Codebase list golang-github-willf-bitset / 5d6f56a6-c7c2-4314-8905-c2d85ec2fa7a/upstream bitset.go
5d6f56a6-c7c2-4314-8905-c2d85ec2fa7a/upstream

Tree @5d6f56a6-c7c2-4314-8905-c2d85ec2fa7a/upstream (Download .tar.gz)

bitset.go @5d6f56a6-c7c2-4314-8905-c2d85ec2fa7a/upstreamraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
/*
Package bitset implements bitsets, a mapping
between non-negative integers and boolean values. It should be more
efficient than map[uint] bool.

It provides methods for setting, clearing, flipping, and testing
individual integers.

But it also provides set intersection, union, difference,
complement, and symmetric operations, as well as tests to
check whether any, all, or no bits are set, and querying a
bitset's current length and number of positive bits.

BitSets are expanded to the size of the largest set bit; the
memory allocation is approximately Max bits, where Max is
the largest set bit. BitSets are never shrunk. On creation,
a hint can be given for the number of bits that will be used.

Many of the methods, including Set,Clear, and Flip, return
a BitSet pointer, which allows for chaining.

Example use:

	import "bitset"
	var b BitSet
	b.Set(10).Set(11)
	if b.Test(1000) {
		b.Clear(1000)
	}
	if B.Intersection(bitset.New(100).Set(10)).Count() > 1 {
		fmt.Println("Intersection works.")
	}

As an alternative to BitSets, one should check out the 'big' package,
which provides a (less set-theoretical) view of bitsets.
*/
package bitset

import (
	"bufio"
	"bytes"
	"encoding/base64"
	"encoding/binary"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	"strconv"
)

// the wordSize of a bit set
const wordSize = uint(64)

// log2WordSize is lg(wordSize)
const log2WordSize = uint(6)

// allBits has every bit set
const allBits uint64 = 0xffffffffffffffff

// default binary BigEndian
var binaryOrder binary.ByteOrder = binary.BigEndian

// default json encoding base64.URLEncoding
var base64Encoding = base64.URLEncoding

// Base64StdEncoding Marshal/Unmarshal BitSet with base64.StdEncoding(Default: base64.URLEncoding)
func Base64StdEncoding() { base64Encoding = base64.StdEncoding }

// LittleEndian Marshal/Unmarshal Binary as Little Endian(Default: binary.BigEndian)
func LittleEndian() { binaryOrder = binary.LittleEndian }

// A BitSet is a set of bits. The zero value of a BitSet is an empty set of length 0.
type BitSet struct {
	length uint
	set    []uint64
}

// Error is used to distinguish errors (panics) generated in this package.
type Error string

// safeSet will fixup b.set to be non-nil and return the field value
func (b *BitSet) safeSet() []uint64 {
	if b.set == nil {
		b.set = make([]uint64, wordsNeeded(0))
	}
	return b.set
}

// SetBitsetFrom fills the bitset with an array of integers without creating a new BitSet instance
func (b *BitSet) SetBitsetFrom(buf []uint64) {
	b.length = uint(len(buf)) * 64
	b.set = buf
}

// From is a constructor used to create a BitSet from an array of integers
func From(buf []uint64) *BitSet {
	return FromWithLength(uint(len(buf))*64, buf)
}

// FromWithLength constructs from an array of integers and length.
func FromWithLength(len uint, set []uint64) *BitSet {
	return &BitSet{len, set}
}

// Bytes returns the bitset as array of integers
func (b *BitSet) Bytes() []uint64 {
	return b.set
}

// wordsNeeded calculates the number of words needed for i bits
func wordsNeeded(i uint) int {
	if i > (Cap() - wordSize + 1) {
		return int(Cap() >> log2WordSize)
	}
	return int((i + (wordSize - 1)) >> log2WordSize)
}

// wordsIndex calculates the index of words in a `uint64`
func wordsIndex(i uint) uint {
	return i & (wordSize - 1)
}

