Codebase list libisal / 05d95382-db26-4dd6-b014-8366535501cd/main crc / crc16_t10dif_by16_10.asm
05d95382-db26-4dd6-b014-8366535501cd/main

Tree @05d95382-db26-4dd6-b014-8366535501cd/main (Download .tar.gz)

crc16_t10dif_by16_10.asm @05d95382-db26-4dd6-b014-8366535501cd/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;  Copyright(c) 2011-2020 Intel Corporation All rights reserved.
;
;  Redistribution and use in source and binary forms, with or without
;  modification, are permitted provided that the following conditions
;  are met:
;    * Redistributions of source code must retain the above copyright
;      notice, this list of conditions and the following disclaimer.
;    * Redistributions in binary form must reproduce the above copyright
;      notice, this list of conditions and the following disclaimer in
;      the documentation and/or other materials provided with the
;      distribution.
;    * Neither the name of Intel Corporation nor the names of its
;      contributors may be used to endorse or promote products derived
;      from this software without specific prior written permission.
;
;  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
;  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;       Function API:
;       UINT32 crc16_t10dif_by16_10(
;               UINT16 init_crc, //initial CRC value, 16 bits
;               const unsigned char *buf, //buffer pointer to calculate CRC on
;               UINT64 len //buffer length in bytes (64-bit data)
;       );
;
;       Authors:
;               Erdinc Ozturk
;               Vinodh Gopal
;               James Guilford
;
;       Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
;       URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
;
;

%include "reg_sizes.asm"

%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc16_t10dif_by16_10
%endif

%if (AS_FEATURE_LEVEL) >= 10

[bits 64]
default rel

section .text


%ifidn __OUTPUT_FORMAT__, win64
	%xdefine	arg1 rcx
	%xdefine	arg2 rdx
	%xdefine	arg3 r8

	%xdefine	arg1_low32 ecx
%else
	%xdefine	arg1 rdi
	%xdefine	arg2 rsi
	%xdefine	arg3 rdx

	%xdefine	arg1_low32 edi
%endif

%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
	%define XMM_SAVE 16*2
	%define VARIABLE_OFFSET 16*12+8
%else
	%define VARIABLE_OFFSET 16*2+8
%endif

align 16
mk_global FUNCTION_NAME, function
FUNCTION_NAME:
	endbranch

	; adjust the 16-bit initial_crc value, scale it to 32 bits
	shl		arg1_low32, 16

	; After this point, code flow is exactly same as a 32-bit CRC.
	; The only difference is before returning eax, we will shift it right 16 bits, to scale back to 16 bits.

	sub		rsp, VARIABLE_OFFSET

%ifidn __OUTPUT_FORMAT__, win64
	; push the xmm registers into the stack to maintain
	vmovdqa		[rsp + XMM_SAVE + 16*0], xmm6
	vmovdqa		[rsp + XMM_SAVE + 16*1], xmm7
	vmovdqa		[rsp + XMM_SAVE + 16*2], xmm8
	vmovdqa		[rsp + XMM_SAVE + 16*3], xmm9
	vmovdqa		[rsp + XMM_SAVE + 16*4], xmm10
	vmovdqa		[rsp + XMM_SAVE + 16*5], xmm11
	vmovdqa		[rsp + XMM_SAVE + 16*6], xmm12
	vmovdqa		[rsp + XMM_SAVE + 16*7], xmm13
	vmovdqa		[rsp + XMM_SAVE + 16*8], xmm14
	vmovdqa		[rsp + XMM_SAVE + 16*9], xmm15
%endif

	vbroadcasti32x4 zmm18, [SHUF_MASK]
	cmp		arg3, 256
	jl		.less_than_256

	; load the initial crc value
	vmovd		xmm10, arg1_low32      ; initial crc

	; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register.
	; because data will be byte-reflected and will align with initial crc at correct place.
	vpslldq		xmm10, 12

