Codebase list libfastutil-java / debian/7.0.2-1 drv / OpenHashBigSet.drv
debian/7.0.2-1

Tree @debian/7.0.2-1 (Download .tar.gz)

OpenHashBigSet.drv @debian/7.0.2-1raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
/*		 
 * Copyright (C) 2002-2014 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;

import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;


/**  A type-specific hash big set with with a fast, small-footprint implementation.
 *
 * <P>Instances of this class use a hash table to represent a big set: the number
 * of elements in the set is limited only by the amount of core memory. The table 
 * (backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array}) is
 * filled up to a specified <em>load factor</em>, and then doubled in size to
 * accommodate new entries. If the table is emptied below <em>one fourth</em>
 * of the load factor, it is halved in size. However, halving is
 * not performed when deleting entries from an iterator, as it would interfere
 * with the iteration process.
 *
 * <p>Note that {@link #clear()} does not modify the hash table size. 
 * Rather, a family of {@linkplain #trim() trimming
 * methods} lets you control the size of the table; this is particularly useful
 * if you reuse instances of this class.
 *
 * <p>The methods of this class are about 30% slower than those of the corresponding non-big set.
 *
 * @see Hash
 * @see HashCommon
 */

public class OPEN_HASH_BIG_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash, Size64 {

    private static final long serialVersionUID = 0L;
	private static final boolean ASSERTS = ASSERTS_VALUE;

	/** The big array of keys. */
	protected transient KEY_GENERIC_TYPE[][] key;
	 
	/** The mask for wrapping a position counter. */
	protected transient long mask;

	/** The mask for wrapping a segment counter. */
	protected transient int segmentMask;

	/** The mask for wrapping a base counter. */
	protected transient int baseMask;

	/** Whether this set contains the null key. */
	protected transient boolean containsNull;

	/** The current table size (always a power of 2). */
	protected transient long n;

	/** Threshold after which we rehash. It must be the table size times {@link #f}. */
	protected transient long maxFill;

	/** The acceptable load factor. */
	protected final float f;
	 
	/** Number of entries in the set. */
	protected long size;


	/** Initialises the mask values. */
	private void initMasks() {
		mask = n - 1;
		/* Note that either we have more than one segment, and in this case all segments
		 * are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length
		 * is a power of two. */
		segmentMask = key[ 0 ].length - 1;
		baseMask = key.length - 1;		
	}

	/** Creates a new hash big set.
	 *
	 * <p>The actual table size will be the least power of two greater than <code>expected</code>/<code>f</code>.
	 *
	 * @param expected the expected number of elements in the set. 
	 * @param f the load factor.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public OPEN_HASH_BIG_SET( final long expected, final float f ) {
		if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
		if ( n < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );

		this.f = f;
		
		n = bigArraySize( expected, f );
		maxFill = maxFill( n, f );
		key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
		initMasks();
	}
	 
	 
	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
	 *
	 * @param expected the expected number of elements in the hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final long expected ) {
		this( expected, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
	 * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
	 */
	 
	public OPEN_HASH_BIG_SET() {
		this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
	} 

	/** Creates a new hash big set copying a given collection.
	 *
	 * @param c a {@link Collection} to be copied into the new hash big set. 
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final Collection<? extends KEY_GENERIC_CLASS> c, final float f ) {
		this( c.size(), f );
		addAll( c );
	}

	/** Creates a new hash big set  with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor 
	 * copying a given collection.
	 *
	 * @param c a {@link Collection} to be copied into the new hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final Collection<? extends KEY_GENERIC_CLASS> c ) {
		this( c, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set copying a given type-specific collection.
	 *
	 * @param c a type-specific collection to be copied into the new hash big set. 
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f ) {
		this( c.size(), f );
		addAll( c );
	}

	/** Creates a new hash big set  with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor 
	 * copying a given type-specific collection.
	 *
	 * @param c a type-specific collection to be copied into the new hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) {
		this( c, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set using elements provided by a type-specific iterator.
	 *
	 * @param i a type-specific iterator whose elements will fill the new hash big set.
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f ) {
		this( DEFAULT_INITIAL_SIZE, f );
		while( i.hasNext() ) add( i.NEXT_KEY() );
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
	 *
	 * @param i a type-specific iterator whose elements will fill the new hash big set.
	 */
	 
	public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
		this( i, DEFAULT_LOAD_FACTOR );
	}


#if #keys(primitive)

