Codebase list ghmm / HEAD ghmm / kbest.c
HEAD

Tree @HEAD (Download .tar.gz)

kbest.c @HEADraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*******************************************************************************
*
*       This file is part of the General Hidden Markov Model Library,
*       GHMM version __VERSION__, see http://ghmm.org
*
*       Filename: ghmm/ghmm/kbest.c
*       Authors:  Anyess von Bock, Alexander Riemer, Janne Grunau
*
*       Copyright (C) 1998-2004 Alexander Schliep
*       Copyright (C) 1998-2001 ZAIK/ZPR, Universitaet zu Koeln
*       Copyright (C) 2002-2004 Max-Planck-Institut fuer Molekulare Genetik,
*                               Berlin
*
*       Contact: schliep@ghmm.org
*
*       This library is free software; you can redistribute it and/or
*       modify it under the terms of the GNU Library General Public
*       License as published by the Free Software Foundation; either
*       version 2 of the License, or (at your option) any later version.
*
*       This library is distributed in the hope that it will be useful,
*       but WITHOUT ANY WARRANTY; without even the implied warranty of
*       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*       Library General Public License for more details.
*
*       You should have received a copy of the GNU Library General Public
*       License along with this library; if not, write to the Free
*       Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
*       This file is version $Revision: 2264 $
*                       from $Date: 2009-04-22 11:13:40 -0400 (Wed, 22 Apr 2009) $
*             last change by $Author: grunau $.
*
*******************************************************************************/

/** \file kbest.c
 */

#ifdef HAVE_CONFIG_H
#  include "../config.h"
#endif

#include <stdlib.h>
#include <math.h>

#include "mes.h"
#include "mprintf.h"
#include "model.h"
#include "kbest.h"
#include "ghmm_internals.h"


/** threshold probability (logarithmized) */
#define KBEST_THRESHOLD -3.50655789732
/** log(0.03) => threshold: 3% of most probable partial hypothesis */
#define KBEST_EPS 1E-15


/*============================================================================*/

/** Data type for single linked list of hypotheses.
 */
typedef struct hypo_List {
  int hyp_c;                /**< hypothesis */
  int refcount;             /**< counter of the links to this hypothesis */
  int chosen;
  int gamma_states;
  double *gamma_a;
  int *gamma_id;
  struct hypo_List *next;   /**< next list element */
  struct hypo_List *parent; /**< parent hypothesis */
} hypoList;

/*============================================================================*/
/* inserts new hypothesis into list at position indicated by pointer plist */
static void ighmm_hlist_insert (hypoList ** plist, int newhyp,
                                hypoList * parlist);

/*============================================================================*/
/* removes hypothesis at position indicated by pointer plist from the list */
static void ighmm_hlist_remove (hypoList ** plist);


/*============================================================================*/
/**
   Propagates list of hypotheses forward by extending each old hypothesis to
   the possible new hypotheses depending on the states in which the old
   hypothesis could end and the reachable labels
   @return number of old hypotheses
   @param mo:         pointer to the ghmm_dmodel
   @param h:          pointer to list of hypotheses
   @param hplus:      address of a pointer to store the propagated hypotheses
   @param labels:     number of labels
   @param nr_s:       number states which have assigned the index aa label
   @param max_out:    maximum number of out_states over all states with the index aa label
 */
static int ighmm_hlist_prop_forward (ghmm_dmodel * mo, hypoList * h, hypoList ** hplus, int labels,
                     int *nr_s, int *max_out);


/*============================================================================*/
/**
   Calculates the logarithm of sum(exp(log_a[j,a_pos])+exp(log_gamma[j,g_pos]))
   which corresponds to the logarithm of the sum of a[j,a_pos]*gamma[j,g_pos]
   @return log. sum for products of a row from gamma and a row from matrix A
   @param log_a:      transition matrix with logarithmic values (1.0 for log(0))
   @param s:          ghmm_dstate whose gamma-value is calculated
   @param parent:     a pointer to the parent hypothesis
*/
static double ighmm_log_gamma_sum (double *log_a, ghmm_dstate * s, hypoList * parent);


/*============================================================================*/
/**
  Builds logarithmic transition matrix from the states' in_a values
  the row for each state is the logarithmic version of the state's in_a
  @return transition matrix with logarithmic values, 1.0 if a[i,j] = 0
  @param s:           array of all states of the model
  @param N:           number of states in the model
 */
static double **kbest_buildLogMatrix (ghmm_dstate * s, int N)
{
#define CUR_PROC "kbest_buildLogMatrix"
  int i, j;
  double **log_a;               /* log(a(i,j)) => log_a[i*N+j] */

