Codebase list libfastutil-java / 09029da4-8c44-476c-bae7-d2e6de63657f/upstream/8.5.11+git20230109.1.7084407+dfsg drv / BigArrayBigList.drv
09029da4-8c44-476c-bae7-d2e6de63657f/upstream/8.5.11+git20230109.1.7084407+dfsg

Tree @09029da4-8c44-476c-bae7-d2e6de63657f/upstream/8.5.11+git20230109.1.7084407+dfsg (Download .tar.gz)

BigArrayBigList.drv @09029da4-8c44-476c-bae7-d2e6de63657f/upstream/8.5.11+git20230109.1.7084407+dfsgraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
/*
 * Copyright (C) 2002-2022 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
import static it.unimi.dsi.fastutil.BigArrays.length;
import it.unimi.dsi.fastutil.BigList;
import it.unimi.dsi.fastutil.Size64;
#if KEYS_REFERENCE
import java.util.function.Consumer;
import java.util.stream.Collector;
#endif

#if KEYS_PRIMITIVE

/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * <p>This class implements a lightweight, fast, open, optimized,
 * reuse-oriented version of big-array-based big lists. Instances of this class
 * represent a big list with a big array that is enlarged as needed when new entries
 * are created (by increasing its current length by 50%), but is
 * <em>never</em> made smaller (even on a {@link #clear()}). A family of
 * {@linkplain #trim() trimming methods} lets you control the size of the
 * backing big array; this is particularly useful if you reuse instances of this class.
 * Range checks are equivalent to those of {@link java.util}'s classes, but
 * they are delayed as much as possible. The backing big array is exposed by the
 * {@link #elements()} method.
 *
 * <p>This class implements the bulk methods {@code removeElements()},
 * {@code addElements()} and {@code getElements()} using
 * high-performance system calls (e.g., {@link
 * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
 * expensive loops.
 *
 * @see java.util.ArrayList
 */

public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353130L;


#else

/** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * <p>This class implements a lightweight, fast, open, optimized,
 * reuse-oriented version of big-array-based big lists. Instances of this class
 * represent a big list with a big array that is enlarged as needed when new entries
 * are created (by increasing its current length to 50%), but is
 * <em>never</em> made smaller (even on a {@link #clear()}). A family of
 * {@linkplain #trim() trimming methods} lets you control the size of the
 * backing big array; this is particularly useful if you reuse instances of this class.
 * Range checks are equivalent to those of {@link java.util}'s classes, but
 * they are delayed as much as possible.
 *
 * <p>The backing big array is exposed by the {@link #elements()} method. If an instance
 * of this class was created {@linkplain #wrap(Object[][],long) by wrapping},
 * backing-array reallocations will be performed using reflection, so that
 * {@link #elements()} can return a big array of the same type of the original big array; the comments
 * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
 *
 * <p>This class implements the bulk methods {@code removeElements()},
 * {@code addElements()} and {@code getElements()} using
 * high-performance system calls (e.g., {@link
 * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
 * expensive loops.
 *
 * @see java.util.ArrayList
 */

public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353131L;


#endif

	/** The initial default capacity of a big-array big list. */
	public static final int DEFAULT_INITIAL_CAPACITY = 10;

#if ! KEYS_PRIMITIVE
	/** Whether the backing big array was passed to {@code wrap()}. In
	 * this case, we must reallocate with the same type of big array. */
	protected final boolean wrapped;
#endif

	/** The backing big array. */
	protected transient KEY_GENERIC_TYPE a[][];

	/** The current actual size of the big list (never greater than the backing-array length). */
	protected long size;

	/** Creates a new big-array big list using a given array.
	 *
	 * <p>This constructor is only meant to be used by the wrapping methods.
	 *
	 * @param a the big array that will be used to back this big-array big list.
	 */

	protected BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], @SuppressWarnings("unused") boolean dummy) {
		this.a = a;
#if ! KEYS_PRIMITIVE
		this.wrapped = true;
#endif
	}

	/** Creates a new big-array big list with given capacity.
	 *
	 * @param capacity the initial capacity of the array list (may be 0).
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public BIG_ARRAY_BIG_LIST(final long capacity) {
		if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
		if (capacity == 0) a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.EMPTY_BIG_ARRAY;
		else a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(capacity);
#if ! KEYS_PRIMITIVE
		wrapped = false;
#endif
	}

	/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public BIG_ARRAY_BIG_LIST() {
		a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY; // We delay allocation
#if ! KEYS_PRIMITIVE
		wrapped = false;
#endif
	}

	/** Creates a new big-array big list and fills it with a given type-specific collection.
	 *
	 * @param c a type-specific collection that will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) {
		this(Size64.sizeOf(c));
		if (c instanceof BIG_LIST) {
			((BIG_LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = Size64.sizeOf(c));
		} else {
			for(KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.NEXT_KEY());
		}
	}

#if KEYS_REFERENCE

	/** Creates a new big-array big list and fills it with a given collection.
	 *
	 * @param c a collection that will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final Collection KEY_EXTENDS_GENERIC c) {
		this(Size64.sizeOf(c));
		if (c instanceof BIG_LIST) {
			((BIG_LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = Size64.sizeOf(c));
		} else {
			for(Iterator KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.next());
		}
	}

#endif

	/** Creates a new big-array big list and fills it with a given type-specific list.
	 *
	 * @param l a type-specific list that will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final BIG_LIST KEY_EXTENDS_GENERIC l) {
		this(l.size64());
		l.getElements(0, a, 0, size = l.size64());
	}

	/** Creates a new big-array big list and fills it with the elements of a given big array.
	 *
	 * @param a a big array whose elements will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][]) {
		this(a, 0, length(a));
	}

	/** Creates a new big-array big list and fills it with the elements of a given big array.
	 *
	 * @param a a big array whose elements will be used to fill the array list.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 */

	public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], final long offset, final long length) {
		this(length);
		BigArrays.copy(a, offset, this.a, 0, length);
		size = length;
	}

	/** Creates a new big-array big list and fills it with the elements returned by an iterator..
	 *
	 * @param i an iterator whose returned elements will fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final Iterator<? extends KEY_GENERIC_CLASS> i) {
		this();
		while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next()));
	}