	; receive the initial 64B data, xor the initial crc value
	vmovdqu8	zmm0, [arg2+16*0]
	vmovdqu8	zmm4, [arg2+16*4]
	vpshufb		zmm0, zmm0, zmm18
	vpshufb		zmm4, zmm4, zmm18
	vpxorq		zmm0, zmm10
	vbroadcasti32x4	zmm10, [rk3]	;xmm10 has rk3 and rk4
					;imm value of pclmulqdq instruction will determine which constant to use

	sub		arg3, 256
	cmp		arg3, 256
	jl		.fold_128_B_loop

	vmovdqu8	zmm7, [arg2+16*8]
	vmovdqu8	zmm8, [arg2+16*12]
	vpshufb		zmm7, zmm7, zmm18
	vpshufb		zmm8, zmm8, zmm18
	vbroadcasti32x4 zmm16, [rk_1]	;zmm16 has rk-1 and rk-2
	sub		arg3, 256

.fold_256_B_loop:
	add		arg2, 256
	vmovdqu8	zmm3, [arg2+16*0]
	vpshufb		zmm3, zmm3, zmm18
	vpclmulqdq	zmm1, zmm0, zmm16, 0x00
	vpclmulqdq	zmm2, zmm0, zmm16, 0x11
	vpxorq		zmm0, zmm1, zmm2
	vpxorq		zmm0, zmm0, zmm3

	vmovdqu8	zmm9, [arg2+16*4]
	vpshufb		zmm9, zmm9, zmm18
	vpclmulqdq	zmm5, zmm4, zmm16, 0x00
	vpclmulqdq	zmm6, zmm4, zmm16, 0x11
	vpxorq		zmm4, zmm5, zmm6
	vpxorq		zmm4, zmm4, zmm9

	vmovdqu8	zmm11, [arg2+16*8]
	vpshufb		zmm11, zmm11, zmm18
	vpclmulqdq	zmm12, zmm7, zmm16, 0x00
	vpclmulqdq	zmm13, zmm7, zmm16, 0x11
	vpxorq		zmm7, zmm12, zmm13
	vpxorq		zmm7, zmm7, zmm11

	vmovdqu8	zmm17, [arg2+16*12]
	vpshufb		zmm17, zmm17, zmm18
	vpclmulqdq	zmm14, zmm8, zmm16, 0x00
	vpclmulqdq	zmm15, zmm8, zmm16, 0x11
	vpxorq		zmm8, zmm14, zmm15
	vpxorq		zmm8, zmm8, zmm17

	sub		arg3, 256
	jge     	.fold_256_B_loop

	;; Fold 256 into 128
	add		arg2, 256
	vpclmulqdq	zmm1, zmm0, zmm10, 0x00
	vpclmulqdq	zmm2, zmm0, zmm10, 0x11
	vpternlogq	zmm7, zmm1, zmm2, 0x96	; xor ABC

	vpclmulqdq	zmm5, zmm4, zmm10, 0x00
	vpclmulqdq	zmm6, zmm4, zmm10, 0x11
	vpternlogq	zmm8, zmm5, zmm6, 0x96	; xor ABC

	vmovdqa32	zmm0, zmm7
	vmovdqa32	zmm4, zmm8

	add		arg3, 128
	jmp		.fold_128_B_register



	; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
	; loop will fold 128B at a time until we have 128+y Bytes of buffer

	; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
.fold_128_B_loop:
	add		arg2, 128
	vmovdqu8	zmm8, [arg2+16*0]
	vpshufb		zmm8, zmm8, zmm18
	vpclmulqdq	zmm2, zmm0, zmm10, 0x00
	vpclmulqdq	zmm1, zmm0, zmm10, 0x11
	vpxorq		zmm0, zmm2, zmm1
	vpxorq		zmm0, zmm0, zmm8

	vmovdqu8	zmm9, [arg2+16*4]
	vpshufb		zmm9, zmm9, zmm18
	vpclmulqdq	zmm5, zmm4, zmm10, 0x00
	vpclmulqdq	zmm6, zmm4, zmm10, 0x11
	vpxorq		zmm4, zmm5, zmm6
	vpxorq		zmm4, zmm4, zmm9

	sub		arg3, 128
	jge		.fold_128_B_loop
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

	add		arg2, 128
	; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
	; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7