  /* create & initialize matrix: */
  ARRAY_MALLOC (log_a, N);
  for (i = 0; i < N; i++) {
    ARRAY_MALLOC (log_a[i], s[i].in_states);
    for (j = 0; j < s[i].in_states; j++)
      log_a[i][j] = log (s[i].in_a[j]);
  }
  return log_a;
STOP:     /* Label STOP from ARRAY_[CM]ALLOC */
  GHMM_LOG(LCONVERTED, "kbest_buildLogMatrix failed\n");
  exit (1);
#undef CUR_PROC
}


/*============================================================================*/
int *ghmm_dmodel_label_kbest (ghmm_dmodel * mo, int *o_seq, int seq_len, int k, double *log_p)
{
#define CUR_PROC "ghmm_dl_kbest"
  int i, t, c, l, m;            /* counters */
  int no_oldHyps;               /* number of hypotheses until position t-1 */
  int b_index, i_id;            /* index for addressing states' b arrays */
  int no_labels = 0;
  int exists, g_nr;
  int *states_wlabel;
  int *label_max_out;
  char *str;

  /* logarithmized transition matrix A, log(a(i,j)) => log_a[i*N+j],
     1.0 for zero probability */
  double **log_a;

  /* matrix of hypotheses, holds for every position in the sequence a list
     of hypotheses */
  hypoList **h;
  hypoList *hP;

  /* vectors for rows in the matrices */
  int *hypothesis;

  /* pointer & prob. of the k most probable hypotheses for each state
     - matrices of dimensions #states x k:  argm(i,l) => argmaxs[i*k+l] */
  double *maxima;
  hypoList **argmaxs;

  /* pointer to & probability of most probable hypothesis in a certain state */
  hypoList *argmax;
  double sum;

  /* break if sequence empty or k<1: */
  if (seq_len <= 0 || k <= 0)
    return NULL;

  ARRAY_CALLOC (h, seq_len);

  /* 1. Initialization (extend empty hypothesis to #labels hypotheses of
         length 1): */

  /* get number of labels (= maximum label + 1)
     and number of states with those labels */
  ARRAY_CALLOC (states_wlabel, mo->N);
  ARRAY_CALLOC (label_max_out, mo->N);
  for (i = 0; i < mo->N; i++) {
    c = mo->label[i];
    states_wlabel[c]++;
    if (c > no_labels)
      no_labels = c;
    if (mo->s[i].out_states > label_max_out[c])
      label_max_out[c] = mo->s[i].out_states;
  }
  /* add one to the maximum label to get the number of labels */
  no_labels++;
  ARRAY_REALLOC (states_wlabel, no_labels);
  ARRAY_REALLOC (label_max_out, no_labels);

  /* initialize h: */
  hP = h[0];
  for (i = 0; i < mo->N; i++) {
    if (mo->s[i].pi > KBEST_EPS) {
      /* printf("Found State %d with initial probability %f\n", i, mo->s[i].pi); */
      exists = 0;
      while (hP != NULL) {
        if (hP->hyp_c == mo->label[i]) {
          /* add entry to the gamma list */
          g_nr = hP->gamma_states;
          hP->gamma_id[g_nr] = i;
          hP->gamma_a[g_nr] =
            log (mo->s[i].pi) +
            log (mo->s[i].b[get_emission_index (mo, i, o_seq[0], 0)]);
          hP->gamma_states = g_nr + 1;
          exists = 1;
          break;
        }
        else
          hP = hP->next;
      }
      if (!exists) {
        ighmm_hlist_insert (&(h[0]), mo->label[i], NULL);
        /* initiallize gamma-array with safe size (number of states) and add the first entry */
        ARRAY_MALLOC (h[0]->gamma_a, states_wlabel[mo->label[i]]);
        ARRAY_MALLOC (h[0]->gamma_id, states_wlabel[mo->label[i]]);
        h[0]->gamma_id[0] = i;
        h[0]->gamma_a[0] =
          log (mo->s[i].pi) +
          log (mo->s[i].b[get_emission_index (mo, i, o_seq[0], 0)]);
        h[0]->gamma_states = 1;
        h[0]->chosen = 1;
      }
      hP = h[0];
    }
  }
  /* reallocating the gamma list to the real size */
  hP = h[0];
  while (hP != NULL) {
    ARRAY_REALLOC (hP->gamma_a, hP->gamma_states);
    ARRAY_REALLOC (hP->gamma_id, hP->gamma_states);
    hP = hP->next;
  }

