Codebase list libisal / lintian-fixes/main crc / crc32_ieee_02.asm
lintian-fixes/main

Tree @lintian-fixes/main (Download .tar.gz)

crc32_ieee_02.asm @lintian-fixes/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;  Copyright(c) 2011-2020 Intel Corporation All rights reserved.
;
;  Redistribution and use in source and binary forms, with or without
;  modification, are permitted provided that the following conditions
;  are met:
;    * Redistributions of source code must retain the above copyright
;      notice, this list of conditions and the following disclaimer.
;    * Redistributions in binary form must reproduce the above copyright
;      notice, this list of conditions and the following disclaimer in
;      the documentation and/or other materials provided with the
;      distribution.
;    * Neither the name of Intel Corporation nor the names of its
;      contributors may be used to endorse or promote products derived
;      from this software without specific prior written permission.
;
;  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
;  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;       Function API:
;       UINT32 crc32_ieee_02(
;               UINT32 init_crc, //initial CRC value, 32 bits
;               const unsigned char *buf, //buffer pointer to calculate CRC on
;               UINT64 len //buffer length in bytes (64-bit data)
;       );
;
;       Authors:
;               Erdinc Ozturk
;               Vinodh Gopal
;               James Guilford
;
;       Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
;       URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf

%include "reg_sizes.asm"

%define	fetch_dist	1024
[bits 64]
default rel

section .text

%ifidn __OUTPUT_FORMAT__, win64
        %xdefine        arg1 rcx
        %xdefine        arg2 rdx
        %xdefine        arg3 r8

        %xdefine        arg1_low32 ecx
%else
        %xdefine        arg1 rdi
        %xdefine        arg2 rsi
        %xdefine        arg3 rdx

        %xdefine        arg1_low32 edi
%endif

%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
        %define XMM_SAVE 16*2
        %define VARIABLE_OFFSET 16*10+8
%else
        %define VARIABLE_OFFSET 16*2+8
%endif
align 16
mk_global 	crc32_ieee_02, function
crc32_ieee_02:
	endbranch

	not	arg1_low32      ;~init_crc

	sub	rsp,VARIABLE_OFFSET

%ifidn __OUTPUT_FORMAT__, win64
        ; push the xmm registers into the stack to maintain
        vmovdqa  [rsp + XMM_SAVE + 16*0], xmm6
        vmovdqa  [rsp + XMM_SAVE + 16*1], xmm7
        vmovdqa  [rsp + XMM_SAVE + 16*2], xmm8
        vmovdqa  [rsp + XMM_SAVE + 16*3], xmm9
        vmovdqa  [rsp + XMM_SAVE + 16*4], xmm10
        vmovdqa  [rsp + XMM_SAVE + 16*5], xmm11
        vmovdqa  [rsp + XMM_SAVE + 16*6], xmm12
        vmovdqa  [rsp + XMM_SAVE + 16*7], xmm13
%endif


	; check if smaller than 256
	cmp	arg3, 256

	; for sizes less than 256, we can't fold 128B at a time...
	jl	_less_than_256


	; load the initial crc value
	vmovd	xmm10, arg1_low32	; initial crc

	; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register.
	; because data will be byte-reflected and will align with initial crc at correct place.
	vpslldq	xmm10, 12

	vmovdqa xmm11, [SHUF_MASK]
	; receive the initial 128B data, xor the initial crc value
	vmovdqu	xmm0, [arg2+16*0]
	vmovdqu	xmm1, [arg2+16*1]
	vmovdqu	xmm2, [arg2+16*2]
	vmovdqu	xmm3, [arg2+16*3]
	vmovdqu	xmm4, [arg2+16*4]
	vmovdqu	xmm5, [arg2+16*5]
	vmovdqu	xmm6, [arg2+16*6]
	vmovdqu	xmm7, [arg2+16*7]

	vpshufb	xmm0, xmm11
	; XOR the initial_crc value
	vpxor	xmm0, xmm10
	vpshufb	xmm1, xmm11
	vpshufb	xmm2, xmm11
	vpshufb	xmm3, xmm11
	vpshufb	xmm4, xmm11
	vpshufb	xmm5, xmm11
	vpshufb	xmm6, xmm11
	vpshufb	xmm7, xmm11

	vmovdqa	xmm10, [rk3]	;xmm10 has rk3 and rk4
					;imm value of pclmulqdq instruction will determine which constant to use
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	; we subtract 256 instead of 128 to save one instruction from the loop
	sub	arg3, 256

	; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop
	; loop will fold 128B at a time until we have 128+y Bytes of buffer


	; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
_fold_128_B_loop:

	; update the buffer pointer
	add	arg2, 128		;    buf += 128;

	prefetchnta [arg2+fetch_dist+0]
	vmovdqu	xmm9, [arg2+16*0]
	vmovdqu	xmm12, [arg2+16*1]
	vpshufb	xmm9, xmm11
	vpshufb	xmm12, xmm11
	vmovdqa	xmm8, xmm0
	vmovdqa	xmm13, xmm1
	vpclmulqdq	xmm0, xmm10, 0x0
	vpclmulqdq	xmm8, xmm10 , 0x11
	vpclmulqdq	xmm1, xmm10, 0x0
	vpclmulqdq	xmm13, xmm10 , 0x11
	vpxor	xmm0, xmm9
	vxorps	xmm0, xmm8
	vpxor	xmm1, xmm12
	vxorps	xmm1, xmm13

	prefetchnta [arg2+fetch_dist+32]
	vmovdqu	xmm9, [arg2+16*2]
	vmovdqu	xmm12, [arg2+16*3]
	vpshufb	xmm9, xmm11
	vpshufb	xmm12, xmm11
	vmovdqa	xmm8, xmm2
	vmovdqa	xmm13, xmm3
	vpclmulqdq	xmm2, xmm10, 0x0
	vpclmulqdq	xmm8, xmm10 , 0x11
	vpclmulqdq	xmm3, xmm10, 0x0
	vpclmulqdq	xmm13, xmm10 , 0x11
	vpxor	xmm2, xmm9
	vxorps	xmm2, xmm8
	vpxor	xmm3, xmm12
	vxorps	xmm3, xmm13

	prefetchnta [arg2+fetch_dist+64]
	vmovdqu	xmm9, [arg2+16*4]
	vmovdqu	xmm12, [arg2+16*5]
	vpshufb	xmm9, xmm11
	vpshufb	xmm12, xmm11
	vmovdqa	xmm8, xmm4
	vmovdqa	xmm13, xmm5
	vpclmulqdq	xmm4, xmm10, 0x0
	vpclmulqdq	xmm8, xmm10 , 0x11
	vpclmulqdq	xmm5, xmm10, 0x0
	vpclmulqdq	xmm13, xmm10 , 0x11
	vpxor	xmm4, xmm9
	vxorps	xmm4, xmm8
	vpxor	xmm5, xmm12
	vxorps	xmm5, xmm13

	prefetchnta [arg2+fetch_dist+96]
	vmovdqu	xmm9, [arg2+16*6]
	vmovdqu	xmm12, [arg2+16*7]
	vpshufb	xmm9, xmm11
	vpshufb	xmm12, xmm11
	vmovdqa	xmm8, xmm6
	vmovdqa	xmm13, xmm7
	vpclmulqdq	xmm6, xmm10, 0x0
	vpclmulqdq	xmm8, xmm10 , 0x11
	vpclmulqdq	xmm7, xmm10, 0x0
	vpclmulqdq	xmm13, xmm10 , 0x11
	vpxor	xmm6, xmm9
	vxorps	xmm6, xmm8
	vpxor	xmm7, xmm12
	vxorps	xmm7, xmm13

	sub	arg3, 128

	; check if there is another 128B in the buffer to be able to fold
	jge	_fold_128_B_loop
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


	add	arg2, 128
	; at this point, the buffer pointer is pointing at the last y Bytes of the buffer
	; the 128 of folded data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3