// New creates a new BitSet with a hint that length bits will be required
func New(length uint) (bset *BitSet) {
	defer func() {
		if r := recover(); r != nil {
			bset = &BitSet{
				0,
				make([]uint64, 0),
			}
		}
	}()

	bset = &BitSet{
		length,
		make([]uint64, wordsNeeded(length)),
	}

	return bset
}

// Cap returns the total possible capacity, or number of bits
func Cap() uint {
	return ^uint(0)
}

// Len returns the number of bits in the BitSet.
// Note the difference to method Count, see example.
func (b *BitSet) Len() uint {
	return b.length
}

// extendSet adds additional words to incorporate new bits if needed
func (b *BitSet) extendSet(i uint) {
	if i >= Cap() {
		panic("You are exceeding the capacity")
	}
	nsize := wordsNeeded(i + 1)
	if b.set == nil {
		b.set = make([]uint64, nsize)
	} else if cap(b.set) >= nsize {
		b.set = b.set[:nsize] // fast resize
	} else if len(b.set) < nsize {
		newset := make([]uint64, nsize, 2*nsize) // increase capacity 2x
		copy(newset, b.set)
		b.set = newset
	}
	b.length = i + 1
}

// Test whether bit i is set.
func (b *BitSet) Test(i uint) bool {
	if i >= b.length {
		return false
	}
	return b.set[i>>log2WordSize]&(1<<wordsIndex(i)) != 0
}

// Set bit i to 1, the capacity of the bitset is automatically
// increased accordingly.
// If i>= Cap(), this function will panic.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Set(i uint) *BitSet {
	if i >= b.length { // if we need more bits, make 'em
		b.extendSet(i)
	}
	b.set[i>>log2WordSize] |= 1 << wordsIndex(i)
	return b
}

// Clear bit i to 0
func (b *BitSet) Clear(i uint) *BitSet {
	if i >= b.length {
		return b
	}
	b.set[i>>log2WordSize] &^= 1 << wordsIndex(i)
	return b
}

// SetTo sets bit i to value.
// If i>= Cap(), this function will panic.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) SetTo(i uint, value bool) *BitSet {
	if value {
		return b.Set(i)
	}
	return b.Clear(i)
}

// Flip bit at i.
// If i>= Cap(), this function will panic.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Flip(i uint) *BitSet {
	if i >= b.length {
		return b.Set(i)
	}
	b.set[i>>log2WordSize] ^= 1 << wordsIndex(i)
	return b
}

// FlipRange bit in [start, end).
// If end>= Cap(), this function will panic.
// Warning: using a very large value for 'end'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) FlipRange(start, end uint) *BitSet {
	if start >= end {
		return b
	}
	if end-1 >= b.length { // if we need more bits, make 'em
		b.extendSet(end - 1)
	}
	var startWord uint = start >> log2WordSize
	var endWord uint = end >> log2WordSize
	b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))
	for i := startWord; i < endWord; i++ {
		b.set[i] = ^b.set[i]
	}
	if end&(wordSize-1) != 0 {
		b.set[endWord] ^= ^uint64(0) >> wordsIndex(-end)
	}
	return b
}

// Shrink shrinks BitSet so that the provided value is the last possible
// set value. It clears all bits > the provided index and reduces the size
// and length of the set.
//
// Note that the parameter value is not the new length in bits: it is the
// maximal value that can be stored in the bitset after the function call.
// The new length in bits is the parameter value + 1. Thus it is not possible
// to use this function to set the length to 0, the minimal value of the length
// after this function call is 1.
//
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
func (b *BitSet) Shrink(lastbitindex uint) *BitSet {
	length := lastbitindex + 1
	idx := wordsNeeded(length)
	if idx > len(b.set) {
		return b
	}
	shrunk := make([]uint64, idx)
	copy(shrunk, b.set[:idx])
	b.set = shrunk
	b.length = length
	if length < 64 {
		b.set[idx-1] &= allBits >> uint64(64-wordsIndex(length))
	}
	return b
}

