Codebase list libcryptx-perl / cme/main src / ltm / bn_mp_exptmod.c
cme/main

Tree @cme/main (Download .tar.gz)

bn_mp_exptmod.c @cme/main

7dcfba3
be43106
b7f589b
 
 
 
 
 
 
 
 
 
 
 
be43106
 
 
 
 
 
b7f589b
be43106
a7d3482
be43106
a7d3482
 
 
 
be43106
a7d3482
 
be43106
a7d3482
b7f589b
be43106
a7d3482
 
 
 
 
 
 
 
be43106
a7d3482
 
 
 
 
 
 
 
 
be43106
a7d3482
 
 
 
 
 
 
be43106
a7d3482
be43106
a7d3482
be43106
a7d3482
 
 
be43106
 
 
a7d3482
b7f589b
be43106
a7d3482
 
be43106
 
 
a7d3482
 
b7f589b
a7d3482
be43106
a7d3482
 
b7f589b
 
 
a7d3482
be43106
 
a7d3482
 
be43106
a7d3482
 
be43106
b7f589b
a7d3482
be43106
 
 
 
b7f589b
 
 
 
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      int err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }

      /* now get |X| */
      if ((err = mp_init(&tmpX)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }
      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
         mp_clear_multi(&tmpG, &tmpX, NULL);
         return err;
      }

      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
      err = mp_exptmod(&tmpG, &tmpX, P, Y);
      mp_clear_multi(&tmpG, &tmpX, NULL);
      return err;
#else
      /* no invmod */
      return MP_VAL;
#endif
   }

   /* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = mp_dr_is_modulus(P);
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = mp_reduce_is_2k(P) << 1;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
   if ((mp_isodd(P) == MP_YES) || (dr !=  0)) {
      return mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
   }
#endif
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */