if (err!=dd_NoError) goto _L99;
    {
      dd_LPSolutionPtr lps1;
      dd_LPPtr lp,lp1;

      for(int i=0;i<numberOfInequalities;i++)
        dd_set_si(A->matrix[i][0],-1);
      for(int i=numberOfInequalities;i<numberOfRows;i++)
        set_addelem(A->linset,i+1);

      A->objective=dd_LPmax;
      lp=dd_Matrix2LP(A, &err);
      if (err!=dd_NoError) goto _L99;

      lp1=dd_MakeLPforInteriorFinding(lp);
      dd_LPSolve(lp1,solver,&err);
      if (err!=dd_NoError) goto _L99;

      lps1=dd_CopyLPSolution(lp1);

      assert(!dd_Negative(lps1->optvalue));

      for (int j=1; j <(lps1->d)-1; j++)
        retUnscaled[j-1]=Rational(lps1->sol[j]);

      dd_FreeLPData(lp);
      dd_FreeLPSolution(lps1);
      dd_FreeLPData(lp1);
      dd_FreeMatrix(A);
      return QToZVectorPrimitive(retUnscaled);
    }
_L99:
    assert(0);
    return QToZVectorPrimitive(retUnscaled);
  }
  void dual(ZMatrix const &inequalities, ZMatrix const &equations, ZMatrix &dualInequalities, ZMatrix &dualEquations)
  {
    int result;

    dd_MatrixPtr A=NULL;
    dd_ErrorType err=dd_NoError;

    cddinitGmp();

    A=ZMatrix2MatrixGmp(inequalities, equations, &err);

    dd_PolyhedraPtr poly;
    poly=dd_DDMatrix2Poly2(A, dd_LexMin, &err);

    if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) assert(0);

    dd_MatrixPtr      A2=dd_CopyGenerators(poly);

    dualInequalities=getConstraints(A2,false);
    dualEquations=getConstraints(A2,true);

    dd_FreeMatrix(A2);
    dd_FreeMatrix(A);
    dd_FreePolyhedra(poly);

    return;
   _L99:
    assert(0);
  }
  // this procedure is take from cddio.c.
  static void dd_ComputeAinc(dd_PolyhedraPtr poly)
  {
  /* This generates the input incidence array poly->Ainc, and
     two sets: poly->Ared, poly->Adom.
  */
    dd_bigrange k;
    dd_rowrange i,m1;
    dd_colrange j;
    dd_boolean redundant;
    dd_MatrixPtr M=NULL;
    mytype sum,temp;

    dd_init(sum); dd_init(temp);
    if (poly->AincGenerated==dd_TRUE) goto _L99;

    M=dd_CopyOutput(poly);
    poly->n=M->rowsize;
    m1=poly->m1;

    /* this number is same as poly->m, except when
        poly is given by nonhomogeneous inequalty:
        !(poly->homogeneous) && poly->representation==Inequality,
        it is poly->m+1.   See dd_ConeDataLoad.
     */
    poly->Ainc=(set_type*)calloc(m1, sizeof(set_type));
    for(i=1; i<=m1; i++) set_initialize(&(poly->Ainc[i-1]),poly->n);
    set_initialize(&(poly->Ared), m1);
    set_initialize(&(poly->Adom), m1);

    for (k=1; k<=poly->n; k++){
      for (i=1; i<=poly->m; i++){
        dd_set(sum,dd_purezero);
        for (j=1; j<=poly->d; j++){
          dd_mul(temp,poly->A[i-1][j-1],M->matrix[k-1][j-1]);
          dd_add(sum,sum,temp);
        }
        if (dd_EqualToZero(sum)) {
          set_addelem(poly->Ainc[i-1], k);
        }
      }
      if (!(poly->homogeneous) && poly->representation==dd_Inequality){
        if (dd_EqualToZero(M->matrix[k-1][0])) {
          set_addelem(poly->Ainc[m1-1], k);  /* added infinity inequality (1,0,0,...,0) */
        }
      }
    }