.fold_128_B_register:
	; fold the 8 128b parts into 1 xmm register with different constants
	vmovdqu8	zmm16, [rk9]		; multiply by rk9-rk16
	vmovdqu8	zmm11, [rk17]		; multiply by rk17-rk20, rk1,rk2, 0,0
	vpclmulqdq	zmm1, zmm0, zmm16, 0x00
	vpclmulqdq	zmm2, zmm0, zmm16, 0x11
	vextracti64x2	xmm7, zmm4, 3		; save last that has no multiplicand

	vpclmulqdq	zmm5, zmm4, zmm11, 0x00
	vpclmulqdq	zmm6, zmm4, zmm11, 0x11
	vmovdqa		xmm10, [rk1]		; Needed later in reduction loop
	vpternlogq	zmm1, zmm2, zmm5, 0x96	; xor ABC
	vpternlogq	zmm1, zmm6, zmm7, 0x96	; xor ABC

	vshufi64x2      zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
	vpxorq          ymm8, ymm8, ymm1
	vextracti64x2   xmm5, ymm8, 1
	vpxorq          xmm7, xmm5, xmm8

	; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
	; instead of a cmp instruction, we use the negative flag with the jl instruction
	add		arg3, 128-16
	jl		.final_reduction_for_128

	; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
	; we can fold 16 bytes at a time if y>=16
	; continue folding 16B at a time

.16B_reduction_loop:
	vpclmulqdq	xmm8, xmm7, xmm10, 0x11
	vpclmulqdq	xmm7, xmm7, xmm10, 0x00
	vpxor		xmm7, xmm8
	vmovdqu		xmm0, [arg2]
	vpshufb		xmm0, xmm0, xmm18
	vpxor		xmm7, xmm0
	add		arg2, 16
	sub		arg3, 16
	; instead of a cmp instruction, we utilize the flags with the jge instruction
	; equivalent of: cmp arg3, 16-16
	; check if there is any more 16B in the buffer to be able to fold
	jge		.16B_reduction_loop

	;now we have 16+z bytes left to reduce, where 0<= z < 16.
	;first, we reduce the data in the xmm7 register


.final_reduction_for_128:
	add		arg3, 16
	je		.128_done

	; here we are getting data that is less than 16 bytes.
	; since we know that there was data before the pointer, we can offset
	; the input pointer before the actual point, to receive exactly 16 bytes.
	; after that the registers need to be adjusted.
.get_last_two_xmms:

	vmovdqa		xmm2, xmm7
	vmovdqu		xmm1, [arg2 - 16 + arg3]
	vpshufb		xmm1, xmm18

	; get rid of the extra data that was loaded before
	; load the shift constant
	lea		rax, [pshufb_shf_table + 16]
	sub		rax, arg3
	vmovdqu		xmm0, [rax]

	vpshufb		xmm2, xmm0
	vpxor		xmm0, [mask1]
	vpshufb		xmm7, xmm0
	vpblendvb	xmm1, xmm1, xmm2, xmm0

	vpclmulqdq	xmm8, xmm7, xmm10, 0x11
	vpclmulqdq	xmm7, xmm7, xmm10, 0x00
	vpxor		xmm7, xmm8
	vpxor		xmm7, xmm1

.128_done:
	; compute crc of a 128-bit value
	vmovdqa		xmm10, [rk5]
	vmovdqa		xmm0, xmm7

	;64b fold
	vpclmulqdq	xmm7, xmm10, 0x01	; H*L
	vpslldq		xmm0, 8
	vpxor		xmm7, xmm0

