Codebase list libcrypt-cbc-perl / HEAD README.md
HEAD

Tree @HEAD (Download .tar.gz)

README.md @HEADraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# NAME

Crypt::CBC - Encrypt Data with Cipher Block Chaining Mode

# SYNOPSIS

    use Crypt::CBC;
    $cipher = Crypt::CBC->new( -pass   => 'my secret password',
                               -cipher => 'Cipher::AES'
                              );

    # one shot mode
    $ciphertext = $cipher->encrypt("This data is hush hush");
    $plaintext  = $cipher->decrypt($ciphertext);

    # stream mode
    $cipher->start('encrypting');
    open(F,"./BIG_FILE");
    while (read(F,$buffer,1024)) {
        print $cipher->crypt($buffer);
    }
    print $cipher->finish;

    # do-it-yourself mode -- specify key && initialization vector yourself
    $key    = Crypt::CBC->random_bytes(8);  # assuming a 8-byte block cipher
    $iv     = Crypt::CBC->random_bytes(8);
    $cipher = Crypt::CBC->new(-pbkdf       => 'none',
                              -key         => $key,
                              -iv          => $iv);

    $ciphertext = $cipher->encrypt("This data is hush hush");
    $plaintext  = $cipher->decrypt($ciphertext);

    # encrypting via a filehandle (requires Crypt::FileHandle>
    $fh = Crypt::CBC->filehandle(-pass => 'secret');
    open $fh,'>','encrypted.txt" or die $!
    print $fh "This will be encrypted\n";
    close $fh;

# DESCRIPTION

This module is a Perl-only implementation of the cryptographic cipher
block chaining mode (CBC).  In combination with a block cipher such as
AES or Blowfish, you can encrypt and decrypt messages of arbitrarily
long length.  The encrypted messages are compatible with the
encryption format used by the **OpenSSL** package.

To use this module, you will first create a Crypt::CBC cipher object
with new().  At the time of cipher creation, you specify an encryption
key to use and, optionally, a block encryption algorithm.  You will
then call the start() method to initialize the encryption or
decryption process, crypt() to encrypt or decrypt one or more blocks
of data, and lastly finish(), to pad and encrypt the final block.  For
your convenience, you can call the encrypt() and decrypt() methods to
operate on a whole data value at once.

## new()

    $cipher = Crypt::CBC->new( -pass   => 'my secret key',
                               -cipher => 'Cipher::AES',
                             );

    # or (for compatibility with versions prior to 2.0)
    $cipher = new Crypt::CBC('my secret key' => 'Cipher::AES');

The new() method creates a new Crypt::CBC object. It accepts a list of
\-argument => value pairs selected from the following list:

    Argument        Description
    --------        -----------

    -pass,-key      The encryption/decryption passphrase. These arguments
                       are interchangeable, but -pass is preferred
                       ("key" is a misnomer, as it is not the literal 
                       encryption key).

    -cipher         The cipher algorithm (defaults to Crypt::Cipher:AES), or
                       a previously created cipher object reference. For 
                       convenience, you may omit the initial "Crypt::" part
                       of the classname and use the basename, e.g. "Blowfish"
                       instead of "Crypt::Blowfish".

    -keysize        Force the cipher keysize to the indicated number of bytes. This can be used
                       to set the keysize for variable keylength ciphers such as AES.

    -chain_mode     The block chaining mode to use. Current options are:
                       'cbc'  -- cipher-block chaining mode [default]
                       'pcbc' -- plaintext cipher-block chaining mode
                       'cfb'  -- cipher feedback mode 
                       'ofb'  -- output feedback mode
                       'ctr'  -- counter mode

    -pbkdf         The passphrase-based key derivation function used to derive
                      the encryption key and initialization vector from the
                      provided passphrase. For backward compatibility, Crypt::CBC
                      will default to "opensslv1", but it is recommended to use
                      the standard "pbkdf2"algorithm instead. If you wish to interoperate
                      with OpenSSL, be aware that different versions of the software
                      support a series of derivation functions.

