Codebase list libde265 / e9d8adc1-9558-4da7-b6ee-9b04963c3a59/main libde265 / sao.cc
e9d8adc1-9558-4da7-b6ee-9b04963c3a59/main

Tree @e9d8adc1-9558-4da7-b6ee-9b04963c3a59/main (Download .tar.gz)

sao.cc @e9d8adc1-9558-4da7-b6ee-9b04963c3a59/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
 * H.265 video codec.
 * Copyright (c) 2013-2014 struktur AG, Dirk Farin <farin@struktur.de>
 *
 * This file is part of libde265.
 *
 * libde265 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3 of
 * the License, or (at your option) any later version.
 *
 * libde265 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with libde265.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "sao.h"
#include "util.h"

#include <stdlib.h>
#include <string.h>


template <class pixel_t>
void apply_sao_internal(de265_image* img, int xCtb,int yCtb,
                        const slice_segment_header* shdr, int cIdx, int nSW,int nSH,
                        const pixel_t* in_img,  int in_stride,
                        /* */ pixel_t* out_img, int out_stride)
{
  const sao_info* saoinfo = img->get_sao_info(xCtb,yCtb);

  int SaoTypeIdx = (saoinfo->SaoTypeIdx >> (2*cIdx)) & 0x3;

  logtrace(LogSAO,"apply_sao CTB %d;%d cIdx:%d type=%d (%dx%d)\n",xCtb,yCtb,cIdx, SaoTypeIdx, nSW,nSH);

  if (SaoTypeIdx==0) {
    return;
  }

  const seq_parameter_set* sps = &img->get_sps();
  const pic_parameter_set* pps = &img->get_pps();
  const int bitDepth = (cIdx==0 ? sps->BitDepth_Y : sps->BitDepth_C);
  const int maxPixelValue = (1<<bitDepth)-1;

  // top left position of CTB in pixels
  const int xC = xCtb*nSW;
  const int yC = yCtb*nSH;

  const int width  = img->get_width(cIdx);
  const int height = img->get_height(cIdx);

  const int ctbSliceAddrRS = img->get_SliceHeader(xC,yC)->SliceAddrRS;

  const int picWidthInCtbs = sps->PicWidthInCtbsY;
  const int chromashiftW = sps->get_chroma_shift_W(cIdx);
  const int chromashiftH = sps->get_chroma_shift_H(cIdx);
  const int ctbshiftW = sps->Log2CtbSizeY - chromashiftW;
  const int ctbshiftH = sps->Log2CtbSizeY - chromashiftH;


  for (int i=0;i<5;i++)
    {
      logtrace(LogSAO,"offset[%d] = %d\n", i, i==0 ? 0 : saoinfo->saoOffsetVal[cIdx][i-1]);
    }


  // actual size of CTB to be processed (can be smaller when partially outside of image)
  const int ctbW = (xC+nSW>width)  ? width -xC : nSW;
  const int ctbH = (yC+nSH>height) ? height-yC : nSH;


  const bool extendedTests = img->get_CTB_has_pcm_or_cu_transquant_bypass(xCtb,yCtb);

  if (SaoTypeIdx==2) {
    int hPos[2], vPos[2];
    int vPosStride[2]; // vPos[] multiplied by image stride
    int SaoEoClass = (saoinfo->SaoEoClass >> (2*cIdx)) & 0x3;

    switch (SaoEoClass) {
    case 0: hPos[0]=-1; hPos[1]= 1; vPos[0]= 0; vPos[1]=0; break;
    case 1: hPos[0]= 0; hPos[1]= 0; vPos[0]=-1; vPos[1]=1; break;
    case 2: hPos[0]=-1; hPos[1]= 1; vPos[0]=-1; vPos[1]=1; break;
    case 3: hPos[0]= 1; hPos[1]=-1; vPos[0]=-1; vPos[1]=1; break;
    }

    vPosStride[0] = vPos[0] * in_stride;
    vPosStride[1] = vPos[1] * in_stride;