  /* calculate transition matrix with logarithmic values: */
  log_a = kbest_buildLogMatrix (mo->s, mo->N);

  /* initialize temporary arrays: */
  ARRAY_MALLOC (maxima, mo->N * k);                             /* for each state save k */
  ARRAY_MALLOC (argmaxs, mo->N * k);


  /*------ Main loop: Cycle through the sequence: ------*/
  for (t = 1; t < seq_len; t++) {

    /* put o_seq[t-1] in emission history: */
    update_emission_history (mo, o_seq[t - 1]);

    /* 2. Propagate hypotheses forward and update gamma: */
    no_oldHyps =
      ighmm_hlist_prop_forward (mo, h[t - 1], &(h[t]), no_labels, states_wlabel,
                     label_max_out);
    /* printf("t = %d (%d), no of old hypotheses = %d\n", t, seq_len, no_oldHyps); */

    /*-- calculate new gamma: --*/
    hP = h[t];
    /* cycle through list of hypotheses */
    while (hP != NULL) {

      for (i = 0; i < hP->gamma_states; i++) {
        /* if hypothesis hP ends with label of state i:
           gamma(i,c):= log(sum(exp(a(j,i)*exp(oldgamma(j,old_c)))))
           + log(b[i](o_seq[t]))
           else: gamma(i,c):= -INF (represented by 1.0) */
        i_id = hP->gamma_id[i];
        hP->gamma_a[i] = ighmm_log_gamma_sum (log_a[i_id], &mo->s[i_id], hP->parent);
        b_index = get_emission_index (mo, i_id, o_seq[t], t);
        if (b_index < 0) {
          hP->gamma_a[i] = 1.0;
          if (mo->order[i_id] > t)
            continue;
          else {
            str = ighmm_mprintf (NULL, 0,
                           "i_id: %d, o_seq[%d]=%d\ninvalid emission index!\n",
                           i_id, t, o_seq[t]);
            GHMM_LOG(LCONVERTED, str);
            m_free (str);
          }
        }
        else
          hP->gamma_a[i] += log (mo->s[i_id].b[b_index]);
        /*printf("%g = %g\n", log(mo->s[i_id].b[b_index]), hP->gamma_a[i]); */
        if (hP->gamma_a[i] > 0.0) {
          GHMM_LOG(LCONVERTED, "gamma to large. ghmm_dl_kbest failed\n");
          exit (1);
        }
      }
      hP = hP->next;
    }

    /* 3. Choose the k most probable hypotheses for each state and discard all
	   hypotheses that were not chosen: */

    /* initialize temporary arrays: */
    for (i = 0; i < mo->N * k; i++) {
      maxima[i] = 1.0;
      argmaxs[i] = NULL;
    }

    /* cycle through hypotheses & calculate the k most probable hypotheses for
       each state: */
    hP = h[t];
    while (hP != NULL) {
      for (i = 0; i < hP->gamma_states; i++) {
        i_id = hP->gamma_id[i];
        if (hP->gamma_a[i] > KBEST_EPS)
          continue;
        /* find first best hypothesis that is worse than current hypothesis: */
        for (l = 0;
             l < k && maxima[i_id * k + l] < KBEST_EPS
             && maxima[i_id * k + l] > hP->gamma_a[i]; l++);
        if (l < k) {
          /* for each m>l: m'th best hypothesis becomes (m+1)'th best */
          for (m = k - 1; m > l; m--) {
            argmaxs[i_id * k + m] = argmaxs[i_id * k + m - 1];
            maxima[i_id * k + m] = maxima[i_id * k + m - 1];
          }
          /* save new l'th best hypothesis: */
          maxima[i_id * k + l] = hP->gamma_a[i];
          argmaxs[i_id * k + l] = hP;
        }
      }
      hP = hP->next;
    }

    /* set 'chosen' for all hypotheses from argmaxs array: */
    for (i = 0; i < mo->N * k; i++)
      /* only choose hypotheses whose prob. is at least threshold*max_prob */
      if (maxima[i] != 1.0
          && maxima[i] >= KBEST_THRESHOLD + maxima[(i % mo->N) * k])
        argmaxs[i]->chosen = 1;