// Compact shrinks BitSet to so that we preserve all set bits, while minimizing
// memory usage. Compact calls Shrink.
func (b *BitSet) Compact() *BitSet {
	idx := len(b.set) - 1
	for ; idx >= 0 && b.set[idx] == 0; idx-- {
	}
	newlength := uint((idx + 1) << log2WordSize)
	if newlength >= b.length {
		return b // nothing to do
	}
	if newlength > 0 {
		return b.Shrink(newlength - 1)
	}
	// We preserve one word
	return b.Shrink(63)
}

// InsertAt takes an index which indicates where a bit should be
// inserted. Then it shifts all the bits in the set to the left by 1, starting
// from the given index position, and sets the index position to 0.
//
// Depending on the size of your BitSet, and where you are inserting the new entry,
// this method could be extremely slow and in some cases might cause the entire BitSet
// to be recopied.
func (b *BitSet) InsertAt(idx uint) *BitSet {
	insertAtElement := idx >> log2WordSize

	// if length of set is a multiple of wordSize we need to allocate more space first
	if b.isLenExactMultiple() {
		b.set = append(b.set, uint64(0))
	}

	var i uint
	for i = uint(len(b.set) - 1); i > insertAtElement; i-- {
		// all elements above the position where we want to insert can simply by shifted
		b.set[i] <<= 1

		// we take the most significant bit of the previous element and set it as
		// the least significant bit of the current element
		b.set[i] |= (b.set[i-1] & 0x8000000000000000) >> 63
	}

	// generate a mask to extract the data that we need to shift left
	// within the element where we insert a bit
	dataMask := uint64(1)<<uint64(wordsIndex(idx)) - 1

	// extract that data that we'll shift
	data := b.set[i] & (^dataMask)

	// set the positions of the data mask to 0 in the element where we insert
	b.set[i] &= dataMask

	// shift data mask to the left and insert its data to the slice element
	b.set[i] |= data << 1

	// add 1 to length of BitSet
	b.length++

	return b
}

// String creates a string representation of the Bitmap
func (b *BitSet) String() string {
	// follows code from https://github.com/RoaringBitmap/roaring
	var buffer bytes.Buffer
	start := []byte("{")
	buffer.Write(start)
	counter := 0
	i, e := b.NextSet(0)
	for e {
		counter = counter + 1
		// to avoid exhausting the memory
		if counter > 0x40000 {
			buffer.WriteString("...")
			break
		}
		buffer.WriteString(strconv.FormatInt(int64(i), 10))
		i, e = b.NextSet(i + 1)
		if e {
			buffer.WriteString(",")
		}
	}
	buffer.WriteString("}")
	return buffer.String()
}

// DeleteAt deletes the bit at the given index position from
// within the bitset
// All the bits residing on the left of the deleted bit get
// shifted right by 1
// The running time of this operation may potentially be
// relatively slow, O(length)
func (b *BitSet) DeleteAt(i uint) *BitSet {
	// the index of the slice element where we'll delete a bit
	deleteAtElement := i >> log2WordSize

	// generate a mask for the data that needs to be shifted right
	// within that slice element that gets modified
	dataMask := ^((uint64(1) << wordsIndex(i)) - 1)

	// extract the data that we'll shift right from the slice element
	data := b.set[deleteAtElement] & dataMask

	// set the masked area to 0 while leaving the rest as it is
	b.set[deleteAtElement] &= ^dataMask

	// shift the previously extracted data to the right and then
	// set it in the previously masked area
	b.set[deleteAtElement] |= (data >> 1) & dataMask