    for (i=1; i<=m1; i++){
      if (set_card(poly->Ainc[i-1])==M->rowsize){
        set_addelem(poly->Adom, i);
      }
    }
    for (i=m1; i>=1; i--){
      if (set_card(poly->Ainc[i-1])==0){
        redundant=dd_TRUE;
        set_addelem(poly->Ared, i);
      }else {
        redundant=dd_FALSE;
        for (k=1; k<=m1; k++) {
          if (k!=i && !set_member(k, poly->Ared)  && !set_member(k, poly->Adom) &&
              set_subset(poly->Ainc[i-1], poly->Ainc[k-1])){
            if (!redundant){
              redundant=dd_TRUE;
            }
            set_addelem(poly->Ared, i);
          }
        }
      }
    }
    dd_FreeMatrix(M);
    poly->AincGenerated=dd_TRUE;
  _L99:;
    dd_clear(sum);  dd_clear(temp);
  }


  std::vector<std::vector<int> > extremeRaysInequalityIndices(const ZMatrix &inequalities)
  {
    int dim2=inequalities.getHeight();
    if(dim2==0)return std::vector<std::vector<int> >();
    int dimension=inequalities.getWidth();

    dd_MatrixPtr A=NULL;
    dd_ErrorType err=dd_NoError;

    cddinitGmp();
    A=ZMatrix2MatrixGmp(inequalities, &err);

    dd_PolyhedraPtr poly;
    poly=dd_DDMatrix2Poly2(A, dd_LexMin, &err);

    if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) assert(0);
    if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly);

    std::vector<std::vector<int> > ret;

    /*
      How do we interpret the cddlib output?  For a long ting gfan has
      been using poly->n as the number of rays of the cone and thus
      returned sets of indices that actually gave the lineality
      space. The mistake was then caught later in PolyhedralCone. On Feb
      17 2009 gfan was changed to check the length of each set to make
      sure that it does not specify the lineality space and only return
      those sets giving rise to rays.  This does not seem to be the best
      strategy and might even be wrong.
     */


    for (int k=1; k<=poly->n; k++)
      {
        int length=0;
        for (int i=1; i<=poly->m1; i++)
          if(set_member(k,poly->Ainc[i-1]))length++;
        if(length!=dim2)
          {
            std::vector<int> v(length);
            int j=0;
            for (int i=1; i<=poly->m1; i++)
              if(set_member(k,poly->Ainc[i-1]))v[j++]=i-1;
            ret.push_back(v);
          }
      }

    dd_FreeMatrix(A);
    dd_FreePolyhedra(poly);

    return ret;
   _L99:
    assert(0);
    return std::vector<std::vector<int> >();
  }

};

LpSolver lpSolver;

bool ZCone::isInStateMinimum(int s)const
{
  return state>=s;
}


bool operator<(ZCone const &a, ZCone const &b)
{
  assert(a.state>=3);
  assert(b.state>=3);

  if(a.n<b.n)return true;
  if(a.n>b.n)return false;

  if(a.equations<b.equations)return true;
  if(b.equations<a.equations)return false;

  if(a.inequalities<b.inequalities)return true;
  if(b.inequalities<a.inequalities)return false;

  return false;
}


bool operator!=(ZCone const &a, ZCone const &b)
{
  return (a<b)||(b<a);
}


void ZCone::ensureStateAsMinimum(int s)const
{
  if((state<1) && (s==1))
    {
     {
        QMatrix m=ZToQMatrix(equations);
        m.reduce();
        m.removeZeroRows();

