Codebase list glm / debian/0.9.9_a2-1 manual.md
debian/0.9.9_a2-1

Tree @debian/0.9.9_a2-1 (Download .tar.gz)

manual.md @debian/0.9.9_a2-1raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
![Alt](/doc/manual/logo-mini.png "GLM Logo")

# GLM 0.9.9 Manual

![Alt](/doc/manual/g-truc.png "G-Truc Logo")

---
## Table of Contents
+ [0. Licenses](#section0)
+ [1. Getting started](#section1)
+ [1.1. Setup](#section1_1)
+ [1.2. Faster compilation](#section1_2)
+ [1.3. Example usage](#section1_3)
+ [1.4. Dependencies](#section1_4)
+ [2. Swizzling](#section2)
+ [2.1. Default C++98 implementation](#section2_1)
+ [2.2. Anonynous union member implementation](#section2_2)
+ [3. Preprocessor options](#section3)
+ [3.1. GLM\_PRECISION\_**: Default precision](#section3_1)
+ [3.2. GLM\_FORCE\_MESSAGES: Compile-time message system](#section3_2)
+ [3.3. GLM\_FORCE\_CXX**: C++ language detection](#section3_3)
+ [3.4. SIMD support](#section3_4)
+ [3.5. GLM\_FORCE\_INLINE: Force inline](#section3_5)
+ [3.6. GLM\_FORCE\_SIZE\_T\_LENGTH: Vector and matrix static size](#section3_6)
+ [3.7. GLM\_FORCE\_EXPLICIT\_CTOR: Requiring explicit conversions](#section3_7)
+ [3.8. GLM\_FORCE\_UNRESTRICTED\_GENTYPE: Removing genType restriction](#section3_8)
+ [3.9. GLM\_FORCE\_SINGLE\_ONLY: Removed explicit 64-bits floating point types](#section3_9)
+ [4. Stable extensions](#section4)
+ [4.1. GLM_GTC_bitfield](#section4_1)
+ [4.2. GLM_GTC_color_space](#section4_2)
+ [4.3. GLM_GTC_constants](#section4_3)
+ [4.4. GLM_GTC_epsilon](#section4_4)
+ [4.5. GLM_GTC_integer](#section4_5)
+ [4.6. GLM_GTC_matrix_access](#section4_6)
+ [4.7. GLM_GTC_matrix_integer](#section4_7)
+ [4.8. GLM_GTC_matrix_inverse](#section4_8)
+ [4.9. GLM_GTC_matrix_transform](#section4_9)
+ [4.10. GLM_GTC_noise](#section4_10)
+ [4.11. GLM_GTC_packing](#section4_11)
+ [4.12. GLM_GTC_quaternion](#section4_12)
+ [4.13. GLM_GTC_random](#section4_13)
+ [4.14. GLM_GTC_reciprocal](#section4_14)
+ [4.15. GLM_GTC_round](#section4_15)
+ [4.16. GLM_GTC_type_alignment](#section4_16)
+ [4.17. GLM_GTC_type_precision](#section4_17)
+ [4.18. GLM_GTC_type_ptr](#section4_18)
+ [4.19. GLM_GTC_ulp](#section4_19)
+ [4.20. GLM_GTC_vec1](#section4_20)
+ [5. OpenGL interoperability](#section5)
+ [5.1. GLM Replacements for deprecated OpenGL functions](#section5_1)
+ [5.2. GLM Replacements for GPU functions](#section5_2)
+ [6. Known issues](#section6)
+ [6.1. Not function](#section6_1)
+ [6.2. Precision qualifiers support](#section6_2)
+ [7. FAQ](#section7)
+ [7.1 Why GLM follows GLSL specification and conventions?](#section7_1)
+ [7.2. Does GLM run GLSL programs?](#section7_2)
+ [7.3. Does a GLSL compiler build GLM codes?](#section7_3)
+ [7.4. Should I use ‘GTX’ extensions?](#section7_4)
+ [7.5. Where can I ask my questions?](#section7_5)
+ [7.6. Where can I find the documentation of extensions?](#section7_6)
+ [7.7. Should I use 'using namespace glm;'?](#section7_7)
+ [7.8. Is GLM fast?](#section7_8)
+ [7.9. When I build with Visual C++ with /w4 warning level, I have warnings...](#section7_9)
+ [7.10. Why some GLM functions can crash because of division by zero?](#section7_10)
+ [7.11. What unit for angles us used in GLM?](#section7_11)
+ [7.12. Windows headers cause build errors...](#section7_12)
+ [7.13. Constant expressions support](#section7_13)
+ [8. Code samples](#section8)
+ [8.1. Compute a triangle normal](#section8_1)
+ [8.2. Matrix transform](#section8_2)
+ [8.3. Vector types](#section8_3)
+ [8.4. Lighting](#section8_4)
+ [9. References](#section9)
+ [9.1. OpenGL specifications](#section9_1)
+ [9.2. External links](#section9_2)
+ [9.3. Projects using GLM](#section9_3)
+ [9.4. Tutorials using GLM](#section9_4)
+ [9.5. Equivalent for other languages](#section9_5)
+ [9.6. Alternatives to GLM](#section9_6)
+ [9.8. Acknowledgements](#section9_8)

---
## <a name="section0"></a> Licenses

### The Happy Bunny License (Modified MIT License)

Copyright (c) 2005 - 2017 G-Truc Creation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Restrictions: By making use of the Software for military purposes, you
choose to make a Bunny unhappy.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

![](https://github.com/g-truc/glm/blob/manual/doc/manual/frontpage1.png)

### The MIT License

Copyright (c) 2005 - 2017 G-Truc Creation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

![](https://github.com/g-truc/glm/blob/manual/doc/manual/frontpage2.png)

---

## <a name="section1"></a> 1. Getting started
### <a name="section1_1"></a> 1.1. Setup

GLM is a header-only library, and thus does not need to be compiled.  We can use GLM's implementation of GLSL's mathematics functionality by including the `<glm/glm.hpp>` header.  The library can also be installed with CMake, though the details of doing so will differ depending on the target build system.

Features can also be included individually to shorten compilation times.

```cpp
#include <glm/vec2.hpp> // vec2, bvec2, dvec2, ivec2 and uvec2
#include <glm/vec3.hpp> // vec3, bvec3, dvec3, ivec3 and uvec3
#include <glm/vec4.hpp> // vec4, bvec4, dvec4, ivec4 and uvec4
#include <glm/mat2x2.hpp> // mat2, dmat2
#include <glm/mat2x3.hpp> // mat2x3, dmat2x3
#include <glm/mat2x4.hpp> // mat2x4, dmat2x4
#include <glm/mat3x2.hpp> // mat3x2, dmat3x2
#include <glm/mat3x3.hpp> // mat3, dmat3
#include <glm/mat3x4.hpp> // mat3x4, dmat2
#include <glm/mat4x2.hpp> // mat4x2, dmat4x2
#include <glm/mat4x3.hpp> // mat4x3, dmat4x3
#include <glm/mat4x4.hpp> // mat4, dmat4
#include <glm/common.hpp> // all the GLSL common functions
#include <glm/exponential.hpp> // all the GLSL exponential functions
#include <glm/geometry.hpp> // all the GLSL geometry functions
#include <glm/integer.hpp> // all the GLSL integer functions
#include <glm/matrix.hpp> // all the GLSL matrix functions
#include <glm/packing.hpp> // all the GLSL packing functions
#include <glm/trigonometric.hpp> // all the GLSL trigonometric functions
#include <glm/vector_relational.hpp> // all the GLSL vector relational functions
```
### <a name="section1_2"></a> 1.2. Faster compilation

GLM uses C++ templates heavily, and may significantly increase compilation times for projects that use it.  Hence, source files should only include the headers they actually use.