	/** Creates a new hash big set using elements provided by an iterator.
	 *
	 * @param i an iterator whose elements will fill the new hash big set.
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final Iterator<?> i, final float f ) {
		this( ITERATORS.AS_KEY_ITERATOR( i ), f );
	}
	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
	 *
	 * @param i an iterator whose elements will fill the new hash big set.
	 */
	 
	public OPEN_HASH_BIG_SET( final Iterator<?> i ) {
		this( ITERATORS.AS_KEY_ITERATOR( i ) );
	}

#endif


	/** Creates a new hash big set and fills it with the elements of a given array.
	 *
	 * @param a an array whose elements will be used to fill the new hash big set.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f ) {
		this( length < 0 ? 0 : length, f );
		ARRAYS.ensureOffsetLength( a, offset, length );
		for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
	 *
	 * @param a an array whose elements will be used to fill the new hash big set.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
		this( a, offset, length, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set copying the elements of an array.
	 *
	 * @param a an array to be copied into the new hash big set. 
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final float f ) {
		this( a, 0, a.length, f );
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor 
	 * copying the elements of an array.
	 *
	 * @param a an array to be copied into the new hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a ) {
		this( a, DEFAULT_LOAD_FACTOR );
	}

	private long realSize() {
		return containsNull ? size - 1 : size;
	}

	private void ensureCapacity( final long capacity ) {
		final long needed = bigArraySize( capacity, f );
		if ( needed > n ) rehash( needed );
	}

#if #keys(primitive)
	/** {@inheritDoc} */
	public boolean addAll( COLLECTION c ) {
		final long size = c instanceof Size64 ? ((Size64)c).size64() : c.size();
		if ( f <= .5 ) ensureCapacity( size ); // The resulting collection will be size for c.size() elements
		else ensureCapacity( size64() + size ); // The resulting collection will be sized for size() + c.size() elements
		return super.addAll( c );
	}
#endif

	/** {@inheritDoc} */
	public boolean addAll( Collection<? extends KEY_GENERIC_CLASS> c ) {
		final long size = c instanceof Size64 ? ((Size64)c).size64() : c.size();
		// The resulting collection will be at least c.size() big
		if ( f <= .5 ) ensureCapacity( size ); // The resulting collection will be sized for c.size() elements
		else ensureCapacity( size64() + size ); // The resulting collection will be sized for size() + c.size() elements
		return super.addAll( c );
	}


	public boolean add( final KEY_GENERIC_TYPE k ) {
		int displ, base;

		if ( KEY_IS_NULL( k ) ) {
			if ( containsNull ) return false;
			containsNull = true;
		}
		else {
			KEY_GENERIC_TYPE curr;
			final KEY_GENERIC_TYPE[][] key = this.key;
			final long h = KEY2LONGHASH( k );

			// The starting point.
			if ( ! KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) {
				if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false;
				while( ! KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) )
					if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false;
			}

			key[ base ][ displ ] = k;
		}

		if ( size++ >= maxFill ) rehash( 2 * n );
		if ( ASSERTS ) checkTable();
		return true;
	}

	/** Shifts left entries with the specified hash code, starting at the specified position,
	 * and empties the resulting free entry.
	 *
	 * @param pos a starting position.
	 */
	protected final void shiftKeys( long pos ) {
		// Shift entries with the same hash.
		long last, slot;
		final KEY_GENERIC_TYPE[][] key = this.key;

		for(;;) {
			pos = ( ( last = pos ) + 1 ) & mask;
			
			for(;;) {
				if ( KEY_IS_NULL( BIG_ARRAYS.get( key, pos ) ) ) {
					BIG_ARRAYS.set( key, last, KEY_NULL );
					return;
				}
				slot = KEY2LONGHASH( BIG_ARRAYS.get( key, pos ) ) & mask;
				if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
				pos = ( pos + 1 ) & mask;
			}

			BIG_ARRAYS.set( key, last, BIG_ARRAYS.get( key, pos ) );
		}
	}

	private boolean removeEntry( final int base, final int displ ) {
		shiftKeys( base * (long)BigArrays.SEGMENT_SIZE + displ );
		if ( --size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
		return true;	
	}

	private boolean removeNullEntry() {
		containsNull = false;
		if ( --size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
		return true;	
	}

	public boolean remove( final KEY_TYPE k ) {
		if ( KEY_IS_NULL( k ) ) {
			if ( containsNull ) return removeNullEntry();
			return false;
		}