                      'none'       -- The value provided in -pass/-key is used directly.
                                        This is the same as passing true to -literal_key.
                                        You must also manually specify the IV with -iv.
                                        The key and the IV must match the keylength
                                        and blocklength of the chosen cipher.
                      'randomiv'   -- Use insecure key derivation method found
                                       in prehistoric versions of OpenSSL (dangerous)
                      'opensslv1'  -- [default] Use the salted MD5 method that was default
                                       in versions of OpenSSL through v1.0.2.
                      'opensslv2'  -- [better] Use the salted SHA-256 method that was
                                       the default in versions of OpenSSL through v1.1.0.
                      'pbkdf2'     -- [best] Use the PBKDF2 method that was first
                                       introduced in OpenSSL v1.1.1.

                       More derivation functions may be added in the future. To see the
                       supported list, use the command 
                         perl -MCrypt::CBC::PBKDF -e 'print join "\n",Crypt::CBC::PBKDF->list'

    -iter           If the 'pbkdf2' key derivation algorithm is used, this specifies the number of
                       hashing cycles to be applied to the passphrase+salt (longer is more secure).
                       [default 10,000] 

    -hasher         If the 'pbkdf2' key derivation algorithm is chosen, you can use this to provide
                       an initialized Crypt::PBKDF2::Hash object. 
                       [default HMACSHA2 for OpenSSL compatability]

    -header         What type of header to prepend to the ciphertext. One of
                      'salt'     -- use OpenSSL-compatible salted header (default)
                      'randomiv' -- Randomiv-compatible "RandomIV" header
                      'none'     -- prepend no header at all 
                                    (compatible with prehistoric versions
                                     of OpenSSL)

    -iv             The initialization vector (IV). If not provided, it will be generated
                        by the key derivation function.

    -salt           The salt passed to the key derivation function. If not provided, will be
                        generated randomly (recommended).

    -padding        The padding method, one of "standard" (default),
                       "space", "oneandzeroes", "rijndael_compat",
                       "null", or "none" (default "standard").

    -literal_key    [deprected, use -pbkdf=>'none']
                        If true, the key provided by "-key" or "-pass" is used 
                        directly for encryption/decryption without salting or
                        hashing. The key must be the right length for the chosen
                        cipher. 
                        [default false)

    -pcbc           [deprecated, use -chaining_mode=>'pcbc']
                      Whether to use the PCBC chaining algorithm rather than
                      the standard CBC algorithm (default false).

    -add_header     [deprecated; use -header instead]
                     Whether to add the salt and IV to the header of the output
                      cipher text.

    -regenerate_key [deprecated; use -literal_key instead]
                    Whether to use a hash of the provided key to generate
                      the actual encryption key (default true)

    -prepend_iv     [deprecated; use -header instead]
                    Whether to prepend the IV to the beginning of the
                      encrypted stream (default true)

Crypt::CBC requires three pieces of information to do its job. First
it needs the name of the block cipher algorithm that will encrypt or
decrypt the data in blocks of fixed length known as the cipher's
"blocksize." Second, it needs an encryption/decryption key to pass to
the block cipher. Third, it needs an initialization vector (IV) that
will be used to propagate information from one encrypted block to the
next. Both the key and the IV must be exactly the same length as the
chosen cipher's blocksize.

Crypt::CBC can derive the key and the IV from a passphrase that you
provide, or can let you specify the true key and IV manually. In
addition, you have the option of embedding enough information to
regenerate the IV in a short header that is emitted at the start of
the encrypted stream, or outputting a headerless encryption stream. In
the first case, Crypt::CBC will be able to decrypt the stream given
just the original key or passphrase. In the second case, you will have
to provide the original IV as well as the key/passphrase.

The **-cipher** option specifies which block cipher algorithm to use to
encode each section of the message.  This argument is optional and
will default to the secure Crypt::Cipher::AES algorithm. 
You may use any compatible block encryption
algorithm that you have installed. Currently, this includes
Crypt::Cipher::AES, Crypt::DES, Crypt::DES\_EDE3, Crypt::IDEA, Crypt::Blowfish,
Crypt::CAST5 and Crypt::Rijndael. You may refer to them using their
full names ("Crypt::IDEA") or in abbreviated form ("IDEA").