To reduce compilation time, we can include `<glm/fwd.hpp>`, which forward-declares all types should their definitions not be needed.

```cpp
// Header file (forward declarations only)
#include <glm/fwd.hpp>

// At this point, we don't care what exactly makes up a vec2; that won't matter
// until we write this function's implementation.
glm::vec2 functionDeclaration(const glm::vec2& input);
```

Precompiled headers will also be helpful, though are not covered by this manual.

### <a name="section1_3"></a> 1.3. Example usage


```cpp
// Include GLM core features
#include <glm/vec3.hpp>
#include <glm/vec4.hpp>
#include <glm/mat4x4.hpp>
#include <glm/trigonometric.hpp>

// Include GLM extensions
#include <glm/gtc/matrix_transform.hpp>

glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
    glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
    glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
    glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
    glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
    glm::mat4 Model = glm::mat4(1.0f);
    return Proj * View * Model;
}
```

### <a name="section1_4"></a> 1.4. Dependencies

GLM does not depend on external libraries or headers such as `<GL/gl.h>`, [`<GL/glcorearb.h>`](http://www.opengl.org/registry/api/GL/glcorearb.h), `<GLES3/gl3.h>`, `<GL/glu.h>`, or `<windows.h>`.

---
## <a name="section2"></a> 2. Swizzling

Shader languages like GLSL often feature so-called swizzle expressions, which may be used to freely select and arrange a vector's components. For example, `variable.x`, `variable.xzy` and `variable.zxyy` respectively form a scalar, a 3D vector and a 4D vector.  The result of a swizzle expression in GLSL can be either an R-value or an L-value. Swizzle expressions can be written with characters from exactly one of `xyzw` (usually for positions), `rgba` (usually for colors), and `stpq` (usually for texture coordinates).

```cpp
vec4 A;
vec2 B;

B.yx = A.wy;
B = A.xx;
vec3 C = A.bgr;
vec3 D = B.rsz; // Invalid, won't compile
```

GLM optionally supports some of this functionality via the methods described in the following sections. Swizzling can be enabled by defining `GLM_FORCE_SWIZZLE` before including any GLM header files, or as part of a project's build process.

*Note that enabling swizzle expressions will massively increase the size of your binaries and the time it takes to compile them!*

### <a name="section2_1"></a> 2.1. Default C++98 implementation

When compiling GLM as C++98, R-value swizzle expressions are simulated through member functions of each vector type.

```cpp
#define GLM_FORCE_SWIZZLE // Or defined when building (e.g. -DGLM_FORCE_SWIZZLE)
#include <glm/glm.hpp>

void foo()
{
    glm::vec4 ColorRGBA(1.0f, 0.5f, 0.0f, 1.0f);
    glm::vec3 ColorBGR = ColorRGBA.bgr();

    glm::vec3 PositionA(1.0f, 0.5f, 0.0f, 1.0f);
    glm::vec3 PositionB = PositionXYZ.xyz() * 2.0f;

    glm::vec2 TexcoordST(1.0f, 0.5f);
    glm::vec4 TexcoordSTPQ = TexcoordST.stst();
}
```

Swizzle operators return a **copy** of the component values, and thus *can't* be used as L-values to change a vector's values.


```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

void foo()
{
  glm::vec3 A(1.0f, 0.5f, 0.0f);

  // No compiler error, but A is not modified.
  // An anonymous copy is being modified (and then discarded).
  A.bgr() = glm::vec3(2.0f, 1.5f, 1.0f); // A is not modified!
}
```

### <a name="section2_2"></a> 2.2. Anonymous union member implementation

Visual C++ supports, as a _non-standard language extension_, anonymous `struct`s as `union` members. This permits a powerful swizzling implementation that both allows L-value swizzle expressions and GLSL-like syntax.  To use this feature, the language extension must be enabled by a supporting compiler and `GLM_FORCE_SWIZZLE` must be `#define`d.

```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

// Only guaranteed to work with Visual C++!
// Some compilers that support Microsoft extensions may compile this.
void foo()
{
  glm::vec4 ColorRGBA(1.0f, 0.5f, 0.0f, 1.0f);

  // l-value:
  glm::vec4 ColorBGRA = ColorRGBA.bgra;

  // r-value:
  ColorRGBA.bgra = ColorRGBA;

  // Both l-value and r-value
  ColorRGBA.bgra = ColorRGBA.rgba;
}
```

This version returns implementation-specific objects that _implicitly convert_ to their respective vector types.  As a consequence of this design, these extra types **can't be directly used** by GLM functions; they must be converted through constructors or `operator()`.

```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

using glm::vec4;

void foo()
{
  vec4 Color(1.0f, 0.5f, 0.0f, 1.0f);

  // Generates compiler errors. Color.rgba is not a vector type.
  vec4 ClampedA = glm::clamp(Color.rgba, 0.f, 1.f); // ERROR

  // Explicit conversion through a constructor
  vec4 ClampedB = glm::clamp(vec4(Color.rgba), 0.f, 1.f); // OK

  // Explicit conversion through operator()
  vec4 ClampedC = glm::clamp(Color.rgba(), 0.f, 1.f); // OK
}
```

---
## <a name="section3"></a> 3. Preprocessor options

### <a name="section3_1"></a> 3.1. GLM\_PRECISION\_**: Default precision

C++ does not provide a way to implement GLSL default precision selection (as defined in GLSL 4.10 specification section 4.5.3) with GLSL-like syntax.

```cpp
precision mediump int;
precision highp float;
```

To use the default precision functionality, GLM provides some defines that need to added before any include of `glm.hpp`:

```cpp
#define GLM_PRECISION_MEDIUMP_INT
#define GLM_PRECISION_HIGHP_FLOAT
#include <glm/glm.hpp>
```

Available defines for floating point types (glm::vec\*, glm::mat\*):

* GLM\_PRECISION\_LOWP\_FLOAT: Low precision
* GLM\_PRECISION\_MEDIUMP\_FLOAT: Medium precision
* GLM\_PRECISION\_HIGHP\_FLOAT: High precision (default)

Available defines for floating point types (glm::dvec\*, glm::dmat\*):

* GLM\_PRECISION\_LOWP\_DOUBLE: Low precision
* GLM\_PRECISION\_MEDIUMP\_DOUBLE: Medium precision
* GLM\_PRECISION\_HIGHP\_DOUBLE: High precision (default)

Available defines for signed integer types (glm::ivec\*):

* GLM\_PRECISION\_LOWP\_INT: Low precision
* GLM\_PRECISION\_MEDIUMP\_INT: Medium precision
* GLM\_PRECISION\_HIGHP\_INT: High precision (default)

Available defines for unsigned integer types (glm::uvec\*):

* GLM\_PRECISION\_LOWP\_UINT: Low precision
* GLM\_PRECISION\_MEDIUMP\_UINT: Medium precision
* GLM\_PRECISION\_HIGHP\_UINT: High precision (default)

### <a name="section3_2"></a> 3.2. GLM\_FORCE\_MESSAGES: Compile-time message system

GLM includes a notification system which can display some information at build time:

* Platform: Windows, Linux, Native Client, QNX, etc.
* Compiler: Visual C++, Clang, GCC, ICC, etc.
* Build model: 32bits or 64 bits
* C++ version : C++98, C++11, MS extensions, etc.
* Architecture: x86, SSE, AVX, etc.
* Included extensions
* etc.