		KEY_GENERIC_TYPE curr;
		final KEY_GENERIC_TYPE[][] key = this.key;
		final long h = KEY2LONGHASH( k );
		int displ, base;

		// The starting point.
		if ( KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) return false;
		if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return removeEntry( base, displ );
		while( true ) {
			if ( KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) ) return false;
			if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return removeEntry( base, displ );
		}
	}
	 
	public boolean contains( final KEY_TYPE k ) {
		if ( KEY_IS_NULL( k ) ) return containsNull;

		KEY_GENERIC_TYPE curr;
		final KEY_GENERIC_TYPE[][] key = this.key;
		final long h = KEY2LONGHASH( k );
		int displ, base;

		// The starting point.
		if ( KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) return false;
		if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return true;
		while( true ) {
			if ( KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) ) return false;
			if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return true;
		}
	}

#if #keyclass(Object)
	/** Returns the element of this set that is equal to the given key, or <code>null</code>.
	 * @return the element of this set that is equal to the given key, or <code>null</code>.
	 */
	public K get( final KEY_TYPE k ) {
		if ( k == null ) return null; // This is correct independently of the value of containsNull

		KEY_GENERIC_TYPE curr;
		final KEY_GENERIC_TYPE[][] key = this.key;
		final long h = KEY2LONGHASH( k );
		int displ, base;

		// The starting point.
		if ( KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) return null;
		if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return curr;
		while( true ) {
			if ( KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) ) return null;
			if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return curr;
		}
	}
#endif

	/* Removes all elements from this set.
	 *
	 * <P>To increase object reuse, this method does not change the table size.
	 * If you want to reduce the table size, you must use {@link #trim(long)}.
	 *
	 */

	public void clear() {
		if ( size == 0 ) return;
		size = 0;
		containsNull = false;
		BIG_ARRAYS.fill( key, KEY_NULL );
	}



	/** An iterator over a hash big set. */

	private class SetIterator extends KEY_ABSTRACT_ITERATOR KEY_GENERIC {
		/** The base of the last entry returned, if positive or zero; initially, the number of components 
			of the key array. If negative, the last element returned was
			that of index {@code - base - 1} from the {@link #wrapped} list. */
		int base = key.length;
		/** The displacement of the last entry returned; initially, zero. */
		int displ;
		/** The index of the last entry that has been returned (or {@link Long#MIN_VALUE} if {@link #base} is negative). 
			It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */
		long last = -1;
		/** A downward counter measuring how many entries must still be returned. */
		long c = size;
		/** A boolean telling us whether we should return the null key. */
		boolean mustReturnNull = OPEN_HASH_BIG_SET.this.containsNull;
		/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
		ARRAY_LIST KEY_GENERIC wrapped;

		public boolean hasNext() {
			return c != 0;
		}

		public KEY_GENERIC_TYPE NEXT_KEY() {
			if ( ! hasNext() ) throw new NoSuchElementException();
			c--;

			if ( mustReturnNull ) {
				mustReturnNull = false;
				last = n;
				return KEY_NULL;
			}
			
			final KEY_GENERIC_TYPE[][] key = OPEN_HASH_BIG_SET.this.key;

			for(;;) {
				if ( displ == 0 && base <= 0 ) {
					// We are just enumerating elements from the wrapped list.
					last = Long.MIN_VALUE;
					return wrapped.GET_KEY( - ( --base ) - 1 );
				}

				if ( displ-- == 0 ) displ = key[ --base ].length - 1;

				final KEY_GENERIC_TYPE k = key[ base ][ displ ];			
				if ( ! KEY_IS_NULL( k ) ) {
					last = base * (long)BigArrays.SEGMENT_SIZE + displ;			
					return k;
				}
			}
		}

		/** Shifts left entries with the specified hash code, starting at the specified position,
		 * and empties the resulting free entry.
		 *
		 * @param pos a starting position.
		 */
		private final void shiftKeys( long pos ) {
			// Shift entries with the same hash.
			long last, slot;
			KEY_GENERIC_TYPE curr;
			final KEY_GENERIC_TYPE[][] key = OPEN_HASH_BIG_SET.this.key;

			for(;;) {
				pos = ( ( last = pos ) + 1 ) & mask;
			
				for(;;) {
					if( KEY_IS_NULL( curr = BIG_ARRAYS.get( key, pos ) ) ) {
						BIG_ARRAYS.set( key, last, KEY_NULL );
						return;
					}
					slot = KEY2LONGHASH( curr ) & mask;
					if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
					pos = ( pos + 1 ) & mask;
				}
	
				if ( pos < last ) {	// Wrapped entry.
					if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC();
					wrapped.add( BIG_ARRAYS.get( key, pos ) );
				}

