Codebase list libcryptx-perl / cdd8db7b-aadb-49d1-86f9-e44461a8bb3c/main src / ltc / ciphers / rc5.c
cdd8db7b-aadb-49d1-86f9-e44461a8bb3c/main

Tree @cdd8db7b-aadb-49d1-86f9-e44461a8bb3c/main (Download .tar.gz)

rc5.c @cdd8db7b-aadb-49d1-86f9-e44461a8bb3c/main

e4cfa89
 
dd9a707
 
 
6adf73b
dd9a707
 
5dbccdc
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
 
728a388
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644699
dd9a707
 
 
 
 
 
 
 
6adf73b
dd9a707
6adf73b
dd9a707
 
 
6adf73b
dd9a707
 
 
 
 
 
 
6adf73b
dd9a707
 
 
 
6adf73b
dd9a707
 
 
 
 
 
 
6adf73b
 
dd9a707
 
 
 
 
 
 
 
 
 
6adf73b
dd9a707
 
 
 
 
 
 
 
 
 
 
 
1644699
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
1644699
dd9a707
2a90bfe
dd9a707
 
2a90bfe
 
dd9a707
 
 
 
 
a1bdcd8
 
 
 
dd9a707
 
 
 
 
6adf73b
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a90bfe
dd9a707
1644699
dd9a707
 
 
 
 
 
 
 
 
6adf73b
dd9a707
 
 
1644699
dd9a707
2a90bfe
dd9a707
 
2a90bfe
 
dd9a707
 
 
 
 
a1bdcd8
 
 
 
dd9a707
 
 
6adf73b
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a90bfe
dd9a707
1644699
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
6adf73b
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3aea61
 
dd9a707
 
 
 
 
 
 
 
 
 
 
 
 
6adf73b
dd9a707
 
 
 
6adf73b
dd9a707
 
 
 
 
 
 
 
 
 
 
 
448b761
 
dd9a707
 
 
 
 
 
 
 
 
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/**
   @file rc5.c
   LTC_RC5 code by Tom St Denis
*/

#include "tomcrypt_private.h"

#ifdef LTC_RC5

const struct ltc_cipher_descriptor rc5_desc =
{
    "rc5",
    2,
    8, 128, 8, 12,
    &rc5_setup,
    &rc5_ecb_encrypt,
    &rc5_ecb_decrypt,
    &rc5_test,
    &rc5_done,
    &rc5_keysize,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};

static const ulong32 stab[50] = {
0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL, 0xe96a3d2fUL, 0x87a1b6e8UL, 0x25d930a1UL, 0xc410aa5aUL,
0x62482413UL, 0x007f9dccUL
};

 /**
    Initialize the LTC_RC5 block cipher
    @param key The symmetric key you wish to pass
    @param keylen The key length in bytes
    @param num_rounds The number of rounds desired (0 for default)
    @param skey The key in as scheduled by this function.
    @return CRYPT_OK if successful
 */
#ifdef LTC_CLEAN_STACK
static int s_rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
    ulong32 L[64], *S, A, B, i, j, v, s, t, l;

    LTC_ARGCHK(skey != NULL);
    LTC_ARGCHK(key  != NULL);

    /* test parameters */
    if (num_rounds == 0) {
       num_rounds = rc5_desc.default_rounds;
    }

    if (num_rounds < 12 || num_rounds > 24) {
       return CRYPT_INVALID_ROUNDS;
    }

    /* key must be between 64 and 1024 bits */
    if (keylen < 8 || keylen > 128) {
       return CRYPT_INVALID_KEYSIZE;
    }

    skey->rc5.rounds = num_rounds;
    S = skey->rc5.K;

    /* copy the key into the L array */
    for (A = i = j = 0; i < (ulong32)keylen; ) {
        A = (A << 8) | ((ulong32)(key[i++] & 255));
        if ((i & 3) == 0) {
           L[j++] = BSWAP(A);
           A = 0;
        }
    }

    if ((keylen & 3) != 0) {
       A <<= (ulong32)((8 * (4 - (keylen&3))));
       L[j++] = BSWAP(A);
    }

    /* setup the S array */
    t = (ulong32)(2 * (num_rounds + 1));
    XMEMCPY(S, stab, t * sizeof(*S));

    /* mix buffer */
    s = 3 * MAX(t, j);
    l = j;
    for (A = B = i = j = v = 0; v < s; v++) {
        A = S[i] = ROLc(S[i] + A + B, 3);
        B = L[j] = ROL(L[j] + A + B, (A+B));
        if (++i == t) { i = 0; }
        if (++j == l) { j = 0; }
    }
    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
   int x;
   x = s_rc5_setup(key, keylen, num_rounds, skey);
   burn_stack(sizeof(ulong32) * 122 + sizeof(int));
   return x;
}
#endif

/**
  Encrypts a block of text with LTC_RC5
  @param pt The input plaintext (8 bytes)
  @param ct The output ciphertext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
   ulong32 A, B;
   const ulong32 *K;
   int r;
   LTC_ARGCHK(skey != NULL);
   LTC_ARGCHK(pt   != NULL);
   LTC_ARGCHK(ct   != NULL);

   if (skey->rc5.rounds < 12 || skey->rc5.rounds > 24) {
      return CRYPT_INVALID_ROUNDS;
   }