	/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
	 *
	 * @param i a type-specific iterator whose returned elements will fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
		this();
		while(i.hasNext()) this.add(i.NEXT_KEY());
	}

#if KEYS_PRIMITIVE
	/** Returns the backing big array of this big list.
	 *
	 * @return the backing big array.
	 */

	public KEY_GENERIC_TYPE[][] elements() {
		return a;
	}
#else
	/** Returns the backing big array of this big list.
	 *
	 * <p>If this big-array big list was created by wrapping a given big array, it is guaranteed
	 * that the type of the returned big array will be the same. Otherwise, the returned
	 * big array will be an big array of objects.
	 *
	 * @return the backing big array.
	 */

	public KEY_GENERIC_TYPE[][] elements() {
		return a;
	}
#endif

	/** Wraps a given big array into a big-array list of given size.
	 *
	 * @param a a big array to wrap.
	 * @param length the length of the resulting big-array list.
	 * @return a new big-array list of the given size, wrapping the given big array.
	 */

	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][], final long length) {
		if (length > length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + length(a) + ")");
		final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(a, false);
		l.size = length;
		return l;
	}

	/** Wraps a given big array into a big-array big list.
	 *
	 * @param a a big array to wrap.
	 * @return a new big-array big list wrapping the given array.
	 */

	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][]) {
		return wrap(a, length(a));
	}

	/** Creates a new empty big array list. 
	 *
	 * @return a new empty big-array big list.
	 */
	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC of() {
		return new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND();
	}

	/** Creates a big array list using a list of elements.
	 *
	 * @param init a list of elements that will be used to initialize the big list.
	 *   It is possible (but not assured) that the returned big-array big list will be
	 *   backed by the given array in one of its segments.
	 * @return a new big-array big list containing the given elements.
	 * @see BigArrays#wrap
	 */
	SAFE_VARARGS
	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... init) {
		return wrap(BigArrays.wrap(init));
	}

#if KEYS_INT_LONG_DOUBLE
	/** Collects the result of a primitive {@code Stream} into a new BigArrayBigList.
	 *
	 * <p>This method performs a terminal operation on the given {@code Stream}
	 *
	 * @apiNote Taking a primitive stream instead of returning something like a
	 * {@link java.util.stream.Collector Collector} is necessary because there is no
	 * primitive {@code Collector} equivalent in the Java API.
	 */
	 public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC toBigList(JDK_PRIMITIVE_STREAM stream) {
	 	return stream.collect(
	 		BIG_ARRAY_BIG_LIST::new,
	 		BIG_ARRAY_BIG_LIST::add,
	 		BIG_ARRAY_BIG_LIST::addAll);
	 }
	 
	/** Collects the result of a primitive {@code Stream} into a new BigArrayBigList.
	 *
	 * <p>This method performs a terminal operation on the given {@code Stream}
	 *
	 * @apiNote Taking a primitive stream instead returning something like a
	 * {@link java.util.stream.Collector Collector} is necessary because there is no
	 * primitive {@code Collector} equivalent in the Java API.
	 * @implNote The current implementation preallocates the full size for every worker thread when used on parallel streams.
	 *   This can be quite wasteful, as worker threads other then the first don't usually handle the contents of the full stream.
	 */
	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC toBigListWithExpectedSize(JDK_PRIMITIVE_STREAM stream, long expectedSize) {
		return stream.collect(
			() -> new BIG_ARRAY_BIG_LIST KEY_GENERIC(expectedSize),
			BIG_ARRAY_BIG_LIST::add,
			BIG_ARRAY_BIG_LIST::addAll);
	}
#elif KEYS_REFERENCE
	// Collector wants a function that returns the collection being added to.
	private BIG_ARRAY_BIG_LIST KEY_GENERIC combine(BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC toAddFrom) {
		addAll(toAddFrom);
		return this;
	}

	private static final Collector<KEY_TYPE, ?, BIG_ARRAY_BIG_LIST<KEY_TYPE>> TO_LIST_COLLECTOR =
		Collector.of(
			BIG_ARRAY_BIG_LIST::new,
			BIG_ARRAY_BIG_LIST::add,
			BIG_ARRAY_BIG_LIST::combine); 

	/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. */
	SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES
	public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, BIG_ARRAY_BIG_LIST KEY_GENERIC> toBigList() {
		return (Collector) TO_LIST_COLLECTOR;
	}

 	/**
 	 * Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList.
 	 *
 	 * @implNote The current implementation preallocates the full size for every worker thread when used on parallel streams.
	 *   This can be quite wasteful, as worker threads other then the first don't usually handle the contents of the full stream.
 	 */
 	public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, BIG_ARRAY_BIG_LIST KEY_GENERIC> toBigListWithExpectedSize(long expectedSize) {
 		return Collector.of(
		() -> new BIG_ARRAY_BIG_LIST KEY_GENERIC(expectedSize),
		BIG_ARRAY_BIG_LIST::add,
		BIG_ARRAY_BIG_LIST::combine);
	}
#endif


	/** Ensures that this big-array big list can contain the given number of entries without resizing.
	 *
	 * @param capacity the new minimum capacity for this big-array big list.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public void ensureCapacity(final long capacity) {
		if (capacity <= length(a) || a == BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) return;
#if KEYS_PRIMITIVE
		a = BigArrays.forceCapacity(a, capacity, size);
#else
		if (wrapped) a = BigArrays.forceCapacity(a, capacity, size);
		else {
			if (capacity > length(a)) {
				final Object t[][] = BIG_ARRAYS.newBigArray(capacity);
				BigArrays.copy(a, 0, t, 0, size);
				a = (KEY_GENERIC_TYPE[][])t;
			}
		}
#endif
		assert size <= length(a);
	}