				BIG_ARRAYS.set( key, last, curr );
			}
		}

		public void remove() {
			if ( last == -1 ) throw new IllegalStateException();
			if ( last == n ) OPEN_HASH_BIG_SET.this.containsNull = false;
			else if ( base >= 0 ) shiftKeys( last );
			else {
				// We're removing wrapped entries.
#if #keys(reference)
				OPEN_HASH_BIG_SET.this.remove( wrapped.set( - base - 1, null ) );
#else
				OPEN_HASH_BIG_SET.this.remove( wrapped.GET_KEY( - base - 1 ) );
#endif
				last = -1; // Note that we must not decrement size
				return;
			}

			size--;
			last = -1; // You can no longer remove this entry.
			if ( ASSERTS ) checkTable();
		}
	}

	public KEY_ITERATOR KEY_GENERIC iterator() {
		return new SetIterator();
	}


	/** A no-op for backward compatibility. The kind of tables implemented by
	 * this class never need rehashing.
	 *
	 * <P>If you need to reduce the table size to fit exactly
	 * this set, use {@link #trim()}.
	 *
	 * @return true.
	 * @see #trim()
	 * @deprecated A no-op.
	 */

	@Deprecated
	public boolean rehash() {
		return true;
	}

	/** Rehashes this set, making the table as small as possible.
	 * 
	 * <P>This method rehashes the table to the smallest size satisfying the
	 * load factor. It can be used when the set will not be changed anymore, so
	 * to optimize access speed and size.
	 *
	 * <P>If the table size is already the minimum possible, this method
	 * does nothing.
	 *
	 * @return true if there was enough memory to trim the set.
	 * @see #trim(long)
	 */

	public boolean trim() {
		final long l = bigArraySize( size, f );
		if ( l >= n ) return true;
		try {
			rehash( l );
		}
		catch(OutOfMemoryError cantDoIt) { return false; }
		return true;
	}

	/** Rehashes this set if the table is too large.
	 * 
	 * <P>Let <var>N</var> be the smallest table size that can hold
	 * <code>max(n,{@link #size64()})</code> entries, still satisfying the load factor. If the current
	 * table size is smaller than or equal to <var>N</var>, this method does
	 * nothing. Otherwise, it rehashes this set in a table of size
	 * <var>N</var>.
	 *
	 * <P>This method is useful when reusing sets.  {@linkplain #clear() Clearing a
	 * set} leaves the table size untouched. If you are reusing a set
	 * many times, you can call this method with a typical
	 * size to avoid keeping around a very large table just
	 * because of a few large transient sets.
	 *
	 * @param n the threshold for the trimming.
	 * @return true if there was enough memory to trim the set.
	 * @see #trim()
	 */

	public boolean trim( final long n ) {
		final long l = bigArraySize( n, f );
		if ( this.n <= l ) return true;
		try {
			rehash( l );
		}
		catch( OutOfMemoryError cantDoIt ) { return false; }
		return true;
	}

	/** Resizes the set.
	 *
	 * <P>This method implements the basic rehashing strategy, and may be
	 * overriden by subclasses implementing different rehashing strategies (e.g.,
	 * disk-based rehashing). However, you should not override this method
	 * unless you understand the internal workings of this class.
	 *
	 * @param newN the new size
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	protected void rehash( final long newN ) {
		final KEY_GENERIC_TYPE key[][] = this.key;
		final KEY_GENERIC_TYPE newKey[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( newN );
		final long mask = newN - 1; // Note that this is used by the hashing macro
		final int newSegmentMask = newKey[ 0 ].length - 1;
		final int newBaseMask = newKey.length - 1;		

		int base = 0, displ = 0, b, d;
		long h;
		KEY_GENERIC_TYPE k;

		for( long i = realSize(); i-- != 0; ) {

			while( KEY_IS_NULL( key[ base ][ displ ] ) ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );

			k = key[ base ][ displ ];
			h = KEY2LONGHASH( k );

			// The starting point.
			if ( ! KEY_IS_NULL( newKey[ b = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ d = (int)( h & newSegmentMask ) ] ) )
				while( ! KEY_IS_NULL( newKey[ b = ( b + ( ( d = ( d + 1 ) & newSegmentMask ) == 0 ? 1 : 0 ) ) & newBaseMask ][ d ] ) );

			newKey[ b ][ d ] = k;