    /* Reorder sao_info.saoOffsetVal[] array, so that we can index it
       directly with the sum of the two pixel-difference signs. */
    int8_t  saoOffsetVal[5]; // [2] unused
    saoOffsetVal[0] = saoinfo->saoOffsetVal[cIdx][1-1];
    saoOffsetVal[1] = saoinfo->saoOffsetVal[cIdx][2-1];
    saoOffsetVal[2] = 0;
    saoOffsetVal[3] = saoinfo->saoOffsetVal[cIdx][3-1];
    saoOffsetVal[4] = saoinfo->saoOffsetVal[cIdx][4-1];


    for (int j=0;j<ctbH;j++) {
      const pixel_t* in_ptr  = &in_img [xC+(yC+j)*in_stride];
      /* */ pixel_t* out_ptr = &out_img[xC+(yC+j)*out_stride];

      for (int i=0;i<ctbW;i++) {
        int edgeIdx = -1;

        logtrace(LogSAO, "pos %d,%d\n",xC+i,yC+j);

        if ((extendedTests &&
             (sps->pcm_loop_filter_disable_flag &&
              img->get_pcm_flag((xC+i)<<chromashiftW,(yC+j)<<chromashiftH))) ||
            img->get_cu_transquant_bypass((xC+i)<<chromashiftW,(yC+j)<<chromashiftH)) {
          continue;
        }

        // do the expensive test for boundaries only at the boundaries
        bool testBoundary = (i==0 || j==0 || i==ctbW-1 || j==ctbH-1);

        if (testBoundary)
          for (int k=0;k<2;k++) {
            int xS = xC+i+hPos[k];
            int yS = yC+j+vPos[k];

            if (xS<0 || yS<0 || xS>=width || yS>=height) {
              edgeIdx=0;
              break;
            }


            // This part seems inefficient with all the get_SliceHeaderIndex() calls,
            // but removing this part (because the input was known to have only a single
            // slice anyway) reduced computation time only by 1.3%.
            // TODO: however, this may still be a big part of SAO itself.

            slice_segment_header* sliceHeader = img->get_SliceHeader(xS<<chromashiftW,
                                                                     yS<<chromashiftH);
            if (sliceHeader==NULL) { return; }

            int sliceAddrRS = sliceHeader->SliceAddrRS;
            if (sliceAddrRS <  ctbSliceAddrRS &&
                img->get_SliceHeader((xC+i)<<chromashiftW,
                                     (yC+j)<<chromashiftH)->slice_loop_filter_across_slices_enabled_flag==0) {
              edgeIdx=0;
              break;
            }

            if (sliceAddrRS >  ctbSliceAddrRS &&
                img->get_SliceHeader(xS<<chromashiftW,
                                     yS<<chromashiftH)->slice_loop_filter_across_slices_enabled_flag==0) {
              edgeIdx=0;
              break;
            }


            if (pps->loop_filter_across_tiles_enabled_flag==0 &&
                pps->TileIdRS[(xS>>ctbshiftW) + (yS>>ctbshiftH)*picWidthInCtbs] !=
                pps->TileIdRS[(xC>>ctbshiftW) + (yC>>ctbshiftH)*picWidthInCtbs]) {
              edgeIdx=0;
              break;
            }
          }

        if (edgeIdx != 0) {

          edgeIdx = ( Sign(in_ptr[i] - in_ptr[i+hPos[0]+vPosStride[0]]) +
                      Sign(in_ptr[i] - in_ptr[i+hPos[1]+vPosStride[1]])   );

          if (1) { // edgeIdx != 0) {   // seems to be faster without this check (zero in offset table)
            int offset = saoOffsetVal[edgeIdx+2];

            out_ptr[i] = Clip3(0,maxPixelValue,
                               in_ptr[i] + offset);
          }
        }
      }
    }
  }
  else {
    int bandShift = bitDepth-5;
    int saoLeftClass = saoinfo->sao_band_position[cIdx];
    logtrace(LogSAO,"saoLeftClass: %d\n",saoLeftClass);

    int bandTable[32];
    memset(bandTable, 0, sizeof(int)*32);

    for (int k=0;k<4;k++) {
      bandTable[ (k+saoLeftClass)&31 ] = k+1;
    }


    /* If PCM or transquant_bypass is used in this CTB, we have to
       run all checks (A).
       Otherwise, we run a simplified version of the code (B).