	;32b fold
	vmovdqa		xmm0, xmm7
	vpand		xmm0, [mask2]
	vpsrldq		xmm7, 12
	vpclmulqdq	xmm7, xmm10, 0x10
	vpxor		xmm7, xmm0

	;barrett reduction
.barrett:
	vmovdqa		xmm10, [rk7]	; rk7 and rk8 in xmm10
	vmovdqa		xmm0, xmm7
	vpclmulqdq	xmm7, xmm10, 0x01
	vpslldq		xmm7, 4
	vpclmulqdq	xmm7, xmm10, 0x11

	vpslldq		xmm7, 4
	vpxor		xmm7, xmm0
	vpextrd		eax, xmm7, 1

.cleanup:
	; scale the result back to 16 bits
	shr		eax, 16

%ifidn __OUTPUT_FORMAT__, win64
	vmovdqa		xmm6, [rsp + XMM_SAVE + 16*0]
	vmovdqa		xmm7, [rsp + XMM_SAVE + 16*1]
	vmovdqa		xmm8, [rsp + XMM_SAVE + 16*2]
	vmovdqa		xmm9, [rsp + XMM_SAVE + 16*3]
	vmovdqa		xmm10, [rsp + XMM_SAVE + 16*4]
	vmovdqa		xmm11, [rsp + XMM_SAVE + 16*5]
	vmovdqa		xmm12, [rsp + XMM_SAVE + 16*6]
	vmovdqa		xmm13, [rsp + XMM_SAVE + 16*7]
	vmovdqa		xmm14, [rsp + XMM_SAVE + 16*8]
	vmovdqa		xmm15, [rsp + XMM_SAVE + 16*9]
%endif
	add		rsp, VARIABLE_OFFSET
	ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

align 16
.less_than_256:

	; check if there is enough buffer to be able to fold 16B at a time
	cmp	arg3, 32
	jl	.less_than_32

	; if there is, load the constants
	vmovdqa	xmm10, [rk1]    ; rk1 and rk2 in xmm10

	vmovd	xmm0, arg1_low32	; get the initial crc value
	vpslldq	xmm0, 12		; align it to its correct place
	vmovdqu	xmm7, [arg2]		; load the plaintext
	vpshufb	xmm7, xmm18		; byte-reflect the plaintext
	vpxor	xmm7, xmm0

	; update the buffer pointer
	add	arg2, 16

	; update the counter. subtract 32 instead of 16 to save one instruction from the loop
	sub	arg3, 32

	jmp	.16B_reduction_loop


align 16
.less_than_32:
	; mov initial crc to the return value. this is necessary for zero-length buffers.
	mov	eax, arg1_low32
	test	arg3, arg3
	je	.cleanup

	vmovd	xmm0, arg1_low32	; get the initial crc value
	vpslldq	xmm0, 12		; align it to its correct place

	cmp	arg3, 16
	je	.exact_16_left
	jl	.less_than_16_left

	vmovdqu	xmm7, [arg2]		; load the plaintext
	vpshufb	xmm7, xmm18
	vpxor	xmm7, xmm0		; xor the initial crc value
	add	arg2, 16
	sub	arg3, 16
	vmovdqa	xmm10, [rk1]		; rk1 and rk2 in xmm10
	jmp	.get_last_two_xmms

align 16
.less_than_16_left:
	; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.

	vpxor	xmm1, xmm1
	mov	r11, rsp
	vmovdqa	[r11], xmm1

	cmp	arg3, 4
	jl	.only_less_than_4

	; backup the counter value
	mov	r9, arg3
	cmp	arg3, 8
	jl	.less_than_8_left

	; load 8 Bytes
	mov	rax, [arg2]
	mov	[r11], rax
	add	r11, 8
	sub	arg3, 8
	add	arg2, 8
.less_than_8_left:

	cmp	arg3, 4
	jl	.less_than_4_left

	; load 4 Bytes
	mov	eax, [arg2]
	mov	[r11], eax
	add	r11, 4
	sub	arg3, 4
	add	arg2, 4
.less_than_4_left:

	cmp	arg3, 2
	jl	.less_than_2_left

	; load 2 Bytes
	mov	ax, [arg2]
	mov	[r11], ax
	add	r11, 2
	sub	arg3, 2
	add	arg2, 2
.less_than_2_left:
	cmp	arg3, 1
	jl	.zero_left