			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
		}

		this.n = newN;
		this.key = newKey;
		initMasks();
		maxFill = maxFill( n, f );
	}

	@Deprecated
	public int size() {
		return (int)Math.min( Integer.MAX_VALUE, size );
	}

	public long size64() {
		return size;
	}

	public boolean isEmpty() {
		return size == 0;
	}



	/** Returns a deep copy of this big set. 
	 *
	 * <P>This method performs a deep copy of this big hash set; the data stored in the
	 * set, however, is not cloned. Note that this makes a difference only for object keys.
	 *
	 *  @return a deep copy of this big set.
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public OPEN_HASH_BIG_SET KEY_GENERIC clone() {
		OPEN_HASH_BIG_SET KEY_GENERIC c;
		try {
			c = (OPEN_HASH_BIG_SET KEY_GENERIC)super.clone();
		}
		catch(CloneNotSupportedException cantHappen) {
			throw new InternalError();
		}
		c.key = BIG_ARRAYS.copy( key );
		c.containsNull = containsNull;
		return c;
	}

	/** Returns a hash code for this set.
	 *
	 * This method overrides the generic method provided by the superclass. 
	 * Since <code>equals()</code> is not overriden, it is important
	 * that the value returned by this method is the same value as
	 * the one returned by the overriden method.
	 *
	 * @return a hash code for this set.
	 */


	public int hashCode() {
		final KEY_GENERIC_TYPE key[][] = this.key;
		int h = 0, base = 0, displ = 0;

		for( long j = realSize(); j-- != 0; ) {
			while( KEY_IS_NULL( key[ base ][ displ ] ) ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
#if #keys(reference)
			if ( this != key[ base ][ displ ] )
#endif
				h += KEY2JAVAHASH_NOT_NULL( key[ base ][ displ ] );
			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
		}
		return h;
	}


	private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
		final KEY_ITERATOR KEY_GENERIC i = iterator();
		s.defaultWriteObject();
		for( long j = size; j-- != 0; ) s.WRITE_KEY( i.NEXT_KEY() );
	}


	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();

		n = bigArraySize( size, f );
		maxFill = maxFill( n, f );
		
		final KEY_GENERIC_TYPE[][] key = this.key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
	
		initMasks();

		long h;
		KEY_GENERIC_TYPE k;
		int base, displ;

		for( long i = size; i-- != 0; ) {
			k = KEY_GENERIC_CAST s.READ_KEY();

			if ( KEY_IS_NULL( k ) ) containsNull = true;
			else {
				h = KEY2LONGHASH( k );
				if ( ! KEY_IS_NULL( key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) )
					while( ! KEY_IS_NULL( key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) );
				key[ base ][ displ ] = k;
			}
		}

		if ( ASSERTS ) checkTable();
	}


#ifdef ASSERTS_CODE
	private void checkTable() {
		assert ( n & -n ) == n : "Table length is not a power of two: " + n;
		assert n == BIG_ARRAYS.length( key );
		long n = this.n;
		while( n-- != 0 ) 
			if ( ! KEY_IS_NULL( BIG_ARRAYS.get( key, n ) ) && ! contains( BIG_ARRAYS.get( key, n ) ) ) 
				throw new AssertionError( "Hash table has key " + BIG_ARRAYS.get( key, n ) + " marked as occupied, but the key does not belong to the table" );

#if #keys(primitive)
		java.util.HashSet<KEY_GENERIC_CLASS> s = new java.util.HashSet<KEY_GENERIC_CLASS> ();
#else
		java.util.HashSet<Object> s = new java.util.HashSet<Object>();
#endif
		
		for( long i = size(); i-- != 0; )
			if ( ! KEY_IS_NULL( BIG_ARRAYS.get( key, i ) ) && ! s.add( BIG_ARRAYS.get( key, i ) ) ) throw new AssertionError( "Key " + BIG_ARRAYS.get( key, i ) + " appears twice" );