        ZMatrix newInequalities(0,inequalities.getWidth());
        for(int i=0;i<inequalities.getHeight();i++)
          {
            QVector w=ZToQVector(inequalities[i]);
            w=m.canonicalize(w);
            if(!w.isZero())
              newInequalities.appendRow(QToZVectorPrimitive(w));
          }

        inequalities=newInequalities;
        inequalities.sortAndRemoveDuplicateRows();
        equations=QToZMatrixPrimitive(m);
      }

      if(!(preassumptions&PCP_impliedEquationsKnown))
      if(inequalities.getHeight()>1)//there can be no implied equation unless we have at least two inequalities
        lpSolver.removeRedundantRows(inequalities,equations,false);

      assert(inequalities.getWidth()==equations.getWidth());
      }
  if((state<2) && (s>=2) && !(preassumptions&PCP_facetsKnown))
    {
/*       if(inequalities.size()>25)
         {
          IntegerVectorList h1;
          IntegerVectorList h2;
          bool a=false;
          for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
            {
              if(a)
                h1.push_back(*i);
              else
                h2.push_back(*i);
              a=!a;
            }
          PolyhedralCone c1(h1,equations);
          PolyhedralCone c2(h2,equations);
          c1.ensureStateAsMinimum(2);
          c2.ensureStateAsMinimum(2);
          inequalities=c1.inequalities;
          for(IntegerVectorList::const_iterator i=c2.inequalities.begin();i!=c2.inequalities.end();i++)
            inequalities.push_back(*i);
        }
*/
      if(equations.getHeight())
        {
          QMatrix m=ZToQMatrix(equations);
          m.reduce();
          ZMatrix inequalities2(0,equations.getWidth());
          for(int i=0;i<inequalities.getHeight();i++)
            {
              inequalities2.appendRow(QToZVectorPrimitive(m.canonicalize(ZToQVector(inequalities[i]))));
            }
          inequalities=LpSolver::fastNormals(inequalities2);
          goto noFallBack;
        fallBack://alternativ (disabled)
          lpSolver.removeRedundantRows(inequalities,equations,true);
        noFallBack:;
        }
      else
        inequalities=LpSolver::fastNormals(inequalities);
    }
  if((state<3) && (s>=3))
    {
      QMatrix equations2=ZToQMatrix(equations);
      equations2.reduce();

      for(int i=0;i<inequalities.getHeight();i++)
        {
          inequalities[i]=QToZVectorPrimitive(equations2.canonicalize(ZToQVector(inequalities[i])));
        }
      inequalities.sortRows();
      equations=QToZMatrixPrimitive(equations2);
    }
  state=s;
}

std::ostream &operator<<(std::ostream &f, ZCone const &c)
{
  f<<"Ambient dimension:"<<c.n<<std::endl;
  f<<"Inequalities:"<<std::endl;
  f<<c.inequalities<<std::endl;
  f<<"Equations:"<<std::endl;
  f<<c.equations<<std::endl;
}


ZCone::ZCone(int ambientDimension):
  n(ambientDimension),
  state(1),
  preassumptions(PCP_impliedEquationsKnown|PCP_facetsKnown),
  multiplicity(1),
  haveExtremeRaysBeenCached(false),
  linearForms(ZMatrix(0,ambientDimension))
{
}


ZCone::ZCone(ZMatrix const &inequalities_, ZMatrix const &equations_, int preassumptions_):
  inequalities(inequalities_),
  equations(equations_),
  state(0),
  preassumptions(preassumptions_),
  multiplicity(1),
  haveExtremeRaysBeenCached(false),
  n(inequalities_.getWidth()),
  linearForms(ZMatrix(0,inequalities_.getWidth()))
  {
  assert(preassumptions_<4);//OTHERWISE WE ARE DOING SOMETHING STUPID LIKE SPECIFYING AMBIENT DIMENSION
  assert(equations_.getWidth()==n);
  ensureStateAsMinimum(1);
}

void ZCone::canonicalize()
{
  ensureStateAsMinimum(3);
}

void ZCone::findFacets()
{
  ensureStateAsMinimum(2);
}

ZMatrix ZCone::getFacets()const
{
  ensureStateAsMinimum(2);
  return inequalities;
}

void ZCone::findImpliedEquations()
{
  ensureStateAsMinimum(1);
}

ZMatrix ZCone::getImpliedEquations()const
{
  ensureStateAsMinimum(1);
  return equations;
}