	; fold the 8 xmm registers to 1 xmm register with different constants

	vmovdqa	xmm10, [rk9]
	vmovdqa	xmm8, xmm0
	vpclmulqdq	xmm0, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vxorps	xmm7, xmm0

	vmovdqa	xmm10, [rk11]
	vmovdqa	xmm8, xmm1
	vpclmulqdq	xmm1, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vxorps	xmm7, xmm1

	vmovdqa	xmm10, [rk13]
	vmovdqa	xmm8, xmm2
	vpclmulqdq	xmm2, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vpxor	xmm7, xmm2

	vmovdqa	xmm10, [rk15]
	vmovdqa	xmm8, xmm3
	vpclmulqdq	xmm3, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vxorps	xmm7, xmm3

	vmovdqa	xmm10, [rk17]
	vmovdqa	xmm8, xmm4
	vpclmulqdq	xmm4, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vpxor	xmm7, xmm4

	vmovdqa	xmm10, [rk19]
	vmovdqa	xmm8, xmm5
	vpclmulqdq	xmm5, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vxorps	xmm7, xmm5

	vmovdqa	xmm10, [rk1]	;xmm10 has rk1 and rk2
									;imm value of pclmulqdq instruction will determine which constant to use
	vmovdqa	xmm8, xmm6
	vpclmulqdq	xmm6, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vpxor	xmm7, xmm6


	; instead of 128, we add 112 to the loop counter to save 1 instruction from the loop
	; instead of a cmp instruction, we use the negative flag with the jl instruction
	add	arg3, 128-16
	jl	_final_reduction_for_128

	; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
	; we can fold 16 bytes at a time if y>=16
	; continue folding 16B at a time

_16B_reduction_loop:
	vmovdqa	xmm8, xmm7
	vpclmulqdq	xmm7, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vmovdqu	xmm0, [arg2]
	vpshufb	xmm0, xmm11
	vpxor	xmm7, xmm0
	add	arg2, 16
	sub	arg3, 16
	; instead of a cmp instruction, we utilize the flags with the jge instruction
	; equivalent of: cmp arg3, 16-16
	; check if there is any more 16B in the buffer to be able to fold
	jge	_16B_reduction_loop

	;now we have 16+z bytes left to reduce, where 0<= z < 16.
	;first, we reduce the data in the xmm7 register


_final_reduction_for_128:
	; check if any more data to fold. If not, compute the CRC of the final 128 bits
	add	arg3, 16
	je	_128_done

	; here we are getting data that is less than 16 bytes.
	; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes.
	; after that the registers need to be adjusted.
_get_last_two_xmms:
	vmovdqa	xmm2, xmm7

	vmovdqu	xmm1, [arg2 - 16 + arg3]
	vpshufb	xmm1, xmm11

	; get rid of the extra data that was loaded before
	; load the shift constant
	lea	rax, [pshufb_shf_table + 16]
	sub	rax, arg3
	vmovdqu	xmm0, [rax]

	; shift xmm2 to the left by arg3 bytes
	vpshufb	xmm2, xmm0

	; shift xmm7 to the right by 16-arg3 bytes
	vpxor	xmm0, [mask1]
	vpshufb	xmm7, xmm0
	vpblendvb	xmm1, xmm1, xmm2, xmm0

	; fold 16 Bytes
	vmovdqa	xmm2, xmm1
	vmovdqa	xmm8, xmm7
	vpclmulqdq	xmm7, xmm10, 0x11
	vpclmulqdq	xmm8, xmm10, 0x0
	vpxor	xmm7, xmm8
	vpxor	xmm7, xmm2

_128_done:
	; compute crc of a 128-bit value
	vmovdqa	xmm10, [rk5]	; rk5 and rk6 in xmm10
	vmovdqa	xmm0, xmm7