Instead of passing the name of a cipher class, you may pass an
already-created block cipher object. This allows you to take advantage
of cipher algorithms that have parameterized new() methods, such as
Crypt::Eksblowfish:

    my $eksblowfish = Crypt::Eksblowfish->new(8,$salt,$key);
    my $cbc         = Crypt::CBC->new(-cipher=>$eksblowfish);

The **-pass** argument provides a passphrase to use to generate the
encryption key or the literal value of the block cipher key. If used
in passphrase mode (which is the default), **-pass** can be any number
of characters; the actual key will be derived by passing the
passphrase through a series of hashing operations. To take full
advantage of a given block cipher, the length of the passphrase should
be at least equal to the cipher's blocksize. For backward
compatibility, you may also refer to this argument using **-key**.

To skip this hashing operation and specify the key directly, provide
the actual key as a string to **-key** and specify a key derivation
function of "none" to the **-pbkdf** argument. Alternatively, you may
pass a true value to the **-literal\_key** argument. When you manually
specify the key in this way, should choose a key of length exactly
equal to the cipher's key length. You will also have to specify an IV
equal in length to the cipher's blocksize. These choices imply a
header mode of "none."

If you pass an existing Crypt::\* object to new(), then the
**-pass**/**-key** argument is ignored and the module will generate a
warning.

The **-pbkdf** argument specifies the algorithm used to derive the true
key and IV from the provided passphrase (PBKDF stands for
"passphrase-based key derivation function"). Valid values are:

    "opensslv1" -- [default] A fast algorithm that derives the key by 
                   combining a random salt values with the passphrase via
                   a series of MD5 hashes.

    "opensslv2" -- an improved version that uses SHA-256 rather
                   than MD5, and has been OpenSSL's default since v1.1.0. 
                   However, it has been deprecated in favor of pbkdf2 
                   since OpenSSL v1.1.1.

    "pbkdf2"    -- a better algorithm implemented in OpenSSL v1.1.1,
                   described in RFC 2898 L<https://tools.ietf.org/html/rfc2898>

    "none"      -- don't use a derivation function, but treat the passphrase
                   as the literal key. This is the same as B<-literal_key> true.

    "nosalt"    -- an insecure key derivation method used by prehistoric versions
                   of OpenSSL, provided for backward compatibility. Don't use.

"opensslv1" was OpenSSL's default key derivation algorithm through
version 1.0.2, but is susceptible to dictionary attacks and is no
longer supported. It remains the default for Crypt::CBC in order to
avoid breaking compatibility with previously-encrypted messages. Using
this option will issue a deprecation warning when initiating
encryption. You can suppress the warning by passing a true value to
the **-nodeprecate** option.

It is recommended to specify the "pbkdf2" key derivation algorithm
when compatibility with older versions of Crypt::CBC is not
needed. This algorithm is deliberately computationally expensive in
order to make dictionary-based attacks harder. As a result, it
introduces a slight delay before an encryption or decryption
operation starts.

The **-iter** argument is used in conjunction with the "pbkdf2" key
derivation option. Its value indicates the number of hashing cycles
used to derive the key. Larger values are more secure, but impose a
longer delay before encryption/decryption starts. The default is
10,000 for compatibility with OpenSSL's default.

The **-hasher** argument is used in conjunction with the "pbkdf2" key
derivation option to pass the reference to an initialized
Crypt::PBKDF2::Hash object. If not provided, it defaults to the
OpenSSL-compatible hash function HMACSHA2 initialized with its default
options (SHA-256 hash).

The **-header** argument specifies what type of header, if any, to
prepend to the beginning of the encrypted data stream. The header
allows Crypt::CBC to regenerate the original IV and correctly decrypt
the data without your having to provide the same IV used to encrypt
the data. Valid values for the **-header** are:

    "salt" -- Combine the passphrase with an 8-byte random value to
              generate both the block cipher key and the IV from the
              provided passphrase. The salt will be appended to the
              beginning of the data stream allowing decryption to
              regenerate both the key and IV given the correct passphrase.
              This method is compatible with current versions of OpenSSL.

    "randomiv" -- Generate the block cipher key from the passphrase, and
              choose a random 8-byte value to use as the IV. The IV will
              be prepended to the data stream. This method is compatible
              with ciphertext produced by versions of the library prior to
              2.17, but is incompatible with block ciphers that have non
              8-byte block sizes, such as Rijndael. Crypt::CBC will exit
              with a fatal error if you try to use this header mode with a
              non 8-byte cipher. This header type is NOT secure and NOT 
              recommended.

    "none"   -- Do not generate a header. To decrypt a stream encrypted
              in this way, you will have to provide the true key and IV
              manually.