	}
#else
	private void checkTable() {}
#endif

#ifdef TEST

	private static long seed = System.currentTimeMillis(); 
	private static java.util.Random r = new java.util.Random( seed );

	private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
		return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
		return r.NEXT_KEY(); 
#elif #keyclass(Object)
		return Integer.toBinaryString( r.nextInt() );
#else
		return new java.io.Serializable() {};
#endif
	}


	private static final class ArrayComparator implements java.util.Comparator {
		public int compare( Object a, Object b ) {
			byte[] aa = (byte[])a;
			byte[] bb = (byte[])b;
			int length = Math.min( aa.length, bb.length );
			for( int i = 0; i < length; i++ ) {
				if ( aa[ i ] < bb[ i ] ) return -1;
				if ( aa[ i ] > bb[ i ] ) return 1;
			}
			return aa.length == bb.length ? 0 : ( aa.length < bb.length ? -1 : 1 );
		}
	}

	private static final class MockSet extends java.util.TreeSet {
		private java.util.List list = new java.util.ArrayList();

		public MockSet( java.util.Comparator c ) { super( c ); }

		public boolean add( Object k ) {
			if ( ! contains( k ) ) list.add( k );
			return super.add( k );
		}

		public boolean addAll( Collection c ) {
			java.util.Iterator i = c.iterator();
			boolean result = false;
			while( i.hasNext() ) result |= add( i.next() );
			return result;
		}

		public boolean removeAll( Collection c ) {
			java.util.Iterator i = c.iterator();
			boolean result = false;
			while( i.hasNext() ) result |= remove( i.next() );
			return result;
		}

		public boolean remove( Object k ) {
			if ( contains( k ) ) {
				int i = list.size();
				while( i-- != 0 ) if ( comparator().compare( list.get( i ), k ) == 0 ) {
					list.remove( i );
					break;
				}
			}
			return super.remove( k );
		}

		private void justRemove( Object k ) { super.remove( k ); }

		public java.util.Iterator iterator() {
			return new java.util.Iterator() {
					final java.util.Iterator iterator = list.iterator();
					Object curr;
					public Object next() { return curr = iterator.next(); }
					public boolean hasNext() { return iterator.hasNext(); }
					public void remove() { 
						justRemove( curr );
						iterator.remove(); 
					}
				};
		}
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
	private static java.text.FieldPosition fp = new java.text.FieldPosition( 0 );

	private static String format( double d ) {
		StringBuffer s = new StringBuffer();
		return format.format( d, s, fp ).toString();
	}

	private static void speedTest( int n, float f, boolean comp ) {
		int i, j;
		OPEN_HASH_BIG_SET m;
		java.util.HashSet t;

		KEY_TYPE k[] = new KEY_TYPE[n];
		KEY_TYPE nk[] = new KEY_TYPE[n];
		long ms;

		for( i = 0; i < n; i++ ) {
			k[i] = genKey();
			nk[i] = genKey();
		}
		  
		double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d;

		if ( comp ) { for( j = 0; j < 20; j++ ) {

			t = new java.util.HashSet( 16 );

			/* We add pairs to t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.add( KEY2OBJ( k[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totAdd += d; 				
			System.out.print("Add: " + format( d ) +" K/s " );

			/* We check for pairs in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.contains( KEY2OBJ( k[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totYes += d; 				
			System.out.print("Yes: " + format( d ) +" K/s " );

			/* We check for pairs not in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.contains( KEY2OBJ( nk[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totNo += d; 				
			System.out.print("No: " + format( d ) +" K/s " );

			/* We iterate on t. */
			ms = System.currentTimeMillis();
			for( java.util.Iterator it = t.iterator(); it.hasNext(); it.next() );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totIter += d; 				
			System.out.print("Iter: " + format( d ) +" K/s " );
				
			/* We delete pairs not in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.remove( KEY2OBJ( nk[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemNo += d; 				
			System.out.print("RemNo: " + format( d ) +" K/s " );
				
			/* We delete pairs in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.remove( KEY2OBJ( k[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemYes += d; 				
			System.out.print("RemYes: " + format( d ) +" K/s " );
				
			System.out.println();
		}

		System.out.println();
		System.out.println( "java.util Add: " + format( totAdd/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + "K/s" );

		System.out.println();

		totAdd = totYes = totNo = totIter = totRemYes = totRemNo = 0;
		}

		for( j = 0; j < 20; j++ ) {

			m = new OPEN_HASH_BIG_SET( 16, f );

			/* We add pairs to m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.add( k[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totAdd += d; 				
			System.out.print("Add: " + format( d ) +" K/s " );

			/* We check for pairs in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.contains( k[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totYes += d; 				
			System.out.print("Yes: " + format( d ) +" K/s " );

			/* We check for pairs not in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.contains( nk[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totNo += d; 				
			System.out.print("No: " + format( d ) +" K/s " );