	;64b fold
	vpclmulqdq	xmm7, xmm10, 0x1
	vpslldq	xmm0, 8
	vpxor	xmm7, xmm0

	;32b fold
	vmovdqa	xmm0, xmm7

	vpand	xmm0, [mask2]

	vpsrldq	xmm7, 12
	vpclmulqdq	xmm7, xmm10, 0x10
	vpxor	xmm7, xmm0

	;barrett reduction
_barrett:
	vmovdqa	xmm10, [rk7]	; rk7 and rk8 in xmm10
	vmovdqa	xmm0, xmm7
	vpclmulqdq	xmm7, xmm10, 0x01
	vpslldq	xmm7, 4
	vpclmulqdq	xmm7, xmm10, 0x11

	vpslldq	xmm7, 4
	vpxor	xmm7, xmm0
	vpextrd	eax, xmm7,1

_cleanup:
	not     eax
%ifidn __OUTPUT_FORMAT__, win64
        vmovdqa  xmm6, [rsp + XMM_SAVE + 16*0]
        vmovdqa  xmm7, [rsp + XMM_SAVE + 16*1]
        vmovdqa  xmm8, [rsp + XMM_SAVE + 16*2]
        vmovdqa  xmm9, [rsp + XMM_SAVE + 16*3]
        vmovdqa  xmm10, [rsp + XMM_SAVE + 16*4]
        vmovdqa  xmm11, [rsp + XMM_SAVE + 16*5]
        vmovdqa  xmm12, [rsp + XMM_SAVE + 16*6]
        vmovdqa  xmm13, [rsp + XMM_SAVE + 16*7]
%endif
	add	rsp,VARIABLE_OFFSET
	ret


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

align 16
_less_than_256:

	; check if there is enough buffer to be able to fold 16B at a time
	cmp	arg3, 32
	jl	_less_than_32
	vmovdqa xmm11, [SHUF_MASK]

	; if there is, load the constants
	vmovdqa	xmm10, [rk1]	; rk1 and rk2 in xmm10

	vmovd	xmm0, arg1_low32	; get the initial crc value
	vpslldq	xmm0, 12	; align it to its correct place
	vmovdqu	xmm7, [arg2]	; load the plaintext
	vpshufb	xmm7, xmm11	; byte-reflect the plaintext
	vpxor	xmm7, xmm0


	; update the buffer pointer
	add	arg2, 16

	; update the counter. subtract 32 instead of 16 to save one instruction from the loop
	sub	arg3, 32

	jmp	_16B_reduction_loop


align 16
_less_than_32:
	; mov initial crc to the return value. this is necessary for zero-length buffers.
	mov	eax, arg1_low32
	test	arg3, arg3
	je	_cleanup

	vmovdqa xmm11, [SHUF_MASK]

	vmovd	xmm0, arg1_low32	; get the initial crc value
	vpslldq	xmm0, 12	; align it to its correct place

	cmp	arg3, 16
	je	_exact_16_left
	jl	_less_than_16_left

	vmovdqu	xmm7, [arg2]	; load the plaintext
	vpshufb	xmm7, xmm11	; byte-reflect the plaintext
	vpxor	xmm7, xmm0	; xor the initial crc value
	add	arg2, 16
	sub	arg3, 16
	vmovdqa	xmm10, [rk1]	; rk1 and rk2 in xmm10
	jmp	_get_last_two_xmms


align 16
_less_than_16_left:
	; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.