**The "salt" header is now the default as of Crypt::CBC version 2.17. In
all earlier versions "randomiv" was the default.**

When using a "salt" header, you may specify your own value of the
salt, by passing the desired 8-byte character string to the **-salt**
argument. Otherwise, the module will generate a random salt for
you. Crypt::CBC will generate a fatal error if you specify a salt
value that isn't exactly 8 bytes long. For backward compatibility
reasons, passing a value of "1" will generate a random salt, the same
as if no **-salt** argument was provided.

The **-padding** argument controls how the last few bytes of the
encrypted stream are dealt with when they not an exact multiple of the
cipher block length. The default is "standard", the method specified
in PKCS#5.

The **-chaining\_mode** argument will select among several different
block chaining modes. Values are:

    'cbc'  -- [default] traditional Cipher-Block Chaining mode. It has
                the property that if one block in the ciphertext message
                is damaged, only that block and the next one will be
                rendered un-decryptable.

    'pcbc' -- Plaintext Cipher-Block Chaining mode. This has the property
                that one damaged ciphertext block will render the 
                remainder of the message unreadable

    'cfb'  -- Cipher Feedback Mode. In this mode, both encryption and decryption
                are performed using the block cipher's "encrypt" algorithm.
                The error propagation behaviour is similar to CBC's.

    'ofb'  -- Output Feedback Mode. Similar to CFB, the block cipher's encrypt
                algorithm is used for both encryption and decryption. If one bit
                of the plaintext or ciphertext message is damaged, the damage is
                confined to a single block of the corresponding ciphertext or 
                plaintext, and error correction algorithms can be used to reconstruct
                the damaged part.

     'ctr' -- Counter Mode. This mode uses a one-time "nonce" instead of
                an IV. The nonce is incremented by one for each block of
                plain or ciphertext, encrypted using the chosen
                algorithm, and then applied to the block of text. If one
                bit of the input text is damaged, it only affects 1 bit
                of the output text. To use CTR mode you will need to
                install the Perl Math::Int128 module.

Passing a **-pcbc** argument of true will have the same effect as
\-chaining\_mode=>'pcbc', and is included for backward
compatibility. \[deprecated\].

For more information on chaining modes, see
[http://www.crypto-it.net/eng/theory/modes-of-block-ciphers.html](http://www.crypto-it.net/eng/theory/modes-of-block-ciphers.html).

The **-keysize** argument can be used to force the cipher's
keysize. This is useful for several of the newer algorithms, including
AES, ARIA, Blowfish, and CAMELLIA. If -keysize is not specified, then
Crypt::CBC will use the value returned by the cipher's max\_keylength()
method. Note that versions of CBC::Crypt prior to 2.36 could also
allow you to set the blocksie, but this was never supported by any
ciphers and has been removed.

For compatibility with earlier versions of this module, you can
provide new() with a hashref containing key/value pairs. The key names
are the same as the arguments described earlier, but without the
initial hyphen.  You may also call new() with one or two positional
arguments, in which case the first argument is taken to be the key and
the second to be the optional block cipher algorithm.

## start()

    $cipher->start('encrypting');
    $cipher->start('decrypting');

The start() method prepares the cipher for a series of encryption or
decryption steps, resetting the internal state of the cipher if
necessary.  You must provide a string indicating whether you wish to
encrypt or decrypt.  "E" or any word that begins with an "e" indicates
encryption.  "D" or any word that begins with a "d" indicates
decryption.

## crypt()

    $ciphertext = $cipher->crypt($plaintext);

After calling start(), you should call crypt() as many times as
necessary to encrypt the desired data.  

## finish()

    $ciphertext = $cipher->finish();

The CBC algorithm must buffer data blocks internally until they are
even multiples of the encryption algorithm's blocksize (typically 8
bytes).  After the last call to crypt() you should call finish().
This flushes the internal buffer and returns any leftover ciphertext.

In a typical application you will read the plaintext from a file or
input stream and write the result to standard output in a loop that
might look like this:

    $cipher = new Crypt::CBC('hey jude!');
    $cipher->start('encrypting');
    print $cipher->crypt($_) while <>;
    print $cipher->finish();

## encrypt()

    $ciphertext = $cipher->encrypt($plaintext)

This convenience function runs the entire sequence of start(), crypt()
and finish() for you, processing the provided plaintext and returning
the corresponding ciphertext.