ZVector ZCone::getRelativeInteriorPoint()const
{
  ensureStateAsMinimum(1);
//  assert(state>=1);

  return lpSolver.relativeInteriorPoint(inequalities,equations);
}

ZVector ZCone::getUniquePoint()const
{
  ZMatrix rays=extremeRays();
  ZVector ret(n);
  for(int i=0;i<rays.getHeight();i++)
    ret+=rays[i];

  return ret;
}

ZVector ZCone::getUniquePointFromExtremeRays(ZMatrix const &extremeRays)const
{
  ZVector ret(n);
  for(int i=0;i<extremeRays.getHeight();i++)
    if(contains(extremeRays[i]))ret+=extremeRays[i];
  return ret;
}


int ZCone::ambientDimension()const
{
  return n;
}


int ZCone::codimension()const
{
  return ambientDimension()-dimension();
}


int ZCone::dimension()const
{
//  assert(state>=1);
  ensureStateAsMinimum(1);
  return ambientDimension()-equations.getHeight();
}


int ZCone::dimensionOfLinealitySpace()const
{
  ZMatrix temp=inequalities;
  temp.append(equations);
  ZCone temp2(ZMatrix(0,n),temp);
  return temp2.dimension();
}


bool ZCone::isOrigin()const
{
  return dimension()==0;
}


bool ZCone::isFullSpace()const
{
  for(int i=0;i<inequalities.getHeight();i++)
    if(!inequalities[i].isZero())return false;
  for(int i=0;i<equations.getHeight();i++)
    if(!equations[i].isZero())return false;
  return true;
}


ZCone intersection(const ZCone &a, const ZCone &b)
{
  assert(a.ambientDimension()==b.ambientDimension());
  ZMatrix inequalities=a.inequalities;
  inequalities.append(b.inequalities);
  ZMatrix equations=a.equations;
  equations.append(b.equations);

  equations.sortAndRemoveDuplicateRows();
  inequalities.sortAndRemoveDuplicateRows();

  {
    ZMatrix Aequations=a.equations;
    ZMatrix Ainequalities=a.inequalities;
    Aequations.sortAndRemoveDuplicateRows();
    Ainequalities.sortAndRemoveDuplicateRows();
    if((Ainequalities.getHeight()==inequalities.getHeight()) && (Aequations.getHeight()==equations.getHeight()))return a;
    ZMatrix Bequations=b.equations;
    ZMatrix Binequalities=b.inequalities;
    Bequations.sortAndRemoveDuplicateRows();
    Binequalities.sortAndRemoveDuplicateRows();
    if((Binequalities.getHeight()==inequalities.getHeight()) && (Bequations.getHeight()==equations.getHeight()))return b;
  }

  return ZCone(inequalities,equations);
}

/*
PolyhedralCone product(const PolyhedralCone &a, const PolyhedralCone &b)
{
  IntegerVectorList equations2;
  IntegerVectorList inequalities2;

  int n1=a.n;
  int n2=b.n;

  for(IntegerVectorList::const_iterator i=a.equations.begin();i!=a.equations.end();i++)
    equations2.push_back(concatenation(*i,IntegerVector(n2)));
  for(IntegerVectorList::const_iterator i=b.equations.begin();i!=b.equations.end();i++)
    equations2.push_back(concatenation(IntegerVector(n1),*i));
  for(IntegerVectorList::const_iterator i=a.inequalities.begin();i!=a.inequalities.end();i++)
    inequalities2.push_back(concatenation(*i,IntegerVector(n2)));
  for(IntegerVectorList::const_iterator i=b.inequalities.begin();i!=b.inequalities.end();i++)
    inequalities2.push_back(concatenation(IntegerVector(n1),*i));