This system is disabled by default. To enable this system, define GLM\_FORCE\_MESSAGES before any inclusion of &lt;glm/glm.hpp&gt;. The messages are generated only by compiler supporting \#program message and
only once per project build.

```cpp
#define GLM_FORCE_MESSAGES
#include <glm/glm.hpp>
```

### <a name="section3_3"></a> 3.3. GLM\_FORCE\_CXX**: C++ language detection

GLM will automatically take advantage of compilers’ language extensions when enabled. To increase cross platform compatibility and to avoid compiler extensions, a programmer can define GLM\_FORCE\_CXX98 before
any inclusion of &lt;glm/glm.hpp&gt; to restrict the language feature set C++98:

```cpp
#define GLM_FORCE_CXX98
#include <glm/glm.hpp>
```

For C++11 and C++14, equivalent defines are available:
GLM\_FORCE\_CXX11, GLM\_FORCE\_CXX14.

```cpp
#define GLM_FORCE_CXX11
#include <glm/glm.hpp>

// If the compiler doesn’t support C++11, compiler errors will happen.
```

GLM\_FORCE\_CXX14 overrides GLM\_FORCE\_CXX11 and GLM\_FORCE\_CXX11
overrides GLM\_FORCE\_CXX98 defines.

### <a name="section3_4"></a> 3.4. SIMD support

GLM provides some SIMD optimizations based on [compiler intrinsics](https://msdn.microsoft.com/en-us/library/26td21ds.aspx).
These optimizations will be automatically thanks to compiler arguments.
For example, if a program is compiled with Visual Studio using /arch:AVX, GLM will detect this argument and generate code using AVX instructions automatically when available.

It’s possible to avoid the instruction set detection by forcing the use of a specific instruction set with one of the fallowing define:
GLM\_FORCE\_SSE2, GLM\_FORCE\_SSE3, GLM\_FORCE\_SSSE3, GLM\_FORCE\_SSE41, GLM\_FORCE\_SSE42, GLM\_FORCE\_AVX, GLM\_FORCE\_AVX2 or GLM\_FORCE\_AVX512.

The use of intrinsic functions by GLM implementation can be avoided using the define GLM\_FORCE\_PURE before any inclusion of GLM headers.

```cpp
#define GLM_FORCE_PURE
#include <glm/glm.hpp>

// GLM code will be compiled using pure C++ code without any intrinsics
```

```cpp
#define GLM_FORCE_AVX2
#include <glm/glm.hpp>

// If the compiler doesn’t support AVX2 instrinsics, compiler errors will happen.
```

Additionally, GLM provides a low level SIMD API in glm/simd directory for users who are really interested in writing fast algorithms.

### <a name="section3_5"></a> 3.5. GLM\_FORCE\_INLINE: Force inline

To push further the software performance, a programmer can define GLM\_FORCE\_INLINE before any inclusion of &lt;glm/glm.hpp&gt; to force the compiler to inline GLM code.

```cpp
#define GLM_FORCE_INLINE
#include <glm/glm.hpp>
```

### <a name="section3_6"></a> 3.6. GLM\_FORCE\_SIZE\_T\_LENGTH: Vector and matrix static size

GLSL supports the member function .length() for all vector and matrix types.

```cpp
#include <glm/glm.hpp>

void foo(vec4 const& v)
{
    int Length = v.length();
    ...
}
```

This function returns a int however this function typically interacts with STL size\_t based code. GLM provides GLM\_FORCE\_SIZE\_T\_LENGTH pre-processor option so that member functions length() return a size\_t.

Additionally, GLM defines the type glm::length\_t to identify length() returned type, independently from GLM\_FORCE\_SIZE\_T\_LENGTH.

```cpp
#define GLM_FORCE_SIZE_T_LENGTH
#include <glm/glm.hpp>

void foo(vec4 const& v)
{
    glm::length_t Length = v.length();
    ...
}
```

### <a name="section3_7"></a> 3.7. GLM\_FORCE\_EXPLICIT\_CTOR: Requiring explicit conversions

GLSL supports implicit conversions of vector and matrix types. For example, an ivec4 can be implicitly converted into vec4.

Often, this behaviour is not desirable but following the spirit of the library, this behavior is supported in GLM. However, GLM 0.9.6 introduced the define GLM\_FORCE\_EXPLICIT\_CTOR to require explicit
conversion for GLM types.

```cpp
#include <glm/glm.hpp>

void foo()
{
    glm::ivec4 a;
    ...

    glm::vec4 b(a); // Explicit conversion, OK
    glm::vec4 c = a; // Implicit conversion, OK
    ...
}
```

With GLM\_FORCE\_EXPLICIT\_CTOR define, implicit conversions are not allowed:

```cpp
#define GLM_FORCE_EXPLICIT_CTOR
#include <glm/glm.hpp>

void foo()
{
    glm::ivec4 a;
    {
        glm::vec4 b(a); // Explicit conversion, OK
        glm::vec4 c = a; // Implicit conversion, ERROR
        ...
}
```

### <a name="section3_8"></a> 3.8. GLM\_FORCE\_UNRESTRICTED\_GENTYPE: Removing genType restriction

By default GLM only supports basic types as genType for vector, matrix and quaternion types:

```cpp
#include <glm/glm.hpp>

typedef glm::vec<4, float> my_fvec4;
```

GLM 0.9.8 introduced GLM\_FORCE\_UNRESTRICTED\_GENTYPE define to relax this restriction:

```cpp
#define GLM_FORCE_UNRESTRICTED_GENTYPE
#include <glm/glm.hpp>

#include "half.hpp" // Define “half” class with behavior equivalent to “float”

typedef glm::vec<4, half> my_hvec4;
```

However, defining GLM\_FORCE\_UNRESTRICTED\_GENTYPE is not compatible with GLM\_FORCE\_SWIZZLE and will generate a compilation error if both are defined at the same time.

### <a name="section3_9"></a> 3.9. GLM\_FORCE\_SINGLE\_ONLY: Removed explicit 64-bits floating point types

Some platforms (Dreamcast) doesn't support double precision floating point values. To compile on such platforms, GCC has the --m4-single-only build argument. When defining GLM\_FORCE\_SINGLE\_ONLY before including GLM headers, GLM releases the requirement of double precision floating point values support. Effectivement, all the float64 types are no longer defined and double behaves like float. 

---
## <a name="section4"></a> 4. Stable extensions

GLM extends the core GLSL feature set with extensions. These extensions include: quaternion, transformation, spline, matrix inverse, color spaces, etc.