## decrypt()

    $plaintext = $cipher->decrypt($ciphertext)

This convenience function runs the entire sequence of start(), crypt()
and finish() for you, processing the provided ciphertext and returning
the corresponding plaintext.

## encrypt\_hex(), decrypt\_hex()

    $ciphertext = $cipher->encrypt_hex($plaintext)
    $plaintext  = $cipher->decrypt_hex($ciphertext)

These are convenience functions that operate on ciphertext in a
hexadecimal representation.  **encrypt\_hex($plaintext)** is exactly
equivalent to **unpack('H\*',encrypt($plaintext))**.  These functions
can be useful if, for example, you wish to place the encrypted in an
email message.

## filehandle()

This method returns a filehandle for transparent encryption or
decryption using Christopher Dunkle's excellent [Crypt::FileHandle](https://metacpan.org/pod/Crypt%3A%3AFileHandle)
module. This module must be installed in order to use this method.

filehandle() can be called as a class method using the same arguments
as new():

    $fh = Crypt::CBC->filehandle(-cipher=> 'Blowfish',
                                 -pass  => "You'll never guess");

or on a previously-created Crypt::CBC object:

    $cbc = Crypt::CBC->new(-cipher=> 'Blowfish',
                           -pass  => "You'll never guess");
    $fh  = $cbc->filehandle;

The filehandle can then be opened using the familiar open() syntax.
Printing to a filehandle opened for writing will encrypt the
data. Filehandles opened for input will be decrypted.

Here is an example:

    # transparent encryption
    open $fh,'>','encrypted.out' or die $!;
    print $fh "You won't be able to read me!\n";
    close $fh;

    # transparent decryption
    open $fh,'<','encrypted.out' or die $!;
    while (<$fh>) { print $_ }
    close $fh;

## get\_initialization\_vector()

    $iv = $cipher->get_initialization_vector()

This function will return the IV used in encryption and or decryption.
The IV is not guaranteed to be set when encrypting until start() is
called, and when decrypting until crypt() is called the first
time. Unless the IV was manually specified in the new() call, the IV
will change with every complete encryption operation.

## set\_initialization\_vector()

    $cipher->set_initialization_vector('76543210')

This function sets the IV used in encryption and/or decryption. This
function may be useful if the IV is not contained within the
ciphertext string being decrypted, or if a particular IV is desired
for encryption.  Note that the IV must match the chosen cipher's
blocksize bytes in length.

## iv()

    $iv = $cipher->iv();
    $cipher->iv($new_iv);

As above, but using a single method call.

## key()

    $key = $cipher->key();
    $cipher->key($new_key);

Get or set the block cipher key used for encryption/decryption.  When
encrypting, the key is not guaranteed to exist until start() is
called, and when decrypting, the key is not guaranteed to exist until
after the first call to crypt(). The key must match the length
required by the underlying block cipher.

When salted headers are used, the block cipher key will change after
each complete sequence of encryption operations.

## salt()

    $salt = $cipher->salt();
    $cipher->salt($new_salt);

Get or set the salt used for deriving the encryption key and IV when
in OpenSSL compatibility mode.

## passphrase()

    $passphrase = $cipher->passphrase();
    $cipher->passphrase($new_passphrase);

This gets or sets the value of the **passphrase** passed to new() when
**literal\_key** is false.

## $data = random\_bytes($numbytes)

Return $numbytes worth of random data. On systems that support the
"/dev/urandom" device file, this data will be read from the
device. Otherwise, it will be generated by repeated calls to the Perl
rand() function.

## cipher(), pbkdf(), padding(), keysize(), blocksize(), chain\_mode() 

These read-only methods return the identity of the chosen block cipher
algorithm, the key derivation function (e.g. "opensslv1"), padding
method, key and block size of the chosen block cipher, and what
chaining mode ("cbc", "ofb" ,etc) is being used.

## Padding methods

Use the 'padding' option to change the padding method.