	/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
	 * and in case increasing current capacity at least by a factor of 50%.
	 *
	 * @param capacity the new minimum capacity for this big-array big list.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void grow(long capacity) {
		final long oldLength = length(a);
		if (capacity <= oldLength) return;
		if (a != BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) capacity = Math.max(oldLength + (oldLength >> 1), capacity);
		else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY;
#if KEYS_PRIMITIVE
		a = BigArrays.forceCapacity(a, capacity, size);
#else
		if (wrapped) a =  BigArrays.forceCapacity(a, capacity, size);
		else {
			final Object t[][] = BIG_ARRAYS.newBigArray(capacity);
			BigArrays.copy(a, 0, t, 0, size);
			a = (KEY_GENERIC_TYPE[][])t;
		}
#endif
		assert size <= length(a);
	}

	@Override
	public void add(final long index, final KEY_GENERIC_TYPE k) {
		ensureIndex(index);
		grow(size + 1);
		if (index != size) BigArrays.copy(a, index, a, index + 1, size - index);
		BigArrays.set(a, index, k);
		size++;
		assert size <= length(a);
	}

	@Override
	public boolean add(final KEY_GENERIC_TYPE k) {
		grow(size + 1);
		BigArrays.set(a, size++, k);
		assert size <= length(a);
		return true;
	}

	@Override
	public KEY_GENERIC_TYPE GET_KEY(final long index) {
		if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
		return BigArrays.get(a, index);
	}

	@Override
	public long indexOf(final KEY_TYPE k) {
		for(long i = 0; i < size; i++) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i;
		return -1;
	}

	@Override
	public long lastIndexOf(final KEY_TYPE k) {
		for(long i = size; i-- != 0;) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i;
		return -1;
	}

	@Override
	public KEY_GENERIC_TYPE REMOVE_KEY(final long index) {
		if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
		final KEY_GENERIC_TYPE old = BigArrays.get(a, index);
		size--;
		if (index != size) BigArrays.copy(a, index + 1, a, index, size - index);
#if KEYS_REFERENCE
		BigArrays.set(a, size, null);
#endif
		assert size <= length(a);
		return old;
	}

	@Override
	public boolean REMOVE(final KEY_TYPE k) {
		final long index = indexOf(k);
		if (index == -1) return false;
		REMOVE_KEY(index);
		assert size <= length(a);
		return true;
	}

	@Override
	public KEY_GENERIC_TYPE set(final long index, final KEY_GENERIC_TYPE k) {
		if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
		KEY_GENERIC_TYPE old = BigArrays.get(a, index);
		BigArrays.set(a, index, k);
		return old;
	}

#if KEYS_PRIMITIVE
	@Override
	public boolean removeAll(final COLLECTION c) {
		KEY_GENERIC_TYPE[] s = null, d = null;
		int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
		for (long i = 0; i < size; i++) {
			if (sd == BigArrays.SEGMENT_SIZE) {
				sd = 0;
				s = a[++ss];
			}
			if (!c.contains(s[sd])) {
				if (dd == BigArrays.SEGMENT_SIZE) {
					d = a[++ds];
					dd = 0;
				}
				d[dd++] = s[sd];
			}
			sd++;
		}
		final long j = BigArrays.index(ds, dd);
#if KEYS_REFERENCE
		BigArrays.fill(a, j, size, null);
#endif
		final boolean modified = size != j;
		size = j;
		return modified;
	}

#endif

	@Override
	public boolean removeAll(final Collection<?> c) {
		KEY_GENERIC_TYPE[] s = null, d = null;
		int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
		for (long i = 0; i < size; i++) {
			if (sd == BigArrays.SEGMENT_SIZE) {
				sd = 0;
				s = a[++ss];
			}
			if (!c.contains(KEY2OBJ(s[sd]))) {
				if (dd == BigArrays.SEGMENT_SIZE) {
					d = a[++ds];
					dd = 0;
				}
				d[dd++] = s[sd];
			}
			sd++;
		}
		final long j = BigArrays.index(ds, dd);
#if KEYS_REFERENCE
		BigArrays.fill(a, j, size, null);
#endif
		final boolean modified = size != j;
		size = j;
		return modified;
	}

	@Override
	public boolean addAll(long index, final STD_KEY_COLLECTION KEY_EXTENDS_GENERIC c) {
		if (c instanceof LIST) {
			return addAll(index, (LIST KEY_EXTENDS_GENERIC)c);
		}
		if (c instanceof BIG_LIST) {
			return addAll(index, (BIG_LIST KEY_EXTENDS_GENERIC)c);
		}
		ensureIndex(index);
		int n = c.size();
		if (n == 0) return false;
		grow(size + n);
		BigArrays.copy(a, index, a, index + n, size - index);
		final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator();
		size += n;
		assert size <= length(a);
		while(n-- != 0) BigArrays.set(a, index++, i.NEXT_KEY());
		return true;
	}

	@Override
	public boolean addAll(final long index, final BIG_LIST KEY_EXTENDS_GENERIC list) {
		ensureIndex(index);
		final long n = list.size64();
		if (n == 0) return false;
		grow(size + n);
		BigArrays.copy(a, index, a, index + n, size - index);
		list.getElements(0, a, index, n);
		size += n;
		assert size <= length(a);
		return true;
	}

	@Override
	public boolean addAll(final long index, final LIST KEY_EXTENDS_GENERIC list) {
		ensureIndex(index);
		int n = list.size();
		if (n == 0) return false;
		grow(size + n);
		BigArrays.copy(a, index, a, index + n, size - index);

		size += n;
		assert size <= length(a);

		int segment = BigArrays.segment(index);
		int displ = BigArrays.displacement(index);
		int pos = 0;

		while(n > 0) {
			final int l = Math.min(a[segment].length - displ, n);
			list.getElements(pos, a[segment], displ, l);
			if ((displ += l) == BigArrays.SEGMENT_SIZE) {
				displ = 0;
				segment++;
			}
			pos += l;
			n -= l;
		}

		return true;
	}

	@Override
	public void clear() {
#if KEYS_REFERENCE
		BigArrays.fill(a, 0, size, null);
#endif
		size = 0;
		assert size <= length(a);
	}

	@Override
	public long size64() {
		return size;
	}

	@Override
	public void size(final long size) {
		if (size > length(a)) a = BigArrays.forceCapacity(a, size, this.size);
		if (size > this.size) BigArrays.fill(a, this.size, size, KEY_NULL);
#if KEYS_REFERENCE
		else BigArrays.fill(a, size, this.size, KEY_NULL);
#endif
		this.size = size;
	}