To include an extension, we only need to include the dedicated header file. Once included, the features are added to the GLM namespace.

```cpp
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

int foo()
{
    glm::vec4 Position = glm::vec4(glm:: vec3(0.0f), 1.0f);
    glm::mat4 Model = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));

    glm::vec4 Transformed = Model * Position;
    ...

    return 0;
}
```

When an extension is included, all the dependent core functionalities and extensions will be included as well.

### <a name="section4_1"></a> 4.1. GLM_GTC_bitfield

Fast bitfield operations on scalar and vector variables.

&lt;glm/gtc/bitfield.hpp&gt; need to be included to use these features.

### <a name="section4_2"></a> 4.2. GLM_GTC_color_space

Conversion between linear RGB and sRGB color spaces.

&lt;glm/gtc/color\_space.hpp&gt; need to be included to use these features.

### <a name="section4_3"></a> 4.3. GLM\_GTC\_constants

Provide a list of built-in constants.

&lt;glm/gtc/constants.hpp&gt; need to be included to use these features.

### <a name="section4_4"></a> 4.4. GLM\_GTC\_epsilon

Approximate equality comparisons for floating-point numbers, possibly with a user-defined epsilon.

&lt;glm/gtc/epsilon.hpp&gt; need to be included to use these features.

### <a name="section4_5"></a> 4.5. GLM\_GTC\_integer

Integer variants of core GLM functions.

&lt;glm/gtc/integer.hpp&gt; need to be included to use these features.

### <a name="section4_6"></a> 4.6. GLM\_GTC\_matrix\_access

Functions to conveniently access the individual rows or columns of a matrix.

&lt;glm/gtc/matrix\_access.hpp&gt; need to be included to use these features.

### <a name="section4_7"></a> 4.7. GLM\_GTC\_matrix\_integer

Integer matrix types similar to the core floating-point matrices.  Some operations (such as inverse and determinant) are not supported.

&lt;glm/gtc/matrix\_integer.hpp&gt; need to be included to use these features.

### <a name="section4_8"></a> 4.8. GLM\_GTC\_matrix\_inverse

Additional matrix inverse functions.

&lt;glm/gtc/matrix\_inverse.hpp&gt; need to be included to use these features.

### <a name="section4_9"></a> 4.9. GLM\_GTC\_matrix\_transform

Matrix transformation functions that follow the OpenGL fixed-function conventions.

For example, the ***lookAt*** function generates a transformation matrix that projects world coordinates into eye coordinates suitable for projection matrices (e.g. ***perspective***, ***ortho***). See the OpenGL compatibility specifications for more information about the layout of these generated matrices.

The matrices generated by this extension use standard OpenGL fixed-function conventions. For example, the ***lookAt*** function generates a transform from world space into the specific eye space that the
projective matrix functions (***perspective***, ***ortho***, etc) are designed to expect. The OpenGL compatibility specifications define the particular layout of this eye space.

&lt;glm/gtc/matrix\_transform.hpp&gt; need to be included to use these features.

### <a name="section4_10"></a> 4.10. GLM\_GTC\_noise

Define 2D, 3D and 4D procedural noise functions.

&lt;glm/gtc/noise.hpp&gt; need to be included to use these features.

![](/doc/manual/noise-simplex1.jpg)

Figure 4.10.1: glm::simplex(glm::vec2(x / 16.f, y / 16.f));

![](/doc/manual/noise-simplex2.jpg)

Figure 4.10.2: glm::simplex(glm::vec3(x / 16.f, y / 16.f, 0.5f));

![](/doc/manual/noise-simplex3.jpg)

Figure 4.10.3: glm::simplex(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f));

![](/doc/manual/noise-perlin1.jpg)

Figure 4.10.4: glm::perlin(glm::vec2(x / 16.f, y / 16.f));

![](/doc/manual/noise-perlin2.jpg)

Figure 4.10.5: glm::perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f));

![](/doc/manual/noise-perlin3.jpg)

Figure 4.10.6: glm::perlin(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f)));

![](/doc/manual/noise-perlin4.png)

Figure 4.10.7: glm::perlin(glm::vec2(x / 16.f, y / 16.f), glm::vec2(2.0f));

![](/doc/manual/noise-perlin5.png)

Figure 4.10.8: glm::perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f), glm::vec3(2.0f));

![](/doc/manual/noise-perlin6.png)

Figure 4.10.9: glm::perlin(glm::vec4(x / 16.f, y / 16.f, glm::vec2(0.5f)), glm::vec4(2.0f));

### <a name="section4_11"></a> 4.11. GLM\_GTC\_packing

Convert scalar and vector types to and from packed formats, saving space at the cost of precision. However, packing a value into a format that it was previously unpacked from is guaranteed to be lossless.

&lt;glm/gtc/packing.hpp&gt; need to be included to use these features.

### <a name="section4_12"></a> 4.12. GLM\_GTC\_quaternion

Quaternions and operations upon thereof.

&lt;glm/gtc/quaternion.hpp&gt; need to be included to use these features.

### <a name="section4_13"></a> 4.13. GLM\_GTC\_random

Probability distributions in up to four dimensions.

&lt;glm/gtc/random.hpp&gt; need to be included to use these features.

![](/doc/manual/random-linearrand.png)

Figure 4.13.1: glm::vec4(glm::linearRand(glm::vec2(-1), glm::vec2(1)), 0, 1);

![](/doc/manual/random-circularrand.png)

Figure 4.13.2: glm::vec4(glm::circularRand(1.0f), 0, 1);

![](/doc/manual/random-sphericalrand.png)

Figure 4.13.3: glm::vec4(glm::sphericalRand(1.0f), 1);

![](/doc/manual/random-diskrand.png)

Figure 4.13.4: glm::vec4(glm::diskRand(1.0f), 0, 1);

![](/doc/manual/random-ballrand.png)

Figure 4.13.5: glm::vec4(glm::ballRand(1.0f), 1);

![](/doc/manual/random-gaussrand.png)

Figure 4.13.6: glm::vec4(glm::gaussRand(glm::vec3(0), glm::vec3(1)), 1);

### <a name="section4_14"></a> 4.14. GLM\_GTC\_reciprocal

Reciprocal trigonometric functions (e.g. secant, cosecant, tangent).

&lt;glm/gtc/reciprocal.hpp&gt; need to be included to use the features of this extension.

### <a name="section4_15"></a> 4.15. GLM\_GTC\_round

Various rounding operations and common special cases thereof.

&lt;glm/gtc/round.hpp&gt; need to be included to use the features of this extension.

### <a name="section4_16"></a> 4.16. GLM\_GTC\_type\_aligned

Aligned vector types.

&lt;glm/gtc/type\_aligned.hpp&gt; need to be included to use the features of this extension.

### <a name="section4_17"></a> 4.17. GLM\_GTC\_type\_precision

Vector and matrix types with defined precisions, e.g. i8vec4, which is a 4D vector of signed 8-bit integers.

This extension adds defines to set the default precision of each class of types added, in a manner identical to that described in section [Default precision](#section3_1).