			/* We iterate on m. */
			ms = System.currentTimeMillis();
			for( KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY() );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totIter += d; 	 
			System.out.print("Iter: " + format( d ) +" K/s " );

			/* We delete pairs not in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.remove( nk[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemNo += d; 	
			System.out.print("RemNo: " + format( d ) +" K/s " );

			/* We delete pairs in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.remove( k[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemYes += d; 				
			System.out.print("RemYes: " + format( d ) +" K/s " );	 

			System.out.println();
		}


		System.out.println();
		System.out.println( "fastutil  Add: " + format( totAdd/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s" );

		System.out.println();
	}


	private static void fatal( String msg ) {
		System.out.println( msg );
		System.exit( 1 );
	}

	private static void ensure( boolean cond, String msg ) {
		if ( cond ) return;
		fatal( msg );
	}


	private static void printProbes( OPEN_HASH_BIG_SET m ) {
		long totProbes = 0;
		double totSquareProbes = 0;
		int maxProbes = 0;	
		final double f = (double)m.size / m.n;
		for( int i = 0, c = 0; i < m.n; i++ ) {
			if ( ! KEY_IS_NULL( BIG_ARRAYS.get( m.key, i ) ) ) c++;
			else {
				if ( c != 0 ) {
					final long p = ( c + 1 ) * ( c + 2 ) / 2;
					totProbes += p;
					totSquareProbes += (double)p * p;
				}
				maxProbes = Math.max( c, maxProbes );
				c = 0;
				totProbes++;
				totSquareProbes++;
			}
		}

		final double expected = (double)totProbes / m.n;
		System.err.println( "Expected probes: " + ( 
			3 * Math.sqrt( 3 ) * ( f / ( ( 1 - f ) * ( 1 - f ) ) ) + 4 / ( 9 * f ) - 1
		) + "; actual: " + expected + "; stddev: " + Math.sqrt( totSquareProbes / m.n - expected * expected )  + "; max probes: " + maxProbes );
	}
	private static void test( int n, float f ) {
		int c;
		OPEN_HASH_BIG_SET m = new OPEN_HASH_BIG_SET(Hash.DEFAULT_INITIAL_SIZE, f);
		java.util.Set t = new java.util.HashSet();

		/* First of all, we fill t with random data. */

		for(int i=0; i<f * n;  i++ ) t.add(KEY2OBJ(genKey()));
		  
		/* Now we add to m the same data */
		  
		m.addAll(t); 

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after insertion");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after insertion");
		printProbes( m );

		/* Now we check that m actually holds that data. */
		  
		for(java.util.Iterator i=t.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!m.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on t)");
				System.exit( 1 );
			}
		}

		/* Now we check that m actually holds that data, but iterating on m. */

		c = 0;		  
		for(java.util.Iterator i=m.iterator(); i.hasNext();  ) {
			Object e = i.next();
			c++;
			if (!t.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on m)");
				System.exit( 1 );
			}
		}

		if ( c != t.size() ) {
			System.out.println("Error (" + seed + "): m has only " + c + " keys instead of " + t.size() + " after insertion (iterating on m)");
			System.exit( 1 );
		}
		/* Now we check that inquiries about random data give the same answer in m and t. For
		   m we use the polymorphic method. */

		for(int i=0; i<n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.contains(T) != t.contains(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in keys between t and m (polymorphic method)");
				System.exit( 1 );
			}
		}

		/* Again, we check that inquiries about random data give the same answer in m and t, but
		   for m we use the standard method. */

		for(int i=0; i<n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.contains(KEY2OBJ(T)) != t.contains(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence between t and m (standard method)");
				System.exit( 1 );
			}
		}


		/* Now we put and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<20*n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.add(KEY2OBJ(T)) != t.add(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in add() between t and m");
				System.exit( 1 );
			}
			T = genKey();
			if (m.remove(KEY2OBJ(T)) != t.remove(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in remove() between t and m");
				System.exit( 1 );
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after removal");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after removal");

		/* Now we check that m actually holds that data. */
		  
		for(java.util.Iterator i=t.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!m.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on t)");
				System.exit( 1 );
			}
		}

		/* Now we check that m actually holds that data, but iterating on m. */
		  
		for(java.util.Iterator i=m.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!t.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on m)");
				System.exit( 1 );
			}
		}

		printProbes( m );

		/* Now we make m into an array, make it again a set and check it is OK. */
		KEY_TYPE a[] = m.TO_KEY_ARRAY();
		  
		if (!new OPEN_HASH_BIG_SET(a).equals(m))
			System.out.println("Error (" + seed + "): toArray() output (or array-based constructor) is not OK");