       NOTE: this whole part of SAO does not seem to be a significant part of the time spent
    */

    if (extendedTests) {

      // (A) full version with all checks

      for (int j=0;j<ctbH;j++)
        for (int i=0;i<ctbW;i++) {

          if ((sps->pcm_loop_filter_disable_flag &&
               img->get_pcm_flag((xC+i)<<chromashiftW,(yC+j)<<chromashiftH)) ||
              img->get_cu_transquant_bypass((xC+i)<<chromashiftW,(yC+j)<<chromashiftH)) {
            continue;
          }

          int bandIdx = bandTable[ in_img[xC+i+(yC+j)*in_stride]>>bandShift ];

          // Shifts are a strange thing. On x86, >>x actually computes >>(x%64).
          // So we have to take care of large bandShifts.
          if (bandShift>=8) { bandIdx=0; }

          if (bandIdx>0) {
            int offset = saoinfo->saoOffsetVal[cIdx][bandIdx-1];

            logtrace(LogSAO,"%d %d (%d) offset %d  %x -> %x\n",xC+i,yC+j,bandIdx,
                     offset,
                     in_img[xC+i+(yC+j)*in_stride],
                     in_img[xC+i+(yC+j)*in_stride]+offset);

            out_img[xC+i+(yC+j)*out_stride] = Clip3(0,maxPixelValue,
                                                    in_img[xC+i+(yC+j)*in_stride] + offset);
          }
        }
    }
    else
      {
        // (B) simplified version (only works if no PCM and transquant_bypass is active)

        for (int j=0;j<ctbH;j++)
          for (int i=0;i<ctbW;i++) {

            int bandIdx = bandTable[ in_img[xC+i+(yC+j)*in_stride]>>bandShift ];

            // see above
            if (bandShift>=8) { bandIdx=0; }

            if (bandIdx>0) {
              int offset = saoinfo->saoOffsetVal[cIdx][bandIdx-1];

              out_img[xC+i+(yC+j)*out_stride] = Clip3(0,maxPixelValue,
                                                      in_img[xC+i+(yC+j)*in_stride] + offset);
            }
          }
      }
  }
}


template <class pixel_t>
void apply_sao(de265_image* img, int xCtb,int yCtb,
               const slice_segment_header* shdr, int cIdx, int nSW,int nSH,
               const pixel_t* in_img,  int in_stride,
               /* */ pixel_t* out_img, int out_stride)
{
  if (img->high_bit_depth(cIdx)) {
    apply_sao_internal<uint16_t>(img,xCtb,yCtb, shdr,cIdx,nSW,nSH,
                                 (uint16_t*)in_img, in_stride,
                                 (uint16_t*)out_img,out_stride);
  }
  else {
    apply_sao_internal<uint8_t>(img,xCtb,yCtb, shdr,cIdx,nSW,nSH,
                                in_img, in_stride,
                                out_img,out_stride);
  }
}


void apply_sample_adaptive_offset(de265_image* img)
{
  const seq_parameter_set& sps = img->get_sps();

  if (sps.sample_adaptive_offset_enabled_flag==0) {
    return;
  }

  de265_image inputCopy;
  de265_error err = inputCopy.copy_image(img);
  if (err != DE265_OK) {
    img->decctx->add_warning(DE265_WARNING_CANNOT_APPLY_SAO_OUT_OF_MEMORY,false);
    return;
  }

  for (int yCtb=0; yCtb<sps.PicHeightInCtbsY; yCtb++)
    for (int xCtb=0; xCtb<sps.PicWidthInCtbsY; xCtb++)
      {
        const slice_segment_header* shdr = img->get_SliceHeaderCtb(xCtb,yCtb);