Available defines for signed 8-bit integer types (glm::i8vec\*):

* GLM\_PRECISION\_LOWP\_INT8: Low precision
* GLM\_PRECISION\_MEDIUMP\_INT8: Medium precision
* GLM\_PRECISION\_HIGHP\_INT8: High precision (default)

Available defines for unsigned 8-bit integer types (glm::u8vec\*):

* GLM\_PRECISION\_LOWP\_UINT8: Low precision
* GLM\_PRECISION\_MEDIUMP\_UINT8: Medium precision
* GLM\_PRECISION\_HIGHP\_UINT8: High precision (default)

Available defines for signed 16-bit integer types (glm::i16vec\*):

* GLM\_PRECISION\_LOWP\_INT16: Low precision
* GLM\_PRECISION\_MEDIUMP\_INT16: Medium precision
* GLM\_PRECISION\_HIGHP\_INT16: High precision (default)

Available defines for unsigned 16-bit integer types (glm::u16vec\*):

* GLM\_PRECISION\_LOWP\_UINT16: Low precision
* GLM\_PRECISION\_MEDIUMP\_UINT16: Medium precision
* GLM\_PRECISION\_HIGHP\_UINT16: High precision (default)

Available defines for signed 32-bit integer types (glm::i32vec\*):

* GLM\_PRECISION\_LOWP\_INT32: Low precision
* GLM\_PRECISION\_MEDIUMP\_INT32: Medium precision
* GLM\_PRECISION\_HIGHP\_INT32: High precision (default)

Available defines for unsigned 32-bit integer types (glm::u32vec\*):

* GLM\_PRECISION\_LOWP\_UINT32: Low precision
* GLM\_PRECISION\_MEDIUMP\_UINT32: Medium precision
* GLM\_PRECISION\_HIGHP\_UINT32: High precision (default)

Available defines for signed 64-bit integer types (glm::i64vec\*):

* GLM\_PRECISION\_LOWP\_INT64: Low precision
* GLM\_PRECISION\_MEDIUMP\_INT64: Medium precision
* GLM\_PRECISION\_HIGHP\_INT64: High precision (default)

Available defines for unsigned 64-bit integer types (glm::u64vec\*):

* GLM\_PRECISION\_LOWP\_UINT64: Low precision
* GLM\_PRECISION\_MEDIUMP\_UINT64: Medium precision
* GLM\_PRECISION\_HIGHP\_UINT64: High precision (default)

Available defines for 32-bit floating-point types (glm::f32vec\*, glm::f32mat\*, glm::f32quat):

* GLM\_PRECISION\_LOWP\_FLOAT32: Low precision
* GLM\_PRECISION\_MEDIUMP\_FLOAT32: Medium precision
* GLM\_PRECISION\_HIGHP\_FLOAT32: High precision (default)

Available defines for 64-bit floating-point types (glm::f64vec\*, glm::f64mat\*, glm::f64quat):

* GLM\_PRECISION\_LOWP\_FLOAT64: Low precision
* GLM\_PRECISION\_MEDIUMP\_FLOAT64: Medium precision
* GLM\_PRECISION\_HIGHP\_FLOAT64: High precision (default)

&lt;glm/gtc/type\_precision.hpp&gt; need to be included to use the features of this extension.

### <a name="section4_18"></a> 4.18. GLM\_GTC\_type\_ptr

Facilitate interactions between pointers to basic types (e.g. float*) and GLM types (e.g. mat4).

This extension defines an overloaded function, glm::value_ptr, which returns a pointer to the memory layout of any GLM vector or matrix (vec3, mat4, etc.). Matrix types store their values in column-major order. This is useful for uploading data to matrices or for copying data to buffer objects.

```cpp
// GLM_GTC_type_ptr provides a safe solution:
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>

void foo()
{
    glm::vec4 v(0.0f);
    glm::mat4 m(1.0f);
    ...
    glVertex3fv(glm::value_ptr(v))
    glLoadMatrixfv(glm::value_ptr(m));
}

// Another solution, this one inspired by the STL:
#include <glm/glm.hpp>

void foo()
{
    glm::vec4 v(0.0f);
    glm::mat4 m(1.0f);
    ...
    glVertex3fv(&v[0]);
    glLoadMatrixfv(&m[0][0]);
}
```

*Note: It would be possible to implement [*glVertex3fv*](http://www.opengl.org/sdk/docs/man2/xhtml/glVertex.xml)(glm::vec3(0)) in C++ with the appropriate cast operator that would result as an
implicit cast in this example. However cast operators may produce programs running with unexpected behaviours without build error or any form of notification. *

&lt;glm/gtc/type\_ptr.hpp&gt; need to be included to use these features.

### <a name="section4_19"></a> 4.19. GLM\_GTC\_ulp

Measure a function's accuracy given a reference implementation of it. This extension works on floating-point data and provides results in [ULP](http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf).

&lt;glm/gtc/ulp.hpp&gt; need to be included to use these features.

### <a name="section4_20"></a> 4.20. GLM\_GTC\_vec1

Add \*vec1 types.

&lt;glm/gtc/vec1.hpp&gt; need to be included to use these features.

---
## <a name="section5"></a> 5. OpenGL interoperability

### <a name="section5_1"></a> 5.1. GLM replacements for deprecated OpenGL functions

OpenGL 3.1 specification has deprecated some features that have been removed from OpenGL 3.2 core profile specification. GLM provides some replacement functions.

[***glRotate{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml)

```cpp
glm::mat4 glm::rotate(glm::mat4 const& m, float angle, glm::vec3 const& axis);
glm::dmat4 glm::rotate(glm::dmat4 const& m, double angle, glm::dvec3 const& axis);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glScale{f, d}:***](http://www.opengl.org/sdk/docs/man2/xhtml/glScale.xml)

```cpp
glm::mat4 glm::scale(glm::mat4 const& m, glm::vec3 const& factors);
glm::dmat4 glm::scale(glm::dmat4 const& m, glm::dvec3 const& factors);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glTranslate{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glTranslate.xml)

```cpp
glm::mat4 glm::translate(glm::mat4 const& m, glm::vec3 const& translation);
glm::dmat4 glm::translate(glm::dmat4 const& m, glm::dvec3 const& translation);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glLoadIdentity:***](https://www.opengl.org/sdk/docs/man2/xhtml/glLoadIdentity.xml)

```cpp
glm::mat4(1.0) or glm::mat4();
glm::dmat4(1.0) or glm::dmat4();
```

From GLM core library: &lt;glm/glm.hpp&gt;

[***glMultMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glMultMatrix.xml)

```cpp
glm::mat4() * glm::mat4();
glm::dmat4() * glm::dmat4();
```

From GLM core library: &lt;glm/glm.hpp&gt;

[***glLoadTransposeMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glLoadTransposeMatrix.xml)

```cpp
glm::transpose(glm::mat4());
glm::transpose(glm::dmat4());
```

From GLM core library: &lt;glm/glm.hpp&gt;

[***glMultTransposeMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glMultTransposeMatrix.xml)

```cpp
glm::mat4() * glm::transpose(glm::mat4());
glm::dmat4() * glm::transpose(glm::dmat4());
```

From GLM core library: &lt;glm/glm.hpp&gt;

[***glFrustum:***](http://www.opengl.org/sdk/docs/man2/xhtml/glFrustum.xml)