	@Override
	public boolean isEmpty() {
		return size == 0;
	}

	/** Trims this big-array big list so that the capacity is equal to the size.
	 *
	 * @see java.util.ArrayList#trimToSize()
	 */
	public void trim() {
		trim(0);
	}

	/** Trims the backing big array if it is too large.
	 *
	 * If the current big array length is smaller than or equal to
	 * {@code n}, this method does nothing. Otherwise, it trims the
	 * big-array length to the maximum between {@code n} and {@link #size64()}.
	 *
	 * <p>This method is useful when reusing big lists.  {@linkplain #clear() Clearing a
	 * big list} leaves the big-array length untouched. If you are reusing a big list
	 * many times, you can call this method with a typical
	 * size to avoid keeping around a very large big array just
	 * because of a few large transient big lists.
	 *
	 * @param n the threshold for the trimming.
	 */

	public void trim(final long n) {
		final long arrayLength = length(a);
		if (n >= arrayLength || size == arrayLength) return;
		a = BigArrays.trim(a, Math.max(n, size));
		assert size <= length(a);
	}

	private class SubList extends ABSTRACT_BIG_LIST.SUBLIST_RANDOM_ACCESS KEY_GENERIC {
		private static final long serialVersionUID = -3185226345314976296L;

		protected SubList(long from, long to) {
			super(BIG_ARRAY_BIG_LIST.this, from, to);
		}

		// Needed because we can't access the parent class' instance variables directly in a different instance of SubList.
		private KEY_GENERIC_TYPE[][] getParentArray() {
			return a;
		}

		// Most of the inherited methods should be fine, but we can override a few of them for performance.

		@Override
		public KEY_GENERIC_TYPE GET_KEY(long i) {
			ensureRestrictedIndex(i);
			return BigArrays.get(a, i + from);
		}

		private final class SubListIterator extends BIG_LIST_ITERATORS.AbstractIndexBasedBigListIterator KEY_GENERIC {

			// We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when accessing array).
			SubListIterator(long index) {
				super(0, index);
			}

			@Override
			protected final KEY_GENERIC_TYPE get(long i) { return BigArrays.get(a, from + i); }
			@Override
			protected final void add(long i, KEY_GENERIC_TYPE k) { SubList.this.add(i, k); }
			@Override
			protected final void set(long i, KEY_GENERIC_TYPE k) { SubList.this.set(i, k); }
			@Override
			protected final void remove(long i) { SubList.this.REMOVE_KEY(i); }
			@Override
			protected final long getMaxPos() { return to - from; }

			@Override
			public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = pos++)); }
			@Override
			public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = --pos)); }

			@Override
			public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
				final long max = to - from;
				while(pos < max) {
					action.accept(BigArrays.get(a, from + (lastReturned = pos++)));
				}
			}
		}

		@Override
		public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(long index) {
			return new SubListIterator(index);
		}

		private final class SubListSpliterator extends BIG_SPLITERATORS.LateBindingSizeIndexBasedSpliterator KEY_GENERIC {

			// We are using pos == 0 to be 0 relative to real array 0
			SubListSpliterator() {
				super(from);
			}

			private SubListSpliterator(long pos, long maxPos) {
				super(pos, maxPos);
			}

			@Override
			protected final long getMaxPosFromBackingStore() { return to; }

	 		@Override
			protected final KEY_GENERIC_TYPE get(long i) { return BigArrays.get(a, i); }
			@Override
			protected final SubListSpliterator makeForSplit(long pos, long maxPos) {
				return new SubListSpliterator(pos, maxPos);
			}
			@Override
			protected final long computeSplitPoint() {
				long defaultSplit = super.computeSplitPoint();
				// Align to outer array starting point if possible.
				// We add/subtract one to the bounds to ensure the new pos will always shrink the range
				return BigArrays.nearestSegmentStart(defaultSplit, pos + 1, getMaxPos() - 1);
			}
			@Override
			public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
				if (pos >= getMaxPos()) return false;
				action.accept(BigArrays.get(a, pos++));
				return true;
			}
			@Override
			public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
				final long max = getMaxPos();
				while(pos < max) {
					action.accept(BigArrays.get(a, pos++));
				}
			}
		}

		@Override
		public KEY_SPLITERATOR KEY_GENERIC spliterator() {
			return new SubListSpliterator();
		}

		boolean contentsEquals(KEY_GENERIC_TYPE[][] otherA, long otherAFrom, long otherATo) {
			if (a == otherA && from == otherAFrom && to == otherATo) return true;
			if (otherATo - otherAFrom != size64()) {
				return false;
			}
			long pos = to, otherPos = otherATo;
			// We have already assured that the two ranges are the same size, so we only need to check one bound.
			// If BigArrays.equals ever gets an overload that accepts bounds, use that instead
			// (but make sure to break out the reference equality case).
#if KEY_CLASS_Object
			while(--pos >= from) if (! java.util.Objects.equals(BigArrays.get(a, pos), BigArrays.get(otherA, --otherPos))) return false;
#else
			while(--pos >= from) if (BigArrays.get(a, pos) != BigArrays.get(otherA, --otherPos)) return false;
#endif
			return true;
		}

		@Override
		public boolean equals(Object o) {
			if (o == this) return true;
			if (o == null) return false;
			if (!(o instanceof BigList)) return false;
			if (o instanceof BIG_ARRAY_BIG_LIST) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC other = (BIG_ARRAY_BIG_LIST KEY_GENERIC) o;
				return contentsEquals(other.a, 0, other.size64());
			}
			if (o instanceof BIG_ARRAY_BIG_LIST.SubList) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList other = (BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) o;
				return contentsEquals(other.getParentArray(), other.from, other.to);
			}
			return super.equals(o);
		}

#if ! KEYS_USE_REFERENCE_EQUALITY
		SUPPRESS_WARNINGS_KEY_UNCHECKED
		int contentsCompareTo(KEY_GENERIC_TYPE[][] otherA, long otherAFrom, long otherATo) {
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
			if (a == otherA && from == otherAFrom && to == otherATo) return 0;
#endif
			// TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes.
			KEY_GENERIC_TYPE e1, e2;
			int r;
			long i, j;
			for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) {
				e1 = BigArrays.get(a, i);
				e2 = BigArrays.get(otherA, j);
				if ((r = KEY_CMP(e1, e2)) != 0) return r;
			}
			return i < otherATo ? -1 : (i < to ? 1 : 0);
		}