	// loop over all the consecutive slice elements to copy each
	// lowest bit into the highest position of the previous element,
	// then shift the entire content to the right by 1
	for i := int(deleteAtElement) + 1; i < len(b.set); i++ {
		b.set[i-1] |= (b.set[i] & 1) << 63
		b.set[i] >>= 1
	}

	b.length = b.length - 1

	return b
}

// NextSet returns the next bit set from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no set bit found)
// for i,e := v.NextSet(0); e; i,e = v.NextSet(i + 1) {...}
//
// Users concerned with performance may want to use NextSetMany to
// retrieve several values at once.
func (b *BitSet) NextSet(i uint) (uint, bool) {
	x := int(i >> log2WordSize)
	if x >= len(b.set) {
		return 0, false
	}
	w := b.set[x]
	w = w >> wordsIndex(i)
	if w != 0 {
		return i + trailingZeroes64(w), true
	}
	x = x + 1
	for x < len(b.set) {
		if b.set[x] != 0 {
			return uint(x)*wordSize + trailingZeroes64(b.set[x]), true
		}
		x = x + 1

	}
	return 0, false
}

// NextSetMany returns many next bit sets from the specified index,
// including possibly the current index and up to cap(buffer).
// If the returned slice has len zero, then no more set bits were found
//
//	buffer := make([]uint, 256) // this should be reused
//	j := uint(0)
//	j, buffer = bitmap.NextSetMany(j, buffer)
//	for ; len(buffer) > 0; j, buffer = bitmap.NextSetMany(j,buffer) {
//	 for k := range buffer {
//	  do something with buffer[k]
//	 }
//	 j += 1
//	}
//
// It is possible to retrieve all set bits as follow:
//
//	indices := make([]uint, bitmap.Count())
//	bitmap.NextSetMany(0, indices)
//
// However if bitmap.Count() is large, it might be preferable to
// use several calls to NextSetMany, for performance reasons.
func (b *BitSet) NextSetMany(i uint, buffer []uint) (uint, []uint) {
	myanswer := buffer
	capacity := cap(buffer)
	x := int(i >> log2WordSize)
	if x >= len(b.set) || capacity == 0 {
		return 0, myanswer[:0]
	}
	skip := wordsIndex(i)
	word := b.set[x] >> skip
	myanswer = myanswer[:capacity]
	size := int(0)
	for word != 0 {
		r := trailingZeroes64(word)
		t := word & ((^word) + 1)
		myanswer[size] = r + i
		size++
		if size == capacity {
			goto End
		}
		word = word ^ t
	}
	x++
	for idx, word := range b.set[x:] {
		for word != 0 {
			r := trailingZeroes64(word)
			t := word & ((^word) + 1)
			myanswer[size] = r + (uint(x+idx) << 6)
			size++
			if size == capacity {
				goto End
			}
			word = word ^ t
		}
	}
End:
	if size > 0 {
		return myanswer[size-1], myanswer[:size]
	}
	return 0, myanswer[:0]
}

// NextClear returns the next clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are set)
func (b *BitSet) NextClear(i uint) (uint, bool) {
	x := int(i >> log2WordSize)
	if x >= len(b.set) {
		return 0, false
	}
	w := b.set[x]
	w = w >> wordsIndex(i)
	wA := allBits >> wordsIndex(i)
	index := i + trailingZeroes64(^w)
	if w != wA && index < b.length {
		return index, true
	}
	x++
	for x < len(b.set) {
		index = uint(x)*wordSize + trailingZeroes64(^b.set[x])
		if b.set[x] != allBits && index < b.length {
			return index, true
		}
		x++
	}
	return 0, false
}

// ClearAll clears the entire BitSet
func (b *BitSet) ClearAll() *BitSet {
	if b != nil && b.set != nil {
		for i := range b.set {
			b.set[i] = 0
		}
	}
	return b
}

// wordCount returns the number of words used in a bit set
func (b *BitSet) wordCount() int {
	return len(b.set)
}

// Clone this BitSet
func (b *BitSet) Clone() *BitSet {
	c := New(b.length)
	if b.set != nil { // Clone should not modify current object
		copy(c.set, b.set)
	}
	return c
}