```cpp
glm::mat4 glm::frustum(float left, float right, float bottom, float top, float zNear, float zFar);
glm::dmat4 glm::frustum(double left, double right, double bottom, double top, double zNear, double zFar);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glOrtho:***](https://www.opengl.org/sdk/docs/man2/xhtml/glOrtho.xml)

```cpp
glm::mat4 glm::ortho(float left, float right, float bottom, float top, float zNear, float zFar);
glm::dmat4 glm::ortho(double left, double right, double bottom, double top, double zNear, double zFar);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

### <a name="section5_2"></a> 5.2. GLM replacements for GLU functions

[***gluLookAt:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml)

```cpp
glm::mat4 glm::lookAt(glm::vec3 const& eye, glm::vec3 const& center, glm::vec3 const& up);
glm::dmat4 glm::lookAt(glm::dvec3 const& eye, glm::dvec3 const& center, glm::dvec3 const& up);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***gluOrtho2D:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluOrtho2D.xml)

```cpp
glm::mat4 glm::ortho(float left, float right, float bottom, float top);
glm::dmat4 glm::ortho(double left, double right, double bottom, double top);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***gluPerspective:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml)

```cpp
glm::mat4 perspective(float fovy, float aspect, float zNear, float zFar);
glm::dmat4 perspective(double fovy, double aspect, double zNear, double zFar);
```

Note that in GLM, fovy is expressed in radians, not degrees.

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***gluPickMatrix:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluPickMatrix.xml)

```cpp
glm::mat4 pickMatrix(glm::vec2 const& center, glm::vec2 const& delta, glm::ivec4 const& viewport);
glm::dmat4 pickMatrix(glm::dvec2 const& center, glm::dvec2 const& delta, glm::ivec4 const& viewport);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***gluProject:***](http://www.opengl.org/sdk/docs/man2/xhtml/gluProject.xml)

```cpp
glm::vec3 project(glm::vec3 const& obj, glm::mat4 const& model, glm::mat4 const& proj, glm::ivec4 const& viewport);
glm::dvec3 project(glm::dvec3 const& obj, glm::dmat4 const& model, glm::dmat4 const& proj, glm::ivec4 const& viewport);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***gluUnProject:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluUnProject.xml)

```cpp
glm::vec3 unProject(glm::vec3 const& win, glm::mat4 const& model, glm::mat4 const& proj, glm::ivec4 const& viewport);
glm::dvec3 unProject(glm::dvec3 const& win, glm::dmat4 const& model, glm::dmat4 const& proj, glm::ivec4 const& viewport);
```

From GLM\_GTC\_matrix\_transform extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

---
## <a name="section6"></a> 6. Known issues

This section reports GLSL features that GLM can't accurately emulate due to language restrictions.

### <a name="section6_1"></a> 6.1. not function

The GLSL function 'not' is a keyword in C++. To prevent name collisions and ensure a consistent API, the name not\_ (note the underscore) is used instead.

### <a name="section6_2"></a> 6.2. Precision qualifiers support

GLM supports GLSL precision qualifiers through prefixes instead of qualifiers. For example, GLM exposes \verb|lowp_vec4|, \verb|mediump_vec4| and \verb|highp_vec4| as variations of \verb|vec4|.

Similarly to GLSL, GLM precision qualifiers are used to trade precision of operations in term of [ULPs](http://en.wikipedia.org/wiki/Unit_in_the_last_place) for better performance. By default, all the types use high precision.

```cpp
// Using precision qualifier in GLSL:

ivec3 foo(in vec4 v)
{
    highp vec4 a = v;
    mediump vec4 b = a;
    lowp ivec3 c = ivec3(b);
    return c;
}

// Using precision qualifier in GLM:

#include <glm/glm.hpp>

ivec3 foo(const vec4 & v)
{
    highp_vec4 a = v;
    medium_vec4 b = a;
    lowp_ivec3 c = glm::ivec3(b);
    return c;
}
```

The syntax for default precision specifications in GLM differs from that in GLSL; for more information, see section Default Precision <a name="section3_1"></a>.

---
## <a name="section7"></a> 7. FAQ

### <a name="section7_1"></a> 7.1 Why GLM follows GLSL specification and conventions?

Following GLSL conventions is a really strict policy of GLM. It has been designed following the idea that everyone does its own math library with his own conventions. The idea is that brilliant developers (the OpenGL ARB) worked together and agreed to make GLSL. Following GLSL conventions
is a way to find consensus. Moreover, basically when a developer knows GLSL, he knows GLM.

### <a name="section7_2"></a> 7.2. Does GLM run GLSL program?

No, GLM is a C++ implementation of a subset of GLSL.

### <a name="section7_3"></a> 7.3. Does a GLSL compiler build GLM codes?

No, this is not what GLM attends to do.

### <a name="section7_4"></a> 7.4. Should I use ‘GTX’ extensions?

GTX extensions are qualified to be experimental extensions. In GLM this means that these extensions might change from version to version without any restriction. In practice, it doesn’t really change except time to
time. GTC extensions are stabled, tested and perfectly reliable in time. Many GTX extensions extend GTC extensions and provide a way to explore features and implementations and APIs and then are promoted to GTC
extensions. This is fairly the way OpenGL features are developed; through extensions.

Stating with GLM 0.9.9, to use experimental extensions, an application must define GLM_ENABLE_EXPERIMENTAL.

### <a name="section7_5"></a> 7.5. Where can I ask my questions?

A good place is [stackoverflow](http://stackoverflow.com/search?q=GLM) using the GLM tag.

### <a name="section7_6"></a> 7.6. Where can I find the documentation of extensions?

The Doxygen generated documentation includes a complete list of all extensions available. Explore this [*API documentation*](http://glm.g-truc.net/html/index.html) to get a complete
view of all GLM capabilities!

### <a name="section7_7"></a> 7.7. Should I use ‘using namespace glm;’?

NO! Chances are that if using namespace glm; is called, especially in a header file, name collisions will happen as GLM is based on GLSL which uses common tokens for types and functions. Avoiding using namespace
glm; will a higher compatibility with third party library and SDKs.

### <a name="section7_8"></a> 7.8. Is GLM fast?

GLM is mainly designed to be convenient and that's why it is written against the GLSL specification.

Following the Pareto principle where 20% of the code consumes 80% of the execution time, GLM operates perfectly on the 80% of the code that consumes 20% of the performances. Furthermore, thanks to the lowp,
mediump and highp qualifiers, GLM provides approximations which trade precision for performance. Finally, GLM can automatically produce SIMD optimized code for functions of its implementation.

However, on performance critical code paths, we should expect that dedicated algorithms should be written to reach peak performance.

### <a name="section7_9"></a> 7.9. When I build with Visual C++ with /W4 warning level, I have warnings...

You should not have any warnings even in /W4 mode. However, if you expect such level for your code, then you should ask for the same level to the compiler by at least disabling the Visual C++ language extensions
(/Za) which generates warnings when used. If these extensions are enabled, then GLM will take advantage of them and the compiler will generate warnings.

### <a name="section7_10"></a> 7.10. Why some GLM functions can crash because of division by zero?

GLM functions crashing is the result of a domain error. Such behavior follows the precedent set by C and C++'s standard library. For example, it’s a domain error to pass a null vector (all zeroes) to glm::normalize function, or to pass a negative number into std::sqrt.

### <a name="section7_11"></a> 7.11. What unit for angles is used in GLM?

GLSL is using radians but GLU is using degrees to express angles. This has caused GLM to use inconsistent units for angles. Starting with GLM 0.9.6, all GLM functions are using radians. For more information, follow
the [link](http://www.g-truc.net/post-0693.html#menu).

### <a name="section7_12"></a> 7.12. Windows headers cause build errors...

Some Windows headers define min and max as macros which may cause compatibility with third party libraries such as GLM.
It is highly recommended to [define NOMINMAX](http://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c) before including Windows headers to workaround this issue.
To workaround the incompatibility with these macros, GLM will systematically undef these macros if they are defined.

### <a name="section7_13"></a> 7.13. Constant expressions support

GLM has some C++ <a href="http://en.cppreference.com/w/cpp/language/constexpr">constant expressions</a> support. However, GLM automatically detects the use of SIMD instruction sets through compiler arguments to populate its implementation with SIMD intrinsics.
Unfortunately, GCC and Clang doesn't support SIMD instrinsics as constant expressions. To allow constant expressions on all vectors and matrices types, define GLM\_FORCE\_PURE before including GLM headers.

---
## <a name="section8"></a> 8. Code samples

This series of samples only shows various GLM features without consideration of any sort.

### <a name="section8_1"></a> 8.1. Compute a triangle normal