		SUPPRESS_WARNINGS_KEY_UNCHECKED
		@Override
		public int compareTo(final BigList <? extends KEY_GENERIC_CLASS> l) {
			if (l instanceof BIG_ARRAY_BIG_LIST) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC other = (BIG_ARRAY_BIG_LIST KEY_GENERIC) l;
				return contentsCompareTo(other.a, 0, other.size64());
			}
			if (l instanceof BIG_ARRAY_BIG_LIST.SubList) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList other = (BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) l;
				return contentsCompareTo(other.getParentArray(), other.from, other.to);
			}
			return super.compareTo(l);
		}
#endif

		// We don't override subList as we want AbstractList's "sub-sublist" nesting handling,
		// which would be tricky to do here.
		// TODO Do override it so array access isn't sent through N indirections.
		// This will likely mean making this class static.
	}

	@Override
	public BIG_LIST KEY_GENERIC subList(long from, long to) {
		if (from == 0 && to == size64()) return this;
		ensureIndex(from);
		ensureIndex(to);
		if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")");
		return new SubList(from, to);
	}


	/** Copies element of this type-specific list into the given big array using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param a the destination big array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */

	@Override
	public void getElements(final long from, final KEY_TYPE[][] a, final long offset, final long length) {
		BigArrays.copy(this.a, from, a, offset, length);
	}

	/** Copies element of this type-specific list into the given array using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param a the destination array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */

	@Override
	public void getElements(final long from, final KEY_TYPE[] a, final int offset, final int length) {
		BigArrays.copyFromBig(this.a, from, a, offset, length);
	}

	/** Removes elements of this type-specific list using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param to the end index (exclusive).
	 */
	@Override
	public void removeElements(final long from, final long to) {
		BigArrays.ensureFromTo(size, from, to);
		BigArrays.copy(a, to, a, from, size - to);
		size -= (to - from);
#if KEYS_REFERENCE
		BigArrays.fill(a, size, size + to - from, null);
#endif
	}


	/** Adds elements to this type-specific list using optimized system calls.
	 *
	 * @param index the index at which to add elements.
	 * @param a the big array containing the elements.
	 * @param offset the offset of the first element to add.
	 * @param length the number of elements to add.
	 */
	@Override
	public void addElements(final long index, final KEY_GENERIC_TYPE a[][], final long offset, final long length) {
		ensureIndex(index);
		BigArrays.ensureOffsetLength(a, offset, length);
		grow(size + length);
		BigArrays.copy(this.a, index, this.a, index + length, size - index);
		BigArrays.copy(a, offset, this.a, index, length);
		size += length;
	}

	/** Copies elements in the given big array into this type-specific list using optimized system calls.
	 *
	 * @param index the start index (inclusive).
	 * @param a the destination big array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */
	@Override
	public void setElements(final long index, final KEY_TYPE[][] a, final long offset, final long length) {
		BigArrays.copy(a, offset, this.a, index, length);
	}

	@Override
	public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
		for (long i = 0; i < size; ++i) {
			action.accept(BigArrays.get(a, i));
		}
	}

	@Override
	public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(final long index) {
		ensureIndex(index);

		return new KEY_BIG_LIST_ITERATOR KEY_GENERIC() {
				long pos = index, last = -1;

				@Override
				public boolean hasNext() { return pos < size; }
				@Override
				public boolean hasPrevious() { return pos > 0; }
				@Override
				public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, last = pos++); }
				@Override
				public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, last = --pos); }
				@Override
				public long nextIndex() { return pos; }
				@Override
				public long previousIndex() { return pos - 1; }
				@Override
				public void add(KEY_GENERIC_TYPE k) {
					BIG_ARRAY_BIG_LIST.this.add(pos++, k);
					last = -1;
				}
				@Override
				public void set(KEY_GENERIC_TYPE k) {
					if (last == -1) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.set(last, k);
				}
				@Override
				public void remove() {
					if (last == -1) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.REMOVE_KEY(last);
					/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
					if (last < pos) pos--;
					last = -1;
				}
				@Override
				public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
					while (pos < size) {
						action.accept(BigArrays.get(a, last = pos++));
					}
				}
				@Override
				public long back(long n) {
					if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
					final long remaining = size - pos;
					if (n < remaining) {
						pos -= n;
					} else {
						n = remaining;
						pos = 0;
					}
					last = pos;
					return n;
				}
				@Override
				public long skip(long n) {
					if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
					final long remaining = size - pos;
					if (n < remaining) {
						pos += n;
					} else {
						n = remaining;
						pos = size;
					}
					last = pos - 1;
					return n;
				}
			};
	}

	private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC {
		// Until we split, we will track the size of the list.
		// Once we split, then we stop updating on structural modifications.
		// Aka, size is late-binding.
		boolean hasSplit = false;
		long pos, max;

#ifdef TEST
		// Sentinel to make sure we don't accidentally use size when we mean max
		@Deprecated
		private final Object size = null;
#endif

		public Spliterator() {
			this(0, BIG_ARRAY_BIG_LIST.this.size, false);
		}

		private Spliterator(long pos, long max, boolean hasSplit) {
			assert pos <= max : "pos " + pos + " must be <= max " + max;
			this.pos = pos;
			this.max = max;
			this.hasSplit = hasSplit;
		}

		private long getWorkingMax() {
			return hasSplit ? max : BIG_ARRAY_BIG_LIST.this.size;
		}

		@Override
		public int characteristics() { return SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS; }

		@Override
		public long estimateSize() { return getWorkingMax() - pos; }

		@Override
		public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
			if (pos >= getWorkingMax()) return false;
			action.accept(BigArrays.get(a, pos++));
			return true;
		}

		@Override
		public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
			for (final long max = getWorkingMax(); pos < max; ++pos) {
				action.accept(BigArrays.get(a, pos));
			}
		}