// Copy into a destination BitSet using the Go array copy semantics:
// the number of bits copied is the minimum of the number of bits in the current
// BitSet (Len()) and the destination Bitset.
// We return the number of bits copied in the destination BitSet.
func (b *BitSet) Copy(c *BitSet) (count uint) {
	if c == nil {
		return
	}
	if b.set != nil { // Copy should not modify current object
		copy(c.set, b.set)
	}
	count = c.length
	if b.length < c.length {
		count = b.length
	}
	// Cleaning the last word is needed to keep the invariant that other functions, such as Count, require
	// that any bits in the last word that would exceed the length of the bitmask are set to 0.
	c.cleanLastWord()
	return
}

// CopyFull copies into a destination BitSet such that the destination is
// identical to the source after the operation, allocating memory if necessary.
func (b *BitSet) CopyFull(c *BitSet) {
	if c == nil {
		return
	}
	c.length = b.length
	if len(b.set) == 0 {
		if c.set != nil {
			c.set = c.set[:0]
		}
	} else {
		if cap(c.set) < len(b.set) {
			c.set = make([]uint64, len(b.set))
		} else {
			c.set = c.set[:len(b.set)]
		}
		copy(c.set, b.set)
	}
}

// Count (number of set bits).
// Also known as "popcount" or "population count".
func (b *BitSet) Count() uint {
	if b != nil && b.set != nil {
		return uint(popcntSlice(b.set))
	}
	return 0
}

// Equal tests the equivalence of two BitSets.
// False if they are of different sizes, otherwise true
// only if all the same bits are set
func (b *BitSet) Equal(c *BitSet) bool {
	if c == nil || b == nil {
		return c == b
	}
	if b.length != c.length {
		return false
	}
	if b.length == 0 { // if they have both length == 0, then could have nil set
		return true
	}
	// testing for equality shoud not transform the bitset (no call to safeSet)

	for p, v := range b.set {
		if c.set[p] != v {
			return false
		}
	}
	return true
}

func panicIfNull(b *BitSet) {
	if b == nil {
		panic(Error("BitSet must not be null"))
	}
}

// Difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) Difference(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	result = b.Clone() // clone b (in case b is bigger than compare)
	l := int(compare.wordCount())
	if l > int(b.wordCount()) {
		l = int(b.wordCount())
	}
	for i := 0; i < l; i++ {
		result.set[i] = b.set[i] &^ compare.set[i]
	}
	return
}

// DifferenceCardinality computes the cardinality of the differnce
func (b *BitSet) DifferenceCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	l := int(compare.wordCount())
	if l > int(b.wordCount()) {
		l = int(b.wordCount())
	}
	cnt := uint64(0)
	cnt += popcntMaskSlice(b.set[:l], compare.set[:l])
	cnt += popcntSlice(b.set[l:])
	return uint(cnt)
}

// InPlaceDifference computes the difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) InPlaceDifference(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := int(compare.wordCount())
	if l > int(b.wordCount()) {
		l = int(b.wordCount())
	}
	for i := 0; i < l; i++ {
		b.set[i] &^= compare.set[i]
	}
}

// Convenience function: return two bitsets ordered by
// increasing length. Note: neither can be nil
func sortByLength(a *BitSet, b *BitSet) (ap *BitSet, bp *BitSet) {
	if a.length <= b.length {
		ap, bp = a, b
	} else {
		ap, bp = b, a
	}
	return
}

// Intersection of base set and other set
// This is the BitSet equivalent of & (and)
func (b *BitSet) Intersection(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	result = New(b.length)
	for i, word := range b.set {
		result.set[i] = word & compare.set[i]
	}
	return
}

// IntersectionCardinality computes the cardinality of the union
func (b *BitSet) IntersectionCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	cnt := popcntAndSlice(b.set, compare.set)
	return uint(cnt)
}