        if (shdr->slice_sao_luma_flag) {
          apply_sao(img, xCtb,yCtb, shdr, 0, 1<<sps.Log2CtbSizeY, 1<<sps.Log2CtbSizeY,
                    inputCopy.get_image_plane(0), inputCopy.get_image_stride(0),
                    img->get_image_plane(0), img->get_image_stride(0));
        }

        if (shdr->slice_sao_chroma_flag) {
          int nSW = (1<<sps.Log2CtbSizeY) / sps.SubWidthC;
          int nSH = (1<<sps.Log2CtbSizeY) / sps.SubHeightC;

          apply_sao(img, xCtb,yCtb, shdr, 1, nSW,nSH,
                    inputCopy.get_image_plane(1), inputCopy.get_image_stride(1),
                    img->get_image_plane(1), img->get_image_stride(1));

          apply_sao(img, xCtb,yCtb, shdr, 2, nSW,nSH,
                    inputCopy.get_image_plane(2), inputCopy.get_image_stride(2),
                    img->get_image_plane(2), img->get_image_stride(2));
        }
      }
}


void apply_sample_adaptive_offset_sequential(de265_image* img)
{
  const seq_parameter_set& sps = img->get_sps();

  if (sps.sample_adaptive_offset_enabled_flag==0) {
    return;
  }

  int lumaImageSize   = img->get_image_stride(0) * img->get_height(0) * img->get_bytes_per_pixel(0);
  int chromaImageSize = img->get_image_stride(1) * img->get_height(1) * img->get_bytes_per_pixel(1);

  uint8_t* inputCopy = new uint8_t[ libde265_max(lumaImageSize, chromaImageSize) ];
  if (inputCopy == NULL) {
    img->decctx->add_warning(DE265_WARNING_CANNOT_APPLY_SAO_OUT_OF_MEMORY,false);
    return;
  }


  int nChannels = 3;
  if (sps.ChromaArrayType == CHROMA_MONO) { nChannels=1; }

  for (int cIdx=0;cIdx<nChannels;cIdx++) {

    int stride = img->get_image_stride(cIdx);
    int height = img->get_height(cIdx);

    memcpy(inputCopy, img->get_image_plane(cIdx), stride * height * img->get_bytes_per_pixel(cIdx));

    for (int yCtb=0; yCtb<sps.PicHeightInCtbsY; yCtb++)
      for (int xCtb=0; xCtb<sps.PicWidthInCtbsY; xCtb++)
        {
          const slice_segment_header* shdr = img->get_SliceHeaderCtb(xCtb,yCtb);
          if (shdr==NULL) { return; }

          if (cIdx==0 && shdr->slice_sao_luma_flag) {
            apply_sao(img, xCtb,yCtb, shdr, 0, 1<<sps.Log2CtbSizeY, 1<<sps.Log2CtbSizeY,
                      inputCopy, stride,
                      img->get_image_plane(0), img->get_image_stride(0));
          }

          if (cIdx!=0 && shdr->slice_sao_chroma_flag) {
            int nSW = (1<<sps.Log2CtbSizeY) / sps.SubWidthC;
            int nSH = (1<<sps.Log2CtbSizeY) / sps.SubHeightC;

            apply_sao(img, xCtb,yCtb, shdr, cIdx, nSW,nSH,
                      inputCopy, stride,
                      img->get_image_plane(cIdx), img->get_image_stride(cIdx));
          }
        }
  }

  delete[] inputCopy;
}




class thread_task_sao : public thread_task
{
public:
  int  ctb_y;
  de265_image* img; /* this is where we get the SPS from
                       (either inputImg or outputImg can be a dummy image)
                    */

  de265_image* inputImg;
  de265_image* outputImg;
  int inputProgress;

  virtual void work();
  virtual std::string name() const {
    char buf[100];
    sprintf(buf,"sao-%d",ctb_y);
    return buf;
  }
};


void thread_task_sao::work()
{
  state = Running;
  img->thread_run(this);

  const seq_parameter_set& sps = img->get_sps();

  const int rightCtb = sps.PicWidthInCtbsY-1;
  const int ctbSize  = (1<<sps.Log2CtbSizeY);