		@Override
		public long skip(long n) {
			if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
			final long max = getWorkingMax();
			if (pos >= max) return 0;
			final long remaining = max - pos;
			if (n < remaining) {
				pos += n;
				return n;
			}
			n = remaining;
			pos = max;
			return n;
		}

		@Override
		public KEY_SPLITERATOR KEY_GENERIC trySplit() {
			final long max = getWorkingMax();
			long retLen = (max - pos) >> 1;
			if (retLen <= 1) return null;
			// Update instance max with the last seen list size (if needed) before continuing
			this.max = max;
			long myNewPos = pos + retLen;
			// Align to an outer array boundary if possible
			// We add/subtract one to the bounds to ensure the new pos will always shrink the range
			myNewPos = BigArrays.nearestSegmentStart(myNewPos, pos + 1, max - 1);
			long retMax = myNewPos;
			long oldPos = pos;
			this.pos = myNewPos;
			this.hasSplit = true;
			return new Spliterator(oldPos, retMax, true);
		}
	}

	@Override
	public KEY_SPLITERATOR KEY_GENERIC spliterator() {
		return new Spliterator();
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	@Override
	public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() {
		BIG_ARRAY_BIG_LIST KEY_GENERIC c;
		// Test for fastpath we can do if exactly an BigArrayBigList
		if (getClass() == BIG_ARRAY_BIG_LIST.class) {
			c = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(size);
			c.size = size;
		} else {
			try {
				c = (BIG_ARRAY_BIG_LIST KEY_GENERIC)super.clone();
			} catch (CloneNotSupportedException e) {
				// Can't happen
				throw new InternalError(e);
			}
			c.a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size);
		}
		BigArrays.copy(a, 0, c.a, 0, size);
		return c;
	}

	/** Compares this type-specific big-array list to another one.
	 *
	 * <p>This method exists only for sake of efficiency. The implementation
	 * inherited from the abstract implementation would already work.
	 *
	 * @param l a type-specific big-array list.
	 * @return true if the argument contains the same elements of this type-specific big-array list.
	 */
	public boolean equals(final BIG_ARRAY_BIG_LIST KEY_GENERIC l) {
		if (l == this) return true;
		long s = size64();
		if (s != l.size64()) return false;
		final KEY_GENERIC_TYPE[][] a1 = a;
		final KEY_GENERIC_TYPE[][] a2 = l.a;
		// Already checked s == l.size64 above
		if (a1 == a2) return true;
		// Backwards loop is faster then forwards loop, at least in Java 8 and below.
#if KEY_CLASS_Object
		while(s-- !=  0) if (! java.util.Objects.equals(BigArrays.get(a1, s), BigArrays.get(a2, s))) return false;
#else
		while(s-- !=  0) if (BigArrays.get(a1, s) != BigArrays.get(a2, s)) return false;
#endif
		return true;
	}

#if KEYS_PRIMITIVE
	@SuppressWarnings("unlikely-arg-type" )
#else
	@SuppressWarnings({ "unchecked", "unlikely-arg-type" })
#endif
	@Override
	public boolean equals(final Object o) {
		if (o == this) return true;
		if (o == null) return false;
		if (!(o instanceof BigList)) return false;
		if (o instanceof BIG_ARRAY_BIG_LIST) {
			// Safe cast because we are only going to take elements from other list, never give them
			return equals((BIG_ARRAY_BIG_LIST KEY_GENERIC) o);
		}
		if (o instanceof BIG_ARRAY_BIG_LIST.SubList) {
			// Safe cast because we are only going to take elements from other list, never give them
			// Sublist has an optimized sub-array based comparison, reuse that. 
			return ((BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList)o).equals(this);
		}
		return super.equals(o);
	}

#if ! KEYS_USE_REFERENCE_EQUALITY

	/** Compares this big list to another big list.
	 *
	 * <p>This method exists only for sake of efficiency. The implementation
	 * inherited from the abstract implementation would already work.
	 *
	 * @param l a big list.
	 * @return a negative integer,
	 * zero, or a positive integer as this big list is lexicographically less than, equal
	 * to, or greater than the argument.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public int compareTo(final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l) {
		final long s1 = size64(), s2 = l.size64();
		final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a;
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
		if (a1 == a2 && s1 == s2) return 0;
#endif
		KEY_GENERIC_TYPE e1, e2;
		int r, i;

		for(i = 0; i < s1 && i < s2; i++) {
			e1 = BigArrays.get(a1, i);
			e2 = BigArrays.get(a2, i);
			if ((r = KEY_CMP(e1, e2)) != 0) return r;
		}

		return i < s2 ? -1 : (i < s1 ? 1 : 0);
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	@Override
	public int compareTo(final BigList <? extends KEY_GENERIC_CLASS> l) {
		if (l instanceof BIG_ARRAY_BIG_LIST) {
			return compareTo((BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC)l);
		}
		if (l instanceof BIG_ARRAY_BIG_LIST.SubList) {
			// Must negate because we are inverting the order of the comparison.
			return -((BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) l).compareTo(this);
		}
		return super.compareTo(l);
	}
#endif


	private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
		s.defaultWriteObject();
		for(int i = 0; i < size; i++) s.WRITE_KEY(BigArrays.get(a, i));
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();
		a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size);
		for(int i = 0; i < size; i++) BigArrays.set(a, i, KEY_GENERIC_CAST s.READ_KEY());
	}


#ifdef TEST

	private static long seed = System.currentTimeMillis();
	private static java.util.Random r = new java.util.Random(seed);

	private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
		return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
		return r.NEXT_KEY();
#elif KEY_CLASS_Object
		return Integer.toBinaryString(r.nextInt());
#else
		return new java.io.Serializable() {};
#endif
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
	private static java.text.FieldPosition p = new java.text.FieldPosition(0);

	private static String format(double d) {
		StringBuffer s = new StringBuffer();
		return format.format(d, s, p).toString();
	}

	private static void speedTest(int n, boolean comp) {
		System.out.println("There are presently no speed tests for this class.");
	}


	private static void fatal(String msg) {
		throw new AssertionError(msg);
	}

	private static void ensure(boolean cond, String msg) {
		if (cond) return;
		fatal(msg);
	}
	
	private static void ensure(boolean cond, java.util.function.Supplier<String> msgSupplier) {
		if (cond) return;
		fatal(msgSupplier.get());
	}

	private static Object[] k, v, nk;
	private static KEY_TYPE kt[];
	private static KEY_TYPE nkt[];
	private static BIG_ARRAY_BIG_LIST topList;

	protected static void testLists(BIG_LIST m, BIG_LIST t, int n, int level) throws Exception {
		long ms;
		Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
		Object rt = null;
		KEY_TYPE rm = KEY_NULL;

		if (level > 4) return;