// InPlaceIntersection destructively computes the intersection of
// base set and the compare set.
// This is the BitSet equivalent of & (and)
func (b *BitSet) InPlaceIntersection(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := int(compare.wordCount())
	if l > int(b.wordCount()) {
		l = int(b.wordCount())
	}
	for i := 0; i < l; i++ {
		b.set[i] &= compare.set[i]
	}
	for i := l; i < len(b.set); i++ {
		b.set[i] = 0
	}
	if compare.length > 0 {
		if compare.length-1 >= b.length {
			b.extendSet(compare.length - 1)
		}
	}
}

// Union of base set and other set
// This is the BitSet equivalent of | (or)
func (b *BitSet) Union(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	result = compare.Clone()
	for i, word := range b.set {
		result.set[i] = word | compare.set[i]
	}
	return
}

// UnionCardinality computes the cardinality of the uniton of the base set
// and the compare set.
func (b *BitSet) UnionCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	cnt := popcntOrSlice(b.set, compare.set)
	if len(compare.set) > len(b.set) {
		cnt += popcntSlice(compare.set[len(b.set):])
	}
	return uint(cnt)
}

// InPlaceUnion creates the destructive union of base set and compare set.
// This is the BitSet equivalent of | (or).
func (b *BitSet) InPlaceUnion(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := int(compare.wordCount())
	if l > int(b.wordCount()) {
		l = int(b.wordCount())
	}
	if compare.length > 0 && compare.length-1 >= b.length {
		b.extendSet(compare.length - 1)
	}
	for i := 0; i < l; i++ {
		b.set[i] |= compare.set[i]
	}
	if len(compare.set) > l {
		for i := l; i < len(compare.set); i++ {
			b.set[i] = compare.set[i]
		}
	}
}

// SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) SymmetricDifference(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	// compare is bigger, so clone it
	result = compare.Clone()
	for i, word := range b.set {
		result.set[i] = word ^ compare.set[i]
	}
	return
}

// SymmetricDifferenceCardinality computes the cardinality of the symmetric difference
func (b *BitSet) SymmetricDifferenceCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	cnt := popcntXorSlice(b.set, compare.set)
	if len(compare.set) > len(b.set) {
		cnt += popcntSlice(compare.set[len(b.set):])
	}
	return uint(cnt)
}

// InPlaceSymmetricDifference creates the destructive SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) InPlaceSymmetricDifference(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := int(compare.wordCount())
	if l > int(b.wordCount()) {
		l = int(b.wordCount())
	}
	if compare.length > 0 && compare.length-1 >= b.length {
		b.extendSet(compare.length - 1)
	}
	for i := 0; i < l; i++ {
		b.set[i] ^= compare.set[i]
	}
	if len(compare.set) > l {
		for i := l; i < len(compare.set); i++ {
			b.set[i] = compare.set[i]
		}
	}
}

// Is the length an exact multiple of word sizes?
func (b *BitSet) isLenExactMultiple() bool {
	return wordsIndex(b.length) == 0
}

// Clean last word by setting unused bits to 0
func (b *BitSet) cleanLastWord() {
	if !b.isLenExactMultiple() {
		b.set[len(b.set)-1] &= allBits >> (wordSize - wordsIndex(b.length))
	}
}

// Complement computes the (local) complement of a bitset (up to length bits)
func (b *BitSet) Complement() (result *BitSet) {
	panicIfNull(b)
	result = New(b.length)
	for i, word := range b.set {
		result.set[i] = ^word
	}
	result.cleanLastWord()
	return
}

// All returns true if all bits are set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) All() bool {
	panicIfNull(b)
	return b.Count() == b.length
}

// None returns true if no bit is set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) None() bool {
	panicIfNull(b)
	if b != nil && b.set != nil {
		for _, word := range b.set {
			if word > 0 {
				return false
			}
		}
	}
	return true
}

// Any returns true if any bit is set, false otherwise
func (b *BitSet) Any() bool {
	panicIfNull(b)
	return !b.None()
}

// IsSuperSet returns true if this is a superset of the other set
func (b *BitSet) IsSuperSet(other *BitSet) bool {
	for i, e := other.NextSet(0); e; i, e = other.NextSet(i + 1) {
		if !b.Test(i) {
			return false
		}
	}
	return true
}