   LOAD32L(A, &pt[0]);
   LOAD32L(B, &pt[4]);
   A += skey->rc5.K[0];
   B += skey->rc5.K[1];
   K  = skey->rc5.K + 2;

   if ((skey->rc5.rounds & 1) == 0) {
      for (r = 0; r < skey->rc5.rounds; r += 2) {
          A = ROL(A ^ B, B) + K[0];
          B = ROL(B ^ A, A) + K[1];
          A = ROL(A ^ B, B) + K[2];
          B = ROL(B ^ A, A) + K[3];
          K += 4;
      }
   } else {
      for (r = 0; r < skey->rc5.rounds; r++) {
          A = ROL(A ^ B, B) + K[0];
          B = ROL(B ^ A, A) + K[1];
          K += 2;
      }
   }
   STORE32L(A, &ct[0]);
   STORE32L(B, &ct[4]);

   return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
   int err = s_rc5_ecb_encrypt(pt, ct, skey);
   burn_stack(sizeof(ulong32) * 2 + sizeof(int));
   return err;
}
#endif

/**
  Decrypts a block of text with LTC_RC5
  @param ct The input ciphertext (8 bytes)
  @param pt The output plaintext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
   ulong32 A, B;
   const ulong32 *K;
   int r;
   LTC_ARGCHK(skey != NULL);
   LTC_ARGCHK(pt   != NULL);
   LTC_ARGCHK(ct   != NULL);

   if (skey->rc5.rounds < 12 || skey->rc5.rounds > 24) {
      return CRYPT_INVALID_ROUNDS;
   }

   LOAD32L(A, &ct[0]);
   LOAD32L(B, &ct[4]);
   K = skey->rc5.K + (skey->rc5.rounds << 1);

   if ((skey->rc5.rounds & 1) == 0) {
       K -= 2;
       for (r = skey->rc5.rounds - 1; r >= 0; r -= 2) {
          B = ROR(B - K[3], A) ^ A;
          A = ROR(A - K[2], B) ^ B;
          B = ROR(B - K[1], A) ^ A;
          A = ROR(A - K[0], B) ^ B;
          K -= 4;
        }
   } else {
      for (r = skey->rc5.rounds - 1; r >= 0; r--) {
          B = ROR(B - K[1], A) ^ A;
          A = ROR(A - K[0], B) ^ B;
          K -= 2;
      }
   }
   A -= skey->rc5.K[0];
   B -= skey->rc5.K[1];
   STORE32L(A, &pt[0]);
   STORE32L(B, &pt[4]);

   return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
   int err = s_rc5_ecb_decrypt(ct, pt, skey);
   burn_stack(sizeof(ulong32) * 2 + sizeof(int));
   return err;
}
#endif

/**
  Performs a self-test of the LTC_RC5 block cipher
  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc5_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else
   static const struct {
       unsigned char key[16], pt[8], ct[8];
   } tests[] = {
   {
       { 0x91, 0x5f, 0x46, 0x19, 0xbe, 0x41, 0xb2, 0x51,
         0x63, 0x55, 0xa5, 0x01, 0x10, 0xa9, 0xce, 0x91 },
       { 0x21, 0xa5, 0xdb, 0xee, 0x15, 0x4b, 0x8f, 0x6d },
       { 0xf7, 0xc0, 0x13, 0xac, 0x5b, 0x2b, 0x89, 0x52 }
   },
   {
       { 0x78, 0x33, 0x48, 0xe7, 0x5a, 0xeb, 0x0f, 0x2f,
         0xd7, 0xb1, 0x69, 0xbb, 0x8d, 0xc1, 0x67, 0x87 },
       { 0xF7, 0xC0, 0x13, 0xAC, 0x5B, 0x2B, 0x89, 0x52 },
       { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 }
   },
   {
       { 0xDC, 0x49, 0xdb, 0x13, 0x75, 0xa5, 0x58, 0x4f,
         0x64, 0x85, 0xb4, 0x13, 0xb5, 0xf1, 0x2b, 0xaf },
       { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 },
       { 0x65, 0xc1, 0x78, 0xb2, 0x84, 0xd1, 0x97, 0xcc }
   }
   };
   unsigned char tmp[2][8];
   int x, y, err;
   symmetric_key key;

   for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
      /* setup key */
      if ((err = rc5_setup(tests[x].key, 16, 12, &key)) != CRYPT_OK) {
         return err;
      }

      /* encrypt and decrypt */
      rc5_ecb_encrypt(tests[x].pt, tmp[0], &key);
      rc5_ecb_decrypt(tmp[0], tmp[1], &key);

      /* compare */
      if (compare_testvector(tmp[0], 8, tests[x].ct, 8, "RC5 Encrypt", x) != 0 ||
            compare_testvector(tmp[1], 8, tests[x].pt, 8, "RC5 Decrypt", x) != 0) {
         return CRYPT_FAIL_TESTVECTOR;
      }

      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 8; y++) tmp[0][y] = 0;
      for (y = 0; y < 1000; y++) rc5_ecb_encrypt(tmp[0], tmp[0], &key);
      for (y = 0; y < 1000; y++) rc5_ecb_decrypt(tmp[0], tmp[0], &key);
      for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
   }
   return CRYPT_OK;
  #endif
}

/** Terminate the context
   @param skey    The scheduled key
*/
void rc5_done(symmetric_key *skey)
{
  LTC_UNUSED_PARAM(skey);
}

/**
  Gets suitable key size
  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
  @return CRYPT_OK if the input key size is acceptable.
*/
int rc5_keysize(int *keysize)
{
   LTC_ARGCHK(keysize != NULL);
   if (*keysize < 8) {
      return CRYPT_INVALID_KEYSIZE;
   }
   if (*keysize > 128) {
      *keysize = 128;
   }
   return CRYPT_OK;
}

#endif