		/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */

		for(int i = 0; i < n; i++) {
			int p = r.nextInt() % (n * 2);

			KEY_TYPE T = genKey();
			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.set(p, T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.set(p, KEY2OBJ(T));
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");

			p = r.nextInt() % (n * 2);
			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.GET_KEY(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.get(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");

		}

		/* Now we check that both sets agree on random keys. For m we use the standard method. */

		for(int i = 0; i < n; i++) {
			int p = r.nextInt() % (n * 2);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.get(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.get(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")");

		}

		/* Now we check that m and t are equal. */
		if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t);

		ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start");
		ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start");



		/* Now we check that m actually holds that data. */
		for(Iterator i=t.iterator(); i.hasNext();) {
			ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)");
		}

		/* Now we check that m actually holds that data, but iterating on m. */
		for(Iterator i=m.listIterator(); i.hasNext();) {
			ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)");
		}

		/* Now we check that inquiries about random data give the same answer in m and t. For
		   m we use the polymorphic method. */

		for(int i=0; i<n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)");
		}

		/* Again, we check that inquiries about random data give the same answer in m and t, but
		   for m we use the standard method. */

		for(int i=0; i<n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)");
		}

		/* Now we add and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<2*n;  i++) {
			KEY_TYPE T = genKey();

			try {
				m.add(T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.add(KEY2OBJ(T));
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			T = genKey();
			int p = r.nextInt() % (2 * n + 1);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.add(p, T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.add(p, KEY2OBJ(T));
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }


			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): add() divergence in IndexOutOfBoundsException for index " + p + " for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			p = r.nextInt() % (2 * n + 1);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				rm = m.REMOVE_KEY(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				rt = t.remove(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }


			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): remove() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(rt.equals(KEY2OBJ(rm)), "Error (" + level + ", " + seed + "): divergence in remove() between t and m (" + rt + ", " + rm + ")");
		}

		ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after add/remove");
		ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after add/remove");

		/* Now we add random data in m and t using addAll on a collection, checking that the result is the same. */

		for(int i=0; i<n;  i++) {
			int p = r.nextInt() % (2 * n + 1);
			java.util.Collection m1 = new java.util.ArrayList();
			int s = r.nextInt(n / 2 + 1);
			for(int j = 0; j < s; j++) m1.add(KEY2OBJ(genKey()));

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after addAll");
			ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after addAll");
		}

		if (m.size64() > n) {
			m.size(n);
			while(t.size64() != n) t.remove(t.size64() -1);
		}

		/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */

		for(int i=0; i<n;  i++) {
			int p = r.nextInt() % (2 * n + 1);
			COLLECTION m1 = new BIG_ARRAY_BIG_LIST();
			java.util.Collection t1 = new java.util.ArrayList();
			int s = r.nextInt(n / 2 + 1);
			for(int j = 0; j < s; j++) {
				KEY_TYPE x = genKey();
				m1.add(x);
				t1.add(KEY2OBJ(x));
			}

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, t1);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): polymorphic addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after polymorphic addAll");
			ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after polymorphic addAll");
		}

		if (m.size64() > n) {
			m.size(n);
			while(t.size64() != n) t.remove(t.size64() -1);
		}

		/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */

		for(int i=0; i<n;  i++) {
			int p = r.nextInt() % (2 * n + 1);
			BIG_LIST m1 = new BIG_ARRAY_BIG_LIST();
			java.util.Collection t1 = new java.util.ArrayList();
			int s = r.nextInt(n / 2 + 1);
			for(int j = 0; j < s; j++) {
				KEY_TYPE x = genKey();
				m1.add(x);
				t1.add(KEY2OBJ(x));
			}

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, t1);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): list addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after list addAll");
			ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after list addAll");
		}

		/* Now we check that both sets agree on random keys. For m we use the standard method. */

		for(int i = 0; i < n; i++) {
			int p = r.nextInt() % (n * 2);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.get(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.get(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get(p) + ", " + t.get(p) +")");

		}

		/* Now we inquiry about the content with indexOf()/lastIndexOf(). */

		for(int i=0; i<10*n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.indexOf(KEY2OBJ(T)) == t.indexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): indexOf() divergence for " + T + "  (" + m.indexOf(KEY2OBJ(T)) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
			ensure(m.lastIndexOf(KEY2OBJ(T)) == t.lastIndexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + "  (" + m.lastIndexOf(KEY2OBJ(T)) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
			ensure(m.indexOf(T) == t.indexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + "  (" + m.indexOf(T) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
			ensure(m.lastIndexOf(T) == t.lastIndexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + "  (" + m.lastIndexOf(T) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
		}

		/* Now we check cloning. */

		if (level == 0) {
			ensure(m.equals(((BIG_ARRAY_BIG_LIST)m).clone()), "Error (" + level + ", " + seed + "): m does not equal m.clone()");
			ensure(((BIG_ARRAY_BIG_LIST)m).clone().equals(m), "Error (" + level + ", " + seed + "): m.clone() does not equal m");
		}

		/* Now we play with constructors. */
		ensure(m.equals(new BIG_ARRAY_BIG_LIST((COLLECTION)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific Collection m)");
		ensure((new BIG_ARRAY_BIG_LIST((COLLECTION)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific nCollection m) does not equal m");
		ensure(m.equals(new BIG_ARRAY_BIG_LIST((BIG_LIST)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific List m)");
		ensure((new BIG_ARRAY_BIG_LIST((BIG_LIST)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific List m) does not equal m");
		ensure(m.equals(new BIG_ARRAY_BIG_LIST(m.listIterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.listIterator())");
		ensure((new BIG_ARRAY_BIG_LIST(m.listIterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.listIterator()) does not equal m");
		ensure(m.equals(new BIG_ARRAY_BIG_LIST(m.iterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.type_specific_iterator())");
		ensure((new BIG_ARRAY_BIG_LIST(m.iterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.type_specific_iterator()) does not equal m");


		int h = m.hashCode();