```cpp
#include <glm/glm.hpp> // vec3 normalize cross

glm::vec3 computeNormal(glm::vec3 const& a, glm::vec3 const& b, glm::vec3 const& c)
{
    return glm::normalize(glm::cross(c - a, b - a));
}

// A much faster but less accurate alternative:
#include <glm/glm.hpp> // vec3 cross
#include <glm/gtx/fast_square_root.hpp> // fastNormalize

glm::vec3 computeNormal(glm::vec3 const& a, glm::vec3 const& b, glm::vec3 const& c)
{
    return glm::fastNormalize(glm::cross(c - a, b - a));
}
```

### <a name="section8_2"></a> 8.2. Matrix transform

```cpp
#include <glm/glm.hpp> // vec3, vec4, ivec4, mat4
#include <glm/gtc/matrix_transform.hpp> // translate, rotate, scale, perspective
#include <glm/gtc/type_ptr.hpp> // value_ptr

void setUniformMVP(GLuint Location, glm::vec3 const& Translate, glm::vec3 const& Rotate)
{
    glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.f);
    glm::mat4 ViewTranslate = glm::translate(
        glm::mat4(1.0f), Translate);
    glm::mat4 ViewRotateX = glm::rotate(
        ViewTranslate, Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
    glm::mat4 View = glm::rotate(ViewRotateX,
        Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
    glm::mat4 Model = glm::scale(
        glm::mat4(1.0f), glm::vec3(0.5f));
    glm::mat4 MVP = Projection * View * Model;
    glUniformMatrix4fv(Location, 1, GL_FALSE, glm::value_ptr(MVP));
}
```

### <a name="section8_3"></a> 8.3. Vector types

```cpp
#include <glm/glm.hpp> // vec2
#include <glm/gtc/type_precision.hpp> // hvec2, i8vec2, i32vec2

std::size_t const VertexCount = 4;

// Float quad geometry
std::size_t const PositionSizeF32 = VertexCount * sizeof(glm::vec2);
glm::vec2 const PositionDataF32[VertexCount] =
{
    glm::vec2(-1.0f,-1.0f),
    glm::vec2( 1.0f,-1.0f),
    glm::vec2( 1.0f, 1.0f),
    glm::vec2(-1.0f, 1.0f)
};

// Half-float quad geometry
std::size_t const PositionSizeF16 = VertexCount * sizeof(glm::hvec2);
glm::hvec2 const PositionDataF16[VertexCount] =
{
    glm::hvec2(-1.0f, -1.0f),
    glm::hvec2( 1.0f, -1.0f),
    glm::hvec2( 1.0f, 1.0f),
    glm::hvec2(-1.0f, 1.0f)
};

// 8 bits signed integer quad geometry
std::size_t const PositionSizeI8 = VertexCount * sizeof(glm::i8vec2);
glm::i8vec2 const PositionDataI8[VertexCount] =
{
    glm::i8vec2(-1,-1),
    glm::i8vec2( 1,-1),
    glm::i8vec2( 1, 1),
    glm::i8vec2(-1, 1)
};

// 32 bits signed integer quad geometry
std::size_t const PositionSizeI32 = VertexCount * sizeof(glm::i32vec2);
glm::i32vec2 const PositionDataI32[VertexCount] =
{
    glm::i32vec2(-1,-1),
    glm::i32vec2( 1,-1),
    glm::i32vec2( 1, 1),
    glm::i32vec2(-1, 1)
};
```

### <a name="section8_4"></a> 8.4. Lighting

```cpp
#include <glm/glm.hpp> // vec3 normalize reflect dot pow
#include <glm/gtc/random.hpp> // ballRand

// vecRand3, generate a random and equiprobable normalized vec3
glm::vec3 lighting(intersection const& Intersection, material const& Material, light const& Light, glm::vec3 const& View)
{
    glm::vec3 Color = glm::vec3(0.0f);
    glm::vec3 LightVertor = glm::normalize(
        Light.position() - Intersection.globalPosition() +
        glm::ballRand(0.0f, Light.inaccuracy());

    if(!shadow(Intersection.globalPosition(), Light.position(), LightVertor))
    {
        float Diffuse = glm::dot(Intersection.normal(), LightVector);
        if(Diffuse &lt;= 0.0f)
            return Color;

        if(Material.isDiffuse())
            Color += Light.color() * Material.diffuse() * Diffuse;

        if(Material.isSpecular())
        {
            glm::vec3 Reflect = glm::reflect(-LightVector, Intersection.normal());
            float Dot = glm::dot(Reflect, View);
            float Base = Dot &gt; 0.0f ? Dot : 0.0f;
            float Specular = glm::pow(Base, Material.exponent());
            Color += Material.specular() \* Specular;
        }
    }