  // wait until also the CTB-rows below and above are ready

  img->wait_for_progress(this, rightCtb,ctb_y,  inputProgress);

  if (ctb_y>0) {
    img->wait_for_progress(this, rightCtb,ctb_y-1, inputProgress);
  }

  if (ctb_y+1<sps.PicHeightInCtbsY) {
    img->wait_for_progress(this, rightCtb,ctb_y+1, inputProgress);
  }


  // copy input image to output for this CTB-row

  outputImg->copy_lines_from(inputImg, ctb_y * ctbSize, (ctb_y+1) * ctbSize);


  // process SAO in the CTB-row

  for (int xCtb=0; xCtb<sps.PicWidthInCtbsY; xCtb++)
    {
      const slice_segment_header* shdr = img->get_SliceHeaderCtb(xCtb,ctb_y);
      if (shdr==NULL) {
        break;
      }

      if (shdr->slice_sao_luma_flag) {
        apply_sao(img, xCtb,ctb_y, shdr, 0, ctbSize, ctbSize,
                  inputImg ->get_image_plane(0), inputImg ->get_image_stride(0),
                  outputImg->get_image_plane(0), outputImg->get_image_stride(0));
      }

      if (shdr->slice_sao_chroma_flag) {
        int nSW = ctbSize / sps.SubWidthC;
        int nSH = ctbSize / sps.SubHeightC;

        apply_sao(img, xCtb,ctb_y, shdr, 1, nSW,nSH,
                  inputImg ->get_image_plane(1), inputImg ->get_image_stride(1),
                  outputImg->get_image_plane(1), outputImg->get_image_stride(1));

        apply_sao(img, xCtb,ctb_y, shdr, 2, nSW,nSH,
                  inputImg ->get_image_plane(2), inputImg ->get_image_stride(2),
                  outputImg->get_image_plane(2), outputImg->get_image_stride(2));
      }
    }


  // mark SAO progress

  for (int x=0;x<=rightCtb;x++) {
    const int CtbWidth = sps.PicWidthInCtbsY;
    img->ctb_progress[x+ctb_y*CtbWidth].set_progress(CTB_PROGRESS_SAO);
  }


  state = Finished;
  img->thread_finishes(this);
}


bool add_sao_tasks(image_unit* imgunit, int saoInputProgress)
{
  de265_image* img = imgunit->img;
  const seq_parameter_set& sps = img->get_sps();

  if (sps.sample_adaptive_offset_enabled_flag==0) {
    return false;
  }


  decoder_context* ctx = img->decctx;

  de265_error err = imgunit->sao_output.alloc_image(img->get_width(), img->get_height(),
                                                    img->get_chroma_format(),
                                                    img->get_shared_sps(),
                                                    false,
                                                    img->decctx, img->encctx,
                                                    img->pts, img->user_data, true);
  if (err != DE265_OK) {
    img->decctx->add_warning(DE265_WARNING_CANNOT_APPLY_SAO_OUT_OF_MEMORY,false);
    return false;
  }

  int nRows = sps.PicHeightInCtbsY;

  int n=0;
  img->thread_start(nRows);

  for (int y=0;y<nRows;y++)
    {
      thread_task_sao* task = new thread_task_sao;

      task->inputImg  = img;
      task->outputImg = &imgunit->sao_output;
      task->img = img;
      task->ctb_y = y;
      task->inputProgress = saoInputProgress;

      imgunit->tasks.push_back(task);
      add_task(&ctx->thread_pool_, task);
      n++;
    }

  /* Currently need barrier here because when are finished, we have to swap the pixel
     data back into the main image. */
  img->wait_for_completion();

  img->exchange_pixel_data_with(imgunit->sao_output);

  return true;
}