  PolyhedralCone ret(inequalities2,equations2,n1+n2);
  ret.setMultiplicity(a.getMultiplicity()*b.getMultiplicity());
  ret.setLinearForm(concatenation(a.getLinearForm(),b.getLinearForm()));

  ret.ensureStateAsMinimum(a.state);
  ret.ensureStateAsMinimum(b.state);

  return ret;
}*/


ZCone ZCone::positiveOrthant(int dimension)
{
  return ZCone(ZMatrix::identity(dimension),ZMatrix(0,dimension));
}


ZCone ZCone::givenByRays(ZMatrix const &generators, ZMatrix const &linealitySpace)
{
  //rewrite modulo lineality space
  ZMatrix newGenerators(generators.getHeight(),generators.getWidth());
  {
    QMatrix l=ZToQMatrix(linealitySpace);
    l.reduce();
    for(int i=0;i<generators.getHeight();i++)
      newGenerators[i]=QToZVectorPrimitive(l.canonicalize(ZToQVector(generators[i])));
  }

  ZCone dual(newGenerators,linealitySpace);
  dual.findFacets();
  dual.canonicalize();
  ZMatrix inequalities=dual.extremeRays();

  ZMatrix span=generators;
  span.append(linealitySpace);
  QMatrix m2Q=ZToQMatrix(span);
  ZMatrix equations=QToZMatrixPrimitive(m2Q.reduceAndComputeKernel());

  return ZCone(inequalities,equations);
}


bool ZCone::containsPositiveVector()const
{
  ZCone temp=intersection(*this,ZCone::positiveOrthant(n));
  return temp.getRelativeInteriorPoint().isPositive();
}


bool ZCone::contains(ZVector const &v)const
{
  for(int i=0;i<equations.getHeight();i++)
    {
      if(!dot(equations[i],v).isZero())return false;
    }
  for(int i=0;i<inequalities.getHeight();i++)
    {
      if(dot(inequalities[i],v).sign()<0)return false;
    }
  return true;
}


bool ZCone::containsRowsOf(ZMatrix const &m)const
{
  for(int i=0;i<m.getHeight();i++)
    if(!contains(m[i]))return false;
  return true;
}


bool ZCone::contains(ZCone const &c)const
{
  ZCone c2=intersection(*this,c);
  ZCone c3=c;
  c2.canonicalize();
  c3.canonicalize();
  return !(c2!=c3);
}


bool ZCone::containsRelatively(ZVector const &v)const
{
  ensureStateAsMinimum(1);
//  assert(state>=1);
  for(int i=0;i<equations.getHeight();i++)
    {
      if(!dot(equations[i],v).isZero())return false;
    }
  for(int i=0;i<inequalities.getHeight();i++)
    {
      if(dot(inequalities[i],v).sign()<=0)return false;
    }
  return true;
}


bool ZCone::isSimplicial()const
{
//  assert(state>=2);
  ensureStateAsMinimum(2);
  return codimension()+inequalities.getHeight()+dimensionOfLinealitySpace()==n;
}


ZCone ZCone::linealitySpace()const
{
  ZCone ret(ZMatrix(0,n),combineOnTop(equations,inequalities));
//  ret.ensureStateAsMinimum(state);
  return ret;
}


ZCone ZCone::dualCone()const
{
  ensureStateAsMinimum(1);
//  assert(state>=1);

  ZMatrix dualInequalities,dualEquations;
  lpSolver.dual(inequalities,equations,dualInequalities,dualEquations);
  ZCone ret(dualInequalities,dualEquations);
  ret.ensureStateAsMinimum(state);

  return ret;
}


ZCone ZCone::negated()const
{
  ZCone ret(-inequalities,equations,(areFacetsKnown()?PCP_facetsKnown:0)|(areImpliedEquationsKnown()?PCP_impliedEquationsKnown:0));
//  ret.ensureStateAsMinimum(state);
  return ret;
}


ZMatrix ZCone::extremeRays(ZMatrix const *generatorsOfLinealitySpace)const
{
//  assert((dimension()==ambientDimension()) || (state>=3));
  if(dimension()!=ambientDimension())
    ensureStateAsMinimum(3);

  if(haveExtremeRaysBeenCached)return cachedExtremeRays;
  ZMatrix ret(0,n);
  std::vector<std::vector<int> > indices=lpSolver.extremeRaysInequalityIndices(inequalities);

  for(int i=0;i<indices.size();i++)
    {
      /* At this point we know lineality space, implied equations and
         also inequalities for the ray. To construct a vector on the
         ray which is stable under (or indendent of) angle and
         linarity preserving transformation we find the dimension 1
         subspace orthorgonal to the implied equations and the
         lineality space and pick a suitable primitive generator */

          /* To be more precise,
           * let E be the set of equations, and v the inequality defining a  ray R.
           * We wish to find a vector satisfying these, but it must also be orthogonal
           * to the lineality space of the cone, that is, in the span of {E,v}.
           * One way to get such a vector is to project v to E an get a vector p.
           * Then v-p is in the span of {E,v} by construction.
           * The vector v-p is also in the orthogonal complement to E by construction,
           * that is, the span of R.
           * We wish to argue that it is not zero.
           * That would imply that v=p, meaning that v is in the span of the equations.
           * However, that would contradict that R is a ray.
           * In case v-p does not satisfy the inequality v (is this possible?), we change the sign.
           *
           * As a consequence we need the following procedure
           * primitiveProjection():
           *    Input: E,v
           *    Output: A primitive representation of the vector v-p, where p is the projection of v onto E
           *
           * Notice that the output is a Q linear combination of the input and that p is
           * a linear combination of E. The check that p has been computed correctly,
           * it suffices to check that v-p satisfies the equations E.
           * The routine will actually first compute a multiple of v-p.
           * It will do this using floating point arithmetics. It will then transform
           * the coefficients to get the multiple of v-p into integers. Then it
           * verifies in exact arithmetics, that with these coefficients we get a point
           * satisfying E. It then returns the primitive vector on the ray v-p.
           * In case of a failure it falls back to an implementation using rational arithmetics.
           */


          std::vector<int> asVector(inequalities.getHeight());
          for(int j=0;j<indices[i].size();j++){asVector[indices[i][j]]=1;}
          ZMatrix equations=this->equations;
          ZVector theInequality;

          for(int j=0;j<asVector.size();j++)
            if(asVector[j])
              equations.appendRow(inequalities[j]);
            else
              theInequality=inequalities[j];

          assert(!theInequality.isZero());

          ZVector thePrimitiveVector;
          if(generatorsOfLinealitySpace)
          {
            QMatrix temp=ZToQMatrix(combineOnTop(equations,*generatorsOfLinealitySpace));
            thePrimitiveVector=QToZVectorPrimitive(temp.reduceAndComputeVectorInKernel());
          }
          else
          {
            QMatrix linealitySpaceOrth=ZToQMatrix(combineOnTop(this->equations,inequalities));


            QMatrix temp=combineOnTop(linealitySpaceOrth.reduceAndComputeKernel(),ZToQMatrix(equations));
            thePrimitiveVector=QToZVectorPrimitive(temp.reduceAndComputeVectorInKernel());
          }
          if(!contains(thePrimitiveVector))thePrimitiveVector=-thePrimitiveVector;
          ret.appendRow(thePrimitiveVector);
    }

  cachedExtremeRays=ret;
  haveExtremeRaysBeenCached=true;

  return ret;
}


Integer ZCone::getMultiplicity()const
{
  return multiplicity;
}


void ZCone::setMultiplicity(Integer const &m)
{
  multiplicity=m;
}


ZMatrix ZCone::getLinearForms()const
{
  return linearForms;
}


void ZCone::setLinearForms(ZMatrix const &linearForms_)
{
  linearForms=linearForms_;
}


ZMatrix ZCone::quotientLatticeBasis()const
{
//  assert(isInStateMinimum(1));// Implied equations must have been computed in order to know the span of the cone
  ensureStateAsMinimum(1);


  int a=equations.getHeight();
  int b=inequalities.getHeight();

  // Implementation below could be moved to nonLP part of code.

