Codebase list mozc / 262156b src / converter / candidate_filter.cc
262156b

Tree @262156b (Download .tar.gz)

candidate_filter.cc @262156braw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// Copyright 2010-2020, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This class is used to filter out generated candidate by its
// cost, structure and relation with previously added candidates.

#include "converter/candidate_filter.h"

#include <algorithm>
#include <climits>
#include <string>
#include <vector>

#include "base/logging.h"
#include "base/port.h"
#include "base/util.h"
#include "converter/node.h"
#include "converter/segments.h"
#include "dictionary/pos_matcher.h"
#include "dictionary/suppression_dictionary.h"
#include "prediction/suggestion_filter.h"

using mozc::dictionary::POSMatcher;
using mozc::dictionary::SuppressionDictionary;

namespace mozc {
namespace converter {
namespace {

const size_t kSizeThresholdForWeakCompound = 10;

const size_t kMaxCandidatesSize = 200;  // how many candidates we expand

// Currently, the cost (logprob) is calcurated as cost = -500 * log(prob).
// Suppose having two candidates A and B and prob(A) = C * prob(B), where
// C = 1000 (some constant variable). The word "A" appears 1000 times more
// frequently than B.
// In this case,
// cost(B) - cost(A) = -500 * [log(prob(B)) - log (C * prob(B)) ]
//                   = -500 * [-log(C) + log(prob(B)) - log(prob(B))]
//                   = 500 * log(C)
// This implies that it is more reasonable to filter candiates
// by an absolute difference of costs between cost(B) and cost(A).
//
// Here's "C" and cost-diff relation:
// C       cost diff: 500 * log(C)
// 10      1151.29
// 100     2302.58
// 1000    3453.87
// 10000   4605.17
// 100000  5756.46
// 1000000 6907.75
const int kMinCost = 100;
const int kCostOffset = 6907;
const int kStructureCostOffset = 3453;
const int kMinStructureCostOffset = 1151;
const int32 kStopEnmerationCacheSize = 15;

// Returns true if the given node sequence is noisy weak compound.
// Please refer to the comment in FilterCandidateInternal for the idea.
inline bool IsNoisyWeakCompound(const std::vector<const Node *> &nodes,
                                const dictionary::POSMatcher *pos_matcher) {
  if (nodes.size() <= 1) {
    return false;
  }
  if (nodes[0]->lid != nodes[0]->rid) {
    // nodes[0] is COMPOUND entry in dictionary.
    return false;
  }
  if (pos_matcher->IsWeakCompoundFillerPrefix(nodes[0]->lid)) {
    // Word that starts with 'filler' is always noisy.
    return true;
  }
  if (nodes[1]->lid != nodes[1]->rid) {
    // Some node +  COMPOUND node may be noisy.
    return true;
  }
  if (pos_matcher->IsWeakCompoundNounPrefix(nodes[0]->lid) &&
      !pos_matcher->IsWeakCompoundNounSuffix(nodes[1]->lid)) {
    // Noun prefix + not noun
    return true;
  }
  if (pos_matcher->IsWeakCompoundVerbPrefix(nodes[0]->lid) &&
      !pos_matcher->IsWeakCompoundVerbSuffix(nodes[1]->lid)) {
    // Verb prefix + not verb
    return true;
  }
  return false;
}

// Returns true if the given node sequence is connected weak compound.
// Please refer to the comment in FilterCandidateInternal for the idea.
inline bool IsConnectedWeakCompound(const std::vector<const Node *> &nodes,
                                    const dictionary::POSMatcher *pos_matcher) {
  if (nodes.size() <= 1) {
    return false;
  }
  if (nodes[0]->lid != nodes[0]->rid || nodes[1]->lid != nodes[1]->rid) {
    // nodes[0/1] is COMPOUND entry in dictionary.
    return false;
  }
  if (pos_matcher->IsWeakCompoundNounPrefix(nodes[0]->lid) &&
      pos_matcher->IsWeakCompoundNounSuffix(nodes[1]->lid)) {
    // Noun prefix + noun
    return true;
  }
  if (pos_matcher->IsWeakCompoundVerbPrefix(nodes[0]->lid) &&
      pos_matcher->IsWeakCompoundVerbSuffix(nodes[1]->lid)) {
    // Verb prefix + verb
    return true;
  }
  return false;
}

bool IsIsolatedWordOrGeneralSymbol(const dictionary::POSMatcher &pos_matcher,
                                   uint16 pos_id) {
  return pos_matcher.IsIsolatedWord(pos_id) ||
         pos_matcher.IsGeneralSymbol(pos_id);
}

bool ContainsIsolatedWordOrGeneralSymbol(
    const dictionary::POSMatcher &pos_matcher,
    const std::vector<const Node *> &nodes) {
  for (const Node *node : nodes) {
    if (IsIsolatedWordOrGeneralSymbol(pos_matcher, node->lid)) {
      return true;
    }
  }
  return false;
}

bool IsNormalOrConstrainedNode(const Node *node) {
  return node != nullptr && (node->node_type == Node::NOR_NODE ||
                             node->node_type == Node::CON_NODE);
}