    /* remove hypotheses that were not chosen from the lists: */
    /* remove all hypotheses till the first chosen one */
    while (h[t] != NULL && 0 == h[t]->chosen)
      ighmm_hlist_remove (&(h[t]));
    /* remove all other not chosen hypotheses */
    if (!h[t]) {
      GHMM_LOG(LCONVERTED, "No chosen hypothesis. ghmm_dl_kbest failed\n");
      exit (1);
    }
    hP = h[t];
    while (hP->next != NULL) {
      if (1 == hP->next->chosen)
        hP = hP->next;
      else
        ighmm_hlist_remove (&(hP->next));
    }
  }
  /* dispose of temporary arrays: */
  m_free(states_wlabel);
  m_free(label_max_out);
  m_free(argmaxs);
  m_free(maxima);
  /* transition matrix is no longer needed from here on */
  for (i=0; i<mo->N; i++)
    m_free(log_a[i]);
  m_free(log_a);

  /* 4. Save the hypothesis with the highest probability over all states: */
  hP = h[seq_len - 1];
  argmax = NULL;
  *log_p = 1.0;                 /* log_p will store log of maximum summed probability */
  while (hP != NULL) {
    /* sum probabilities for each hypothesis over all states: */
    sum = ighmm_cvector_log_sum (hP->gamma_a, hP->gamma_states);
    /* and select maximum sum */
    if (sum < KBEST_EPS && (*log_p == 1.0 || sum > *log_p)) {
      *log_p = sum;
      argmax = hP;
    }
    hP = hP->next;
  }

  /* found a valid path? */
  if (*log_p < KBEST_EPS) {
    /* yes: extract chosen hypothesis: */
    ARRAY_MALLOC (hypothesis, seq_len);
    for (i = seq_len - 1; i >= 0; i--) {
      hypothesis[i] = argmax->hyp_c;
      argmax = argmax->parent;
    }
  }
  else
    /* no: return 1.0 representing -INF and an empty hypothesis */
    hypothesis = NULL;

  /* dispose of calculation matrices: */
  hP = h[seq_len - 1];
  while (hP != NULL)
    ighmm_hlist_remove (&hP);
  free (h);
  return hypothesis;
STOP:     /* Label STOP from ARRAY_[CM]ALLOC */
  GHMM_LOG(LCONVERTED, "ghmm_dl_kbest failed\n");
  exit (1);
#undef CUR_PROC
}



/*================ utility functions ========================================*/
/* inserts new hypothesis into list at position indicated by pointer plist */
static void ighmm_hlist_insert (hypoList ** plist, int newhyp,
                              hypoList * parlist)
{
#define CUR_PROC "ighmm_hlist_insert"
  hypoList *newlist;

  ARRAY_CALLOC (newlist, 1);
  newlist->hyp_c = newhyp;
  if (parlist)
    parlist->refcount += 1;
  newlist->parent = parlist;
  newlist->next = *plist;

  *plist = newlist;
  return;
STOP:     /* Label STOP from ARRAY_[CM]ALLOC */
  GHMM_LOG(LCONVERTED, "ighmm_hlist_insert failed\n");
  exit (1);
#undef CUR_PROC
}

/*============================================================================*/
/* removes hypothesis at position indicated by pointer plist from the list
   removes recursively parent hypothesis with refcount==0 */
static void ighmm_hlist_remove (hypoList ** plist) {
#define CUR_PROC "ighmm_hlist_remove"
  hypoList *tempPtr = (*plist)->next;

  free ((*plist)->gamma_a);
  free ((*plist)->gamma_id);
  if ((*plist)->parent) {
    (*plist)->parent->refcount -= 1;
    if (0 == (*plist)->parent->refcount)
      ighmm_hlist_remove (&((*plist)->parent));
  }
  free (*plist);

  *plist = tempPtr;
#undef CUR_PROC
}

/*============================================================================*/
static int ighmm_hlist_prop_forward (ghmm_dmodel * mo, hypoList * h, hypoList ** hplus,
				     int labels, int *nr_s, int *max_out) {
#define CUR_PROC "ighmm_hlist_prop_forward"
  int i, j, c, k;
  int i_id, j_id, g_nr;
  int no_oldHyps = 0, newHyps = 0;
  hypoList *hP = h;
  hypoList **created;

  ARRAY_MALLOC (created, labels);

  /* extend the all hypotheses with the labels of out_states
     of all states in the hypotesis */
  while (hP != NULL) {

    /* lookup table for labels, created[i]!=0 iff the current hypotheses
       was propagated forward with label i */
    for (c = 0; c < labels; c++)
      created[c] = NULL;