  // small vector space defined by a+b equations.... big by a equations.

  ZMatrix M=combineLeftRight(combineLeftRight(
                                                  equations.transposed(),
                                                  inequalities.transposed()),
                                 ZMatrix::identity(n));
  M.reduce(false,true);
  /*
    [A|B|I] is reduced to [A'|B'|C'] meaning [A'|B']=C'[A|B] and A'=C'A.

    [A'|B'] is in row echelon form, implying that the rows of C' corresponding to zero rows
    of [A'|B'] generate the lattice cokernel of [A|B] - that is the linealityspace intersected with Z^n.

    [A'] is in row echelon form, implying that the rows of C' corresponding to zero rows of [A'] generate
    the lattice cokernel of [A] - that is the span of the cone intersected with Z^n.

    It is clear that the second row set is a superset of the first. Their difference is a basis for the quotient.
   */
  ZMatrix ret(0,n);

  for(int i=0;i<M.getHeight();i++)
    if(M[i].subvector(0,a).isZero()&&!M[i].subvector(a,a+b).isZero())
      {
        ret.appendRow(M[i].subvector(a+b,a+b+n));
      }

  return ret;
}


ZVector ZCone::semiGroupGeneratorOfRay()const
{
  ZMatrix temp=quotientLatticeBasis();
  assert(temp.getHeight()==1);
  for(int i=0;i<inequalities.getHeight();i++)
    if(dot(temp[0],inequalities[i]).sign()<0)
      {
        temp[0]=-temp[0];
        break;
      }
  return temp[0];
}


ZCone ZCone::link(ZVector const &w)const
{
  /* Observe that the inequalities giving rise to facets
   * also give facets in the link, if they are kept as
   * inequalities. This means that the state cannot decrease
   * when taking links - that is why we specify the PCP flags.
   */
  ZMatrix inequalities2(0,n);
  for(int j=0;j<inequalities.getHeight();j++)
    if(dot(w,inequalities[j]).sign()==0)inequalities2.appendRow(inequalities[j]);
  ZCone C(inequalities2,equations,(areImpliedEquationsKnown()?PCP_impliedEquationsKnown:0)|(areFacetsKnown()?PCP_facetsKnown:0));
  C.ensureStateAsMinimum(state);

  C.setLinearForms(getLinearForms());
  C.setMultiplicity(getMultiplicity());

  return C;
}

ZCone ZCone::faceContaining(ZVector const &v)const
{
  assert(n==v.size());
  assert(contains(v));
  ZMatrix newEquations=equations;
  ZMatrix newInequalities(0,n);
  for(int i=0;i<inequalities.getHeight();i++)
    if(dot(inequalities[i],v).sign()!=0)
      newInequalities.appendRow(inequalities[i]);
    else
      newEquations.appendRow(inequalities[i]);

  ZCone ret(newInequalities,newEquations,(state>=1)?PCP_impliedEquationsKnown:0);
  ret.ensureStateAsMinimum(state);
  return ret;
}


ZMatrix ZCone::getInequalities()const
{
  return inequalities;
}


ZMatrix ZCone::getEquations()const
{
  return equations;
}


ZMatrix ZCone::generatorsOfSpan()const
{
  ensureStateAsMinimum(1);
  QMatrix l=ZToQMatrix(equations);
  return QToZMatrixPrimitive(l.reduceAndComputeKernel());
}


ZMatrix ZCone::generatorsOfLinealitySpace()const
{
  QMatrix l=ZToQMatrix(combineOnTop(inequalities,equations));
  return QToZMatrixPrimitive(l.reduceAndComputeKernel());
}

};