		/* Now we check cloning. */

		ensure( m.equals( ((OPEN_HASH_BIG_SET)m).clone() ), "Error (" + seed + "): m does not equal m.clone()" );
		ensure( ((OPEN_HASH_BIG_SET)m).clone().equals( m ), "Error (" + seed + "): m.clone() does not equal m" );

		int h = m.hashCode();

		/* Now we save and read m. */

		try {
			java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
			java.io.OutputStream os = new java.io.FileOutputStream(ff);
			java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
				
			oos.writeObject(m);
			oos.close();
				
			java.io.InputStream is = new java.io.FileInputStream(ff);
			java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
				
			m = (OPEN_HASH_BIG_SET)ois.readObject();
			ois.close();
			ff.delete();
		}
		catch(Exception e) {
			e.printStackTrace();
			System.exit( 1 );
		}

#if !#keyclass(Reference)
		if (m.hashCode() != h) System.out.println("Error (" + seed + "): hashCode() changed after save/read");

		printProbes( m );

		/* Now we check that m actually holds that data, but iterating on m. */
		  
		for(java.util.Iterator i=m.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!t.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after save/read");
				System.exit( 1 );
			}
		}
#else
		m.clear();
		m.addAll( t );
#endif

		/* Now we put and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<20*n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.add(KEY2OBJ(T)) != t.add(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in add() between t and m after save/read");
				System.exit( 1 );
			}
			T = genKey();
			if (m.remove(KEY2OBJ(T)) != t.remove(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in remove() between t and m after save/read");
				System.exit( 1 );
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after post-save/read removal");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after post-save/read removal");


		/* Now we take out of m everything, and check that it is empty. */

		for(java.util.Iterator i=m.iterator(); i.hasNext(); ) { i.next(); i.remove();} 

		if (!m.isEmpty())  {
			System.out.println("Error (" + seed + "): m is not empty (as it should be)");
			System.exit( 1 );
		}

#if #keyclass(Integer) || #keyclass(Long)
		m = new OPEN_HASH_BIG_SET(n, f);
		t.clear();
		int x;

		/* Now we torture-test the hash table. This part is implemented only for integers and longs. */

		int p = m.key.length - 1;

		for(int i=0; i<p; i++) {
			for (int j=0; j<20; j++) {
				m.add(i+(r.nextInt() % 10)*p);
				m.remove(i+(r.nextInt() % 10)*p);
			}

			for (int j=-10; j<10; j++) m.remove(i+j*p);
		}
		  
		t.addAll(m);

		/* Now all table entries are REMOVED. */
 
		int k = 0;
		for(int i=0; i<(p*f)/10; i++) {
			for (int j=0; j<10; j++) {
				k++;
				x = i+(r.nextInt() % 10)*p;
				if (m.add(x) != t.add(KEY2OBJ(x)))
					System.out.println("Error (" + seed + "): m and t differ on a key during torture-test insertion.");
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test insertion");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test insertion");

		for(int i=0; i<(p*f)/10; i++) {
			for (int j=0; j<10; j++) {
				x = i+(r.nextInt() % 10)*p;
				if (m.remove(x) != t.remove(KEY2OBJ(x)))
					System.out.println("Error (" + seed + "): m and t differ on a key during torture-test removal.");
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test removal");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test removal");

		if (!m.equals(m.clone())) System.out.println("Error (" + seed + "): !m.equals(m.clone()) after torture-test removal");
		if (!((OPEN_HASH_BIG_SET)m.clone()).equals(m)) System.out.println("Error (" + seed + "): !m.clone().equals(m) after torture-test removal");

		m.rehash();

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after rehash()");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after rehash()");

#endif

		System.out.println("Test OK");
		return;
	}


	public static void main( String args[] ) {
		float f = Hash.DEFAULT_LOAD_FACTOR;
		int n  = Integer.parseInt(args[1]);
		if (args.length>2) f = Float.parseFloat(args[2]);
		if ( args.length > 3 ) r = new java.util.Random( seed = Long.parseLong( args[ 3 ] ) );
		  
		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, f, "speedComp".equals(args[0]) );
			else if ( "test".equals( args[0] ) ) test(n, f);
		} catch( Throwable e ) {
			e.printStackTrace( System.err );
			System.err.println( "seed: " + seed );
		}
	}

#endif

}