		/* Now we save and read m. */

		BIG_LIST m2 = null;

		{
			java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n);
			java.io.OutputStream os = new java.io.FileOutputStream(ff);
			java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);

			oos.writeObject(m);
			oos.close();

			java.io.InputStream is = new java.io.FileInputStream(ff);
			java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);

			m2 = (BIG_LIST)ois.readObject();
			ois.close();
			ff.delete();
		}

#if ! KEYS_USE_REFERENCE_EQUALITY
		ensure(m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read");

		/* Now we check that m2 actually holds that data. */

		ensure(m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals(t) after save/read");
		ensure(t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals(m2) after save/read");
		/* Now we take out of m everything, and check that it is empty. */

		for(Iterator i=t.iterator(); i.hasNext();) m2.remove(i.next());

		ensure(m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)");
#endif

		/* Now we play with iterators. */

		{
			KEY_BIG_LIST_ITERATOR i;
			KEY_BIG_LIST_ITERATOR j;
			Object J;
			i = m.listIterator();
			j = t.listIterator();

			for(int k = 0; k < 2*n; k++) {
				ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()");
				ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()");

				if (r.nextFloat() < .8 && i.hasNext()) {
					ensure(i.next().equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next()");

					if (r.nextFloat() < 0.2) {
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}
				else if (r.nextFloat() < .2 && i.hasPrevious()) {
					ensure(i.previous().equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous()");

					if (r.nextFloat() < 0.2) {
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}

				ensure(i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()");
				ensure(i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()");

			}

		}

		/* Now we play with spliterators.
		 *
		 * Or rather we would, except comparing results of spliterators directly is a bit painful.
		 * However, there is an easy workaround; use streams, which are built on Spliterators.
		 */
		{
#if KEYS_REFERENCE
			java.util.stream.Stream<KEY_TYPE> i = m.parallelStream();
			java.util.stream.Stream<KEY_TYPE> j = t.parallelStream();
#elif KEY_CLASS_Boolean
			java.util.stream.Stream<KEY_CLASS> i = m.parallelStream();
			java.util.stream.Stream<KEY_CLASS> j = t.parallelStream();
#else
			JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_PARALLEL_STREAM_METHOD();
			java.util.stream.Stream<KEY_CLASS> j = t.parallelStream();
#endif

#if KEYS_REFERENCE || KEY_CLASS_Boolean
			Object[] iArray = i.toArray();
			Object[] jArray = j.toArray();
#elif KEY_CLASS_Character
			KEY_TYPE_WIDENED[] iArray = i.toArray();
			KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(c -> (int)c.charValue()).toArray();
#else
			KEY_TYPE_WIDENED[] iArray = i.toArray();
			KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray();
#endif
			ensure(java.util.Arrays.equals(iArray, jArray), "Error (" + level + ", " + seed + "): divergence in toArray() from streams (" + java.util.Arrays.toString(iArray) + " != " + java.util.Arrays.toString(jArray) + ")");
		}

		{
			Object previous = null;
			Object I, J;
			long from = m.isEmpty() ? 0 : (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
			KEY_BIG_LIST_ITERATOR i;
			KEY_BIG_LIST_ITERATOR j;
			i = m.listIterator(from);
			j = t.listIterator(from);

			for(int k = 0; k < 2*n; k++) {
				ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
				ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")");

				if (r.nextFloat() < .8 && i.hasNext()) {
					ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")");
					//System.err.println("Done next " + I + " " + J + "  " + badPrevious);

					if (r.nextFloat() < 0.2) {
						//System.err.println("Removing in next");
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}
				else if (r.nextFloat() < .2 && i.hasPrevious()) {
					ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")");

					if (r.nextFloat() < 0.2) {
						//System.err.println("Removing in prev");
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}
			}

		}

		/* Now we check that m actually holds that data. */

		ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration");
		ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration");

		/* Now we select a pair of keys and create a subset. */

		if (! m.isEmpty()) {
			long start = (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
			long end = start + (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (m.size64() - start);
			//System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")...");
			testLists(m.subList(start, end), t.subList(start, end), n, level + 1);

			ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after subList");
			ensure(t.equals(m), () -> "Error (" + level + ", " + seed + "): ! t.equals(m) after subList");

		}

		m.clear();
		t.clear();
		ensure(m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()");
	}


	protected static void runTest(int n) throws Exception {
		BIG_ARRAY_BIG_LIST m = new BIG_ARRAY_BIG_LIST();
		BIG_LIST t = BIG_LISTS.asBigList(new ARRAY_LIST());
		topList = m;
		k = new Object[n];
		nk = new Object[n];
		kt = new KEY_TYPE[n];
		nkt = new KEY_TYPE[n];

		for(int i = 0; i < n; i++) {
#if KEYS_REFERENCE
			k[i] = kt[i] = genKey();
			nk[i] = nkt[i] = genKey();
#else
			k[i] = new KEY_CLASS(kt[i] = genKey());
			nk[i] = new KEY_CLASS(nkt[i] = genKey());
#endif
		}

		/* We add pairs to t. */
#if KEYS_PRIMITIVE
		for(int i = 0; i < n;  i++) t.add((KEY_GENERIC_CLASS)k[i]);
#else
		for(int i = 0; i < n;  i++) t.add(k[i]);
#endif

		/* We add to m the same data */
		m.addAll(t);

		testLists(m, t, n, 0);

		System.out.println("Test OK");
		return;
	}


	public static void main(String args[]) throws Exception {
		int n  = Integer.parseInt(args[1]);
		if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));


		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
			else if ("test".equals(args[0])) runTest(n);
		} catch(Throwable e) {
			e.printStackTrace(System.err);
			System.err.println("seed: " + seed);
			throw e;
		}
	}

#endif

}