When the last block of plaintext is shorter than the block size,
it must be padded. Padding methods include: "standard" (i.e., PKCS#5),
"oneandzeroes", "space", "rijndael\_compat", "null", and "none".

    standard: (default) Binary safe
       pads with the number of bytes that should be truncated. So, if 
       blocksize is 8, then "0A0B0C" will be padded with "05", resulting
       in "0A0B0C0505050505". If the final block is a full block of 8 
       bytes, then a whole block of "0808080808080808" is appended.

    oneandzeroes: Binary safe
       pads with "80" followed by as many "00" necessary to fill the
       block. If the last block is a full block and blocksize is 8, a
       block of "8000000000000000" will be appended.

    rijndael_compat: Binary safe, with caveats
       similar to oneandzeroes, except that no padding is performed if
       the last block is a full block. This is provided for
       compatibility with Crypt::Rijndael's buit-in MODE_CBC. 
       Note that Crypt::Rijndael's implementation of CBC only
       works with messages that are even multiples of 16 bytes.

    null: text only
       pads with as many "00" necessary to fill the block. If the last 
       block is a full block and blocksize is 8, a block of
       "0000000000000000" will be appended.

    space: text only
       same as "null", but with "20".

    none:
       no padding added. Useful for special-purpose applications where
       you wish to add custom padding to the message.

Both the standard and oneandzeroes paddings are binary safe.  The
space and null paddings are recommended only for text data.  Which
type of padding you use depends on whether you wish to communicate
with an external (non Crypt::CBC library).  If this is the case, use
whatever padding method is compatible.

You can also pass in a custom padding function.  To do this, create a
function that takes the arguments:

    $padded_block = function($block,$blocksize,$direction);

where $block is the current block of data, $blocksize is the size to
pad it to, $direction is "e" for encrypting and "d" for decrypting,
and $padded\_block is the result after padding or depadding.

When encrypting, the function should always return a string of
&lt;blocksize> length, and when decrypting, can expect the string coming
in to always be that length. See \_standard\_padding(), \_space\_padding(),
\_null\_padding(), or \_oneandzeroes\_padding() in the source for examples.

Standard and oneandzeroes padding are recommended, as both space and
null padding can potentially truncate more characters than they should. 

# Comparison to Crypt::Mode::CBC

The [CryptX](https://metacpan.org/pod/CryptX) modules [Crypt::Mode::CBC](https://metacpan.org/pod/Crypt%3A%3AMode%3A%3ACBC), [Crypt::Mode::OFB](https://metacpan.org/pod/Crypt%3A%3AMode%3A%3AOFB),
[Crypt::Mode::CFB](https://metacpan.org/pod/Crypt%3A%3AMode%3A%3ACFB), and [Crypt::Mode::CTR](https://metacpan.org/pod/Crypt%3A%3AMode%3A%3ACTR) provide fast
implementations of the respective cipherblock chaining modes (roughly
5x the speed of Crypt::CBC). Crypt::CBC was designed to encrypt and
decrypt messages in a manner compatible with OpenSSL's "enc"
function. Hence it handles the derivation of the key and IV from a
passphrase using the same conventions as OpenSSL, and it writes out an
OpenSSL-compatible header in the encrypted message in a manner that
allows the key and IV to be regenerated during decryption.

In contrast, the CryptX modules do not automatically derive the key
and IV from a passphrase or write out an encrypted header. You will
need to derive and store the key and IV by other means (e.g. with
CryptX's Crypt::KeyDerivation module, or with Crypt::PBKDF2).

# EXAMPLES

Three examples, aes.pl, des.pl and idea.pl can be found in the eg/
subdirectory of the Crypt-CBC distribution.  These implement
command-line DES and IDEA encryption algorithms using default
parameters, and should be compatible with recent versions of
OpenSSL. Note that aes.pl uses the "pbkdf2" key derivation function to
generate its keys. The other two were distributed with pre-PBKDF2
versions of Crypt::CBC, and use the older "opensslv1" algorithm.

# LIMITATIONS

The encryption and decryption process is about a tenth the speed of
the equivalent OpenSSL tool and about a fifth of the Crypt::Mode::CBC
module (both which use compiled C).

# BUGS

Please report them.

# AUTHOR

Lincoln Stein, lstein@cshl.org

This module is distributed under the ARTISTIC LICENSE v2 using the
same terms as Perl itself.

# SEE ALSO

perl(1), CryptX, Crypt::FileHandle, Crypt::Cipher::AES,
Crypt::Blowfish, Crypt::CAST5, Crypt::DES, Crypt::IDEA,
Crypt::Rijndael