    return Color;
}
```

---
## <a name="section9"></a> 9. References

### <a name="section9_1"></a> 9.1. OpenGL specifications

* OpenGL 4.3 core specification
* [GLSL 4.30 specification](http://www.opengl.org/registry/doc/GLSLangSpec.4.30.7.diff.pdf)
![](media/image21.png){width="2.859722222222222in" height="1.6083333333333334in"}- [*GLU 1.3 specification*](http://www.opengl.org/documentation/specs/glu/glu1_3.pdf)

### <a name="section9_2"></a> 9.2. External links

* [GLM on stackoverflow](http://stackoverflow.com/search?q=GLM)

### <a name="section9_3"></a> 9.3. Projects using GLM

***[Leo’s Fortune](http://www.leosfortune.com/)***

Leo’s Fortune is a platform adventure game where you hunt down the cunning and mysterious thief that stole your gold. Available on PS4, Xbox One, PC, Mac, iOS and Android.

Beautifully hand-crafted levels bring the story of Leo to life in this epic adventure.

“I just returned home to find all my gold has been stolen! For some devious purpose, the thief has dropped pieces of my gold like breadcrumbs through the woods.”

“Despite this pickle of a trap, I am left with no choice but to follow the trail.”

“Whatever lies ahead, I must recover my fortune.” -Leopold

![](/doc/manual/references-leosfortune.jpeg)

![](/doc/manual/references-leosfortune2.jpg)

[***OpenGL 4.0 Shading Language Cookbook***](http://www.packtpub.com/opengl-4-0-shading-language-cookbook/book?tag=rk/opengl4-abr1/0811)

A set of recipes that demonstrates a wide of techniques for producing high-quality, real-time 3D graphics with GLSL 4.0, such as:

* Using GLSL 4.0 to implement lighting and shading techniques.
* Using the new features of GLSL 4.0 including tessellation and geometry shaders.
* Using textures in GLSL as part of a wide variety of techniques from basic texture mapping to deferred shading.

Simple, easy-to-follow examples with GLSL source code are provided, as well as a basic description of the theory behind each technique.

![](/doc/manual/references-glsl4book.jpg)

[***Outerra***](http://outerra.com/)

A 3D planetary engine for seamless planet rendering from space down to the surface. Can use arbitrary resolution of elevation data, refining it to centimetre resolution using fractal algorithms.

![](/doc/manual/references-outerra1.jpg)

![](/doc/manual/references-outerra2.jpg)

![](/doc/manual/references-outerra3.jpg)

![](/doc/manual/references-outerra4.jpg)

[***Falcor***](https://github.com/NVIDIA/Falcor)

Real-time rendering research framework by NVIDIA.

[***Cinder***](https://libcinder.org/)

Cinder is a free and open source library for professional-quality creative coding in C++.

Cinder is a C++ library for programming with aesthetic intent - the sort of development often called creative coding. This includes domains like graphics, audio, video, and computational geometry. Cinder is cross-platform, with official support for OS X, Windows, iOS, and WinRT.

Cinder is production-proven, powerful enough to be the primary tool for professionals, but still suitable for learning and experimentation. Cinder is released under the [2-Clause BSD License](http://opensource.org/licenses/BSD-2-Clause).

![](/doc/manual/references-cinder.png)

[***opencloth***](http://code.google.com/p/opencloth/)

A collection of source codes implementing cloth simulation algorithms in OpenGL.

Simple, easy-to-follow examples with GLSL source code, as well as a basic description of the theory behind each technique.

![](/doc/manual/references-opencloth1.png)

![](/doc/manual/references-opencloth3.png)

[***LibreOffice***](https://www.libreoffice.org/)

LibreOffice includes several applications that make it the most powerful Free and Open Source office suite on the market.

[***Are you using GLM in a project?***](mailto:glm@g-truc.net)

### <a name="section9_4"></a> 9.4. Tutorials using GLM

* [Sascha Willems' Vulkan examples](https://github.com/SaschaWillems/Vulkan), Examples and demos for the new Vulkan API
* [VKTS](https://github.com/McNopper/Vulkan) Vulkan examples using VulKan ToolS (VKTS)
* [*The OpenGL Samples Pack*](http://www.g-truc.net/project-0026.html#menu), samples that show how to set up all the different new features
* [*Learning Modern 3D Graphics programming*](http://www.arcsynthesis.org/gltut/), a great OpenGL tutorial using GLM by Jason L. McKesson
* [*Morten Nobel-Jørgensen’s*](http://blog.nobel-joergensen.com/2011/04/02/glm-brilliant-math-library-for-opengl/) review and use an [*OpenGL renderer*](https://github.com/mortennobel/RenderE)
* [*Swiftless’ OpenGL tutorial*](http://www.swiftless.com/opengltuts.html) using GLM by Donald Urquhart
* [*Rastergrid*](http://rastergrid.com/blog/), many technical articles with companion programs using GLM by Daniel Rákos\
* [*OpenGL Tutorial*](http://www.opengl-tutorial.org), tutorials for OpenGL 3.1 and later
* [*OpenGL Programming on Wikibooks*](http://en.wikibooks.org/wiki/OpenGL_Programming): For beginners who are discovering OpenGL.
* [*3D Game Engine Programming*](http://3dgep.com/): Learning the latest 3D Game Engine Programming techniques.
* [Game Tutorials](http://www.gametutorials.com/opengl-4-matrices-and-glm/), graphics and game programming.
* [open.gl](https://open.gl/), OpenGL tutorial
* [c-jump](http://www.c-jump.com/bcc/common/Talk3/Math/GLM/GLM.html), GLM tutorial
* [Learn OpenGL](http://learnopengl.com/), OpenGL tutorial
* [***Are you using GLM in a tutorial?***](mailto:glm@g-truc.net)

### <a name="section9_5"></a> 9.5. Equivalent for other languages

* [*cglm*](https://github.com/recp/cglm): OpenGL Mathematics (glm) for C.
* [*GlmSharp*](https://github.com/Philip-Trettner/GlmSharp): Open-source semi-generated GLM-flavored math library for .NET/C\#.
* [glm-js](https://github.com/humbletim/glm-js): JavaScript adaptation of the OpenGL Mathematics (GLM) C++ library interfaces
* [Java OpenGL Mathematics (GLM)](https://github.com/java-graphics/glm)
* [JGLM](https://github.com/jroyalty/jglm) - Java OpenGL Mathematics Library
* [SwiftGL Math Library](https://github.com/SwiftGL/Math/blob/master/Sources/glm.swift) GLM for Swift
* [glm-go](https://github.com/jbowtie/glm-go): Simple linear algebra library similar in spirit to GLM
* [openll](https://github.com/Polkm/openll): Lua bindings for OpenGL, GLM, GLFW, OpenAL, SOIL and PhysicsFS
* [glm-rs](https://github.com/dche/glm-rs): GLSL mathematics for Rust programming language
* [glmpython](https://github.com/Queatz/glmpython): GLM math library for Python

### <a name="section9_6"></a> 9.6. Alternatives to GLM

* [*CML*](http://cmldev.net/): The CML (Configurable Math Library) is a free C++ math library for games and graphics.
* [*Eigen*](http://eigen.tuxfamily.org/): A more heavy weight math library for general linear algebra in C++.
* [*glhlib*](http://glhlib.sourceforge.net/): A much more than glu C library.
* Are you using or developing an alternative library to GLM?

### <a name="section9_7"></a> 9.7. Acknowledgements

GLM is developed and maintained by [*Christophe Riccio*](http://www.g-truc.net) but many contributors have made this project what it is.

Special thanks to:
* Ashima Arts and Stefan Gustavson for their work on [*webgl-noise*](https://github.com/ashima/webgl-noise) which has been used for GLM noises implementation.
* [*Arthur Winters*](http://athile.net/library/wiki/index.php?title=Athile_Technologies) for the C++11 and Visual C++ swizzle operators implementation and tests.
* Joshua Smith and Christoph Schied for the discussions and the experiments around the swizzle operators implementation issues.
* Guillaume Chevallereau for providing and maintaining the [*nightlight build system*](http://my.cdash.org/index.php?project=GLM).
* Ghenadii Ursachi for GLM\_GTX\_matrix\_interpolation implementation.
* Mathieu Roumillac for providing some implementation ideas.
* [*Grant James*](http://www.zeuscmd.com/) for the implementation of all combination of none-squared matrix products.
* Jesse Talavera-Greenberg for his work on the manual amount other things.
* All the GLM users that have report bugs and hence help GLM to become a great library!