	vpxor	xmm1, xmm1
	mov	r11, rsp
	vmovdqa	[r11], xmm1

	cmp	arg3, 4
	jl	_only_less_than_4

	;	backup the counter value
	mov	r9, arg3
	cmp	arg3, 8
	jl	_less_than_8_left

	; load 8 Bytes
	mov	rax, [arg2]
	mov	[r11], rax
	add	r11, 8
	sub	arg3, 8
	add	arg2, 8
_less_than_8_left:

	cmp	arg3, 4
	jl	_less_than_4_left

	; load 4 Bytes
	mov	eax, [arg2]
	mov	[r11], eax
	add	r11, 4
	sub	arg3, 4
	add	arg2, 4
_less_than_4_left:

	cmp	arg3, 2
	jl	_less_than_2_left

	; load 2 Bytes
	mov	ax, [arg2]
	mov	[r11], ax
	add	r11, 2
	sub	arg3, 2
	add	arg2, 2
_less_than_2_left:
	cmp     arg3, 1
        jl      _zero_left

	; load 1 Byte
	mov	al, [arg2]
	mov	[r11], al
_zero_left:
	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm11
	vpxor	xmm7, xmm0	; xor the initial crc value

	; shl r9, 4
	lea	rax, [pshufb_shf_table + 16]
	sub	rax, r9
	vmovdqu	xmm0, [rax]
	vpxor	xmm0, [mask1]

	vpshufb	xmm7, xmm0
	jmp	_128_done

align 16
_exact_16_left:
	vmovdqu	xmm7, [arg2]
	vpshufb	xmm7, xmm11
	vpxor	xmm7, xmm0	; xor the initial crc value

	jmp	_128_done

_only_less_than_4:
	cmp	arg3, 3
	jl	_only_less_than_3

	; load 3 Bytes
	mov	al, [arg2]
	mov	[r11], al

	mov	al, [arg2+1]
	mov	[r11+1], al

	mov	al, [arg2+2]
	mov	[r11+2], al

	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm11
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpsrldq	xmm7, 5

	jmp	_barrett
_only_less_than_3:
	cmp	arg3, 2
	jl	_only_less_than_2

	; load 2 Bytes
	mov	al, [arg2]
	mov	[r11], al

	mov	al, [arg2+1]
	mov	[r11+1], al

	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm11
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpsrldq	xmm7, 6

	jmp	_barrett
_only_less_than_2:

	; load 1 Byte
	mov	al, [arg2]
	mov	[r11], al

	vmovdqa	xmm7, [rsp]
	vpshufb	xmm7, xmm11
	vpxor	xmm7, xmm0	; xor the initial crc value

	vpsrldq	xmm7, 7

	jmp	_barrett

section .data

; precomputed constants
align 16

rk1 :
DQ 0xf200aa6600000000
rk2 :
DQ 0x17d3315d00000000
rk3 :
DQ 0x022ffca500000000
rk4 :
DQ 0x9d9ee22f00000000
rk5 :
DQ 0xf200aa6600000000
rk6 :
DQ 0x490d678d00000000
rk7 :
DQ 0x0000000104d101df
rk8 :
DQ 0x0000000104c11db7
rk9 :
DQ 0x6ac7e7d700000000
rk10 :
DQ 0xfcd922af00000000
rk11 :
DQ 0x34e45a6300000000
rk12 :
DQ 0x8762c1f600000000
rk13 :
DQ 0x5395a0ea00000000
rk14 :
DQ 0x54f2d5c700000000
rk15 :
DQ 0xd3504ec700000000
rk16 :
DQ 0x57a8445500000000
rk17 :
DQ 0xc053585d00000000
rk18 :
DQ 0x766f1b7800000000
rk19 :
DQ 0xcd8c54b500000000
rk20 :
DQ 0xab40b71e00000000









mask1:
dq 0x8080808080808080, 0x8080808080808080
mask2:
dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF

SHUF_MASK:
dq 0x08090A0B0C0D0E0F, 0x0001020304050607

pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
;	dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
;	dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
;	dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
;	dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
;	dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
;	dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
;	dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9  (16-7) / shr7
;	dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8  (16-8) / shr8
;	dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7  (16-9) / shr9
;	dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6  (16-10) / shr10
;	dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5  (16-11) / shr11
;	dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4  (16-12) / shr12
;	dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3  (16-13) / shr13
;	dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2  (16-14) / shr14
;	dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1  (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908