	; load 1 Byte
	mov	al, [arg2]
	mov	[r11], al

.zero_left:
	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm18
	vpxor	xmm7, xmm0	; xor the initial crc value

	lea	rax, [pshufb_shf_table + 16]
	sub	rax, r9
	vmovdqu	xmm0, [rax]
	vpxor	xmm0, [mask1]

	vpshufb	xmm7,xmm0
	jmp	.128_done

align 16
.exact_16_left:
	vmovdqu	xmm7, [arg2]
	vpshufb	xmm7, xmm18
	vpxor	xmm7, xmm0      ; xor the initial crc value
	jmp	.128_done

.only_less_than_4:
	cmp	arg3, 3
	jl	.only_less_than_3

	; load 3 Bytes
	mov	al, [arg2]
	mov	[r11], al

	mov	al, [arg2+1]
	mov	[r11+1], al

	mov	al, [arg2+2]
	mov	[r11+2], al

	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm18
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpsrldq	xmm7, 5
	jmp	.barrett

.only_less_than_3:
	cmp	arg3, 2
	jl	.only_less_than_2

	; load 2 Bytes
	mov	al, [arg2]
	mov	[r11], al

	mov	al, [arg2+1]
	mov	[r11+1], al

	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm18
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpsrldq	xmm7, 6
	jmp	.barrett

.only_less_than_2:
	; load 1 Byte
	mov	al, [arg2]
	mov	[r11], al

	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm18
	vpxor	xmm7, xmm0      ; xor the initial crc value

	vpsrldq	xmm7, 7
	jmp	.barrett

section .data
align 32

%ifndef USE_CONSTS
; precomputed constants

rk_1: dq 0xdccf000000000000
rk_2: dq 0x4b0b000000000000
rk1:  dq 0x2d56000000000000
rk2:  dq 0x06df000000000000
rk3:  dq 0x9d9d000000000000
rk4:  dq 0x7cf5000000000000
rk5:  dq 0x2d56000000000000
rk6:  dq 0x1368000000000000
rk7:  dq 0x00000001f65a57f8
rk8:  dq 0x000000018bb70000
rk9:  dq 0xceae000000000000
rk10: dq 0xbfd6000000000000
rk11: dq 0x1e16000000000000
rk12: dq 0x713c000000000000
rk13: dq 0xf7f9000000000000
rk14: dq 0x80a6000000000000
rk15: dq 0x044c000000000000
rk16: dq 0xe658000000000000
rk17: dq 0xad18000000000000
rk18: dq 0xa497000000000000
rk19: dq 0x6ee3000000000000
rk20: dq 0xe7b5000000000000

rk_1b: dq 0x2d56000000000000
rk_2b: dq 0x06df000000000000
	dq 0x0000000000000000
	dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif

mask1: dq 0x8080808080808080, 0x8080808080808080
mask2: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF

SHUF_MASK: dq 0x08090A0B0C0D0E0F, 0x0001020304050607

pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
;       dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
;       dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
;       dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
;       dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
;       dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
;       dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
;       dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9  (16-7) / shr7
;       dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8  (16-8) / shr8
;       dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7  (16-9) / shr9
;       dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6  (16-10) / shr10
;       dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5  (16-11) / shr11
;       dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4  (16-12) / shr12
;       dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3  (16-13) / shr13
;       dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2  (16-14) / shr14
;       dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1  (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908
dq 0x8080808080808080, 0x0f0e0d0c0b0a0908
dq 0x8080808080808080, 0x8080808080808080

%else  ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10