    /* extend the current hypothesis and add all states which may have
       probability greater null */
    for (i = 0; i < hP->gamma_states; i++) {
      /* skip impossible states */
      if (hP->gamma_a[i] == 1.0)
        continue;
      i_id = hP->gamma_id[i];
      for (j = 0; j < mo->s[i_id].out_states; j++) {
        j_id = mo->s[i_id].out_id[j];
        c = mo->label[j_id];

        /* create a new hypothesis with label c */
        if (!created[c]) {
          ighmm_hlist_insert (hplus, c, hP);
          created[c] = *hplus;
          /* initiallize gamma-array with safe size (number of states */
          ARRAY_MALLOC ((*hplus)->gamma_id, m_min (nr_s[c], hP->gamma_states * max_out[hP->hyp_c]));
          (*hplus)->gamma_id[0] = j_id;
          (*hplus)->gamma_states = 1;
          newHyps++;
        }
        /* add a new gamma state to the existing hypothesis with c */
        else {
          g_nr = created[c]->gamma_states;
          /* search for state j_id in the gamma list */
          for (k = 0; k < g_nr; k++)
            if (j_id == created[c]->gamma_id[k])
              break;
          /* add the state to the gamma list */
          if (k == g_nr) {
            created[c]->gamma_id[g_nr] = j_id;
            created[c]->gamma_states = g_nr + 1;
          }
        }
      }
    }
    /* reallocating gamma-array to the correct size */
    for (c = 0; c < labels; c++) {
      if (created[c]) {
        ARRAY_CALLOC (created[c]->gamma_a, created[c]->gamma_states);
        ARRAY_REALLOC (created[c]->gamma_id, created[c]->gamma_states);
        created[c] = NULL;
      }
    }
    hP = hP->next;
    no_oldHyps++;
  }

  /* printf("Created %d new Hypotheses.\n", newHyps); */
  free (created);
  return (no_oldHyps);
STOP:     /* Label STOP from ARRAY_[CM]ALLOC */
  GHMM_LOG(LCONVERTED, "ighmm_hlist_prop_forward failed\n");
  exit (1);
#undef CUR_PROC
}


/*============================================================================*/
/**
   Calculates the logarithm of sum(exp(log_a[j,a_pos])+exp(log_gamma[j,g_pos]))
   which corresponds to the logarithm of the sum of a[j,a_pos]*gamma[j,g_pos]
   @return ighmm_log_sum for products of a row from gamma and a row from matrix A
   @param log_a:      row of the transition matrix with logarithmic values (1.0 for log(0))
   @param s:          ghmm_dstate whose gamma-value is calculated
   @param parent:     a pointer to the parent hypothesis
*/
static double ighmm_log_gamma_sum (double *log_a, ghmm_dstate * s, hypoList * parent) {
#define CUR_PROC "ighmm_log_gamma_sum"
  double result;
  int j, j_id, k;
  double max = 1.0;
  int argmax = 0;
  double *logP;

  /* shortcut for the trivial case */
  if (parent->gamma_states == 1)
    for (j = 0; j < s->in_states; j++)
      if (parent->gamma_id[0] == s->in_id[j])
        return parent->gamma_a[0] + log_a[j];

  ARRAY_MALLOC (logP, s->in_states);

  /* calculate logs of a[k,l]*gamma[k,hi] as sums of logs and find maximum: */
  for (j = 0; j < s->in_states; j++) {
    j_id = s->in_id[j];
    /* search for state j_id in the gamma list */
    for (k = 0; k < parent->gamma_states; k++)
      if (parent->gamma_id[k] == j_id)
        break;
    if (k == parent->gamma_states)
      logP[j] = 1.0;
    else {
      logP[j] = log_a[j] + parent->gamma_a[k];
      if (max == 1.0 || (logP[j] > max && logP[j] != 1.0)) {
        max = logP[j];
        argmax = j;
      }
    }
  }

  /* calculate max+log(1+sum[j!=argmax; exp(logP[j]-max)])  */
  result = 1.0;
  for (j = 0; j < s->in_states; j++)
    if (j != argmax && logP[j] != 1.0)
      result += exp (logP[j] - max);

  result = log (result);
  result += max;

  free (logP);
  return result;
STOP:     /* Label STOP from ARRAY_[CM]ALLOC */
  GHMM_LOG(LCONVERTED, "ighmm_log_gamma_sum failed\n");
  exit (1);
#undef CUR_PROC
}