// IsStrictSuperSet returns true if this is a strict superset of the other set
func (b *BitSet) IsStrictSuperSet(other *BitSet) bool {
	return b.Count() > other.Count() && b.IsSuperSet(other)
}

// DumpAsBits dumps a bit set as a string of bits
func (b *BitSet) DumpAsBits() string {
	if b.set == nil {
		return "."
	}
	buffer := bytes.NewBufferString("")
	i := len(b.set) - 1
	for ; i >= 0; i-- {
		fmt.Fprintf(buffer, "%064b.", b.set[i])
	}
	return buffer.String()
}

// BinaryStorageSize returns the binary storage requirements
func (b *BitSet) BinaryStorageSize() int {
	return binary.Size(uint64(0)) + binary.Size(b.set)
}

// WriteTo writes a BitSet to a stream
func (b *BitSet) WriteTo(stream io.Writer) (int64, error) {
	length := uint64(b.length)

	// Write length
	err := binary.Write(stream, binaryOrder, length)
	if err != nil {
		return 0, err
	}

	// Write set
	// current implementation of bufio.Writer is more memory efficient than
	// binary.Write for large set
	writer := bufio.NewWriter(stream)
	var item = make([]byte, binary.Size(uint64(0))) // for serializing one uint64
	for i := range b.set {
		binaryOrder.PutUint64(item, b.set[i])
		if nn, err := writer.Write(item); err != nil {
			return int64(i*binary.Size(uint64(0)) + nn), err
		}
	}

	err = writer.Flush()
	return int64(b.BinaryStorageSize()), err
}

// ReadFrom reads a BitSet from a stream written using WriteTo
func (b *BitSet) ReadFrom(stream io.Reader) (int64, error) {
	var length uint64

	// Read length first
	err := binary.Read(stream, binaryOrder, &length)
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		return 0, err
	}
	newset := New(uint(length))

	if uint64(newset.length) != length {
		return 0, errors.New("unmarshalling error: type mismatch")
	}

	var item [8]byte
	nWords := wordsNeeded(uint(length))
	reader := bufio.NewReader(io.LimitReader(stream, 8*int64(nWords)))
	for i := 0; i < nWords; i++ {
		if _, err := io.ReadFull(reader, item[:]); err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return 0, err
		}
		newset.set[i] = binaryOrder.Uint64(item[:])
	}

	*b = *newset
	return int64(b.BinaryStorageSize()), nil
}

// MarshalBinary encodes a BitSet into a binary form and returns the result.
func (b *BitSet) MarshalBinary() ([]byte, error) {
	var buf bytes.Buffer
	_, err := b.WriteTo(&buf)
	if err != nil {
		return []byte{}, err
	}

	return buf.Bytes(), err
}

// UnmarshalBinary decodes the binary form generated by MarshalBinary.
func (b *BitSet) UnmarshalBinary(data []byte) error {
	buf := bytes.NewReader(data)
	_, err := b.ReadFrom(buf)
	return err
}

// MarshalJSON marshals a BitSet as a JSON structure
func (b *BitSet) MarshalJSON() ([]byte, error) {
	buffer := bytes.NewBuffer(make([]byte, 0, b.BinaryStorageSize()))
	_, err := b.WriteTo(buffer)
	if err != nil {
		return nil, err
	}

	// URLEncode all bytes
	return json.Marshal(base64Encoding.EncodeToString(buffer.Bytes()))
}

// UnmarshalJSON unmarshals a BitSet from JSON created using MarshalJSON
func (b *BitSet) UnmarshalJSON(data []byte) error {
	// Unmarshal as string
	var s string
	err := json.Unmarshal(data, &s)
	if err != nil {
		return err
	}

	// URLDecode string
	buf, err := base64Encoding.DecodeString(s)
	if err != nil {
		return err
	}

	_, err = b.ReadFrom(bytes.NewReader(buf))
	return err
}