}  // namespace

CandidateFilter::CandidateFilter(
    const SuppressionDictionary *suppression_dictionary,
    const POSMatcher *pos_matcher, const SuggestionFilter *suggestion_filter,
    bool apply_suggestion_filter_for_exact_match)
    : suppression_dictionary_(suppression_dictionary),
      pos_matcher_(pos_matcher),
      suggestion_filter_(suggestion_filter),
      top_candidate_(nullptr),
      apply_suggestion_filter_for_exact_match_(
          apply_suggestion_filter_for_exact_match) {
  CHECK(suppression_dictionary_);
  CHECK(pos_matcher_);
  CHECK(suggestion_filter_);
}

CandidateFilter::~CandidateFilter() {}

void CandidateFilter::Reset() {
  seen_.clear();
  top_candidate_ = nullptr;
}

CandidateFilter::ResultType CandidateFilter::FilterCandidateInternal(
    const std::string &original_key, const Segment::Candidate *candidate,
    const std::vector<const Node *> &nodes,
    Segments::RequestType request_type) {
  DCHECK(candidate);

  // Filtering by the suggestion filter, which is applied only for the
  // PREDICTION and SUGGESTION modes.
  switch (request_type) {
    case Segments::PREDICTION:
      // In the PREDICTION mode, the suggestion filter is not applied and the
      // same filtering rule as the CONVERSION mode is used because the
      // PREDICTION is triggered by user action (hitting tab keys), i.e.,
      // prediction candidates are not automatically shown to users. On the
      // contrary, since a user hit tab keys to run prediction, even unfavorable
      // words might be what the user wants to type.  Therefore, filtering rule
      // is relaxed for the PREDICTION mode: we don't apply the suggestion
      // filter if the user input key is exactly the same as candidate's.
      if (original_key == candidate->key) {
        break;
      }
      ABSL_FALLTHROUGH_INTENDED;
    case Segments::SUGGESTION:
      // For mobile, most users will use suggestion/prediction only and do not
      // trigger conversion explicitly.
      // So we don't apply the suggestion filter if the user input key
      // is exactly the same as candidate's.
      if (!apply_suggestion_filter_for_exact_match_ &&
          original_key == candidate->key) {
        break;
      }

      // In contrast to the PREDICTION mode, the SUGGESTION is triggered without
      // any user actions, i.e., suggestion candidates are automatically
      // displayed to users.  Therefore, it's better to filter unfavorable words
      // in this mode.
      CHECK(suggestion_filter_);
      if (suggestion_filter_->IsBadSuggestion(candidate->value)) {
        return BAD_CANDIDATE;
      }
      // TODO(noriyukit): In the implementation below, the possibility remains
      // that multiple nodes constitute bad candidates. For stronger filtering,
      // we may want to check all the possibilities.
      for (size_t i = 0; i < nodes.size(); ++i) {
        if (suggestion_filter_->IsBadSuggestion(nodes[i]->value)) {
          return BAD_CANDIDATE;
        }
      }
      break;
    default:
      break;
  }

  // In general, the cost of constrained node tends to be overestimated.
  // If the top candidate has constrained node, we skip the main body
  // of CandidateFilter, meaning that the node is not treated as the top
  // node for CandidateFilter.
  if (candidate->attributes & Segment::Candidate::CONTEXT_SENSITIVE) {
    return CandidateFilter::GOOD_CANDIDATE;
  }

  const size_t candidate_size = seen_.size();
  if (top_candidate_ == nullptr || candidate_size == 0) {
    top_candidate_ = candidate;
  }

  CHECK(top_candidate_);

  // "短縮よみ" or "記号,一般" must have only 1 node.  Note that "顔文字" POS
  // from user dictionary is converted to "記号,一般" in Mozc engine.
  if (nodes.size() > 1 &&
      ContainsIsolatedWordOrGeneralSymbol(*pos_matcher_, nodes)) {
    return CandidateFilter::BAD_CANDIDATE;
  }
  // This case tests the case where the isolated word or general symbol is in
  // content word.
  if (IsIsolatedWordOrGeneralSymbol(*pos_matcher_, nodes[0]->lid) &&
      (IsNormalOrConstrainedNode(nodes[0]->prev) ||
       IsNormalOrConstrainedNode(nodes[0]->next))) {
    return CandidateFilter::BAD_CANDIDATE;
  }

  // Remove "抑制単語" just in case.
  if (suppression_dictionary_->SuppressEntry(candidate->key,
                                             candidate->value) ||
      (candidate->key != candidate->content_key &&
       candidate->value != candidate->content_value &&
       suppression_dictionary_->SuppressEntry(candidate->content_key,
                                              candidate->content_value))) {
    return CandidateFilter::BAD_CANDIDATE;
  }

  // Don't remove duplications if USER_DICTIONARY.
  if (candidate->attributes & Segment::Candidate::USER_DICTIONARY) {
    return CandidateFilter::GOOD_CANDIDATE;
  }

  // too many candidates size
  if (candidate_size + 1 >= kMaxCandidatesSize) {
    return CandidateFilter::STOP_ENUMERATION;
  }

  // The candidate is already seen.
  if (seen_.find(candidate->value) != seen_.end()) {
    return CandidateFilter::BAD_CANDIDATE;
  }

  CHECK(!nodes.empty());

  // Suppress "書います", "書いすぎ", "買いて"
  // Basic idea:
  //  - WagyoRenyoConnectionVerb(= "動詞,*,*,*,五段・ワ行促音便,連用形",
  // "買い", "言い", "使い", etc) should not connect to TeSuffix(= "て",
  // "てる", "ちゃう", "とく", etc).
  //  - KagyoTaConnectionVerb(= 動詞,*,*,*,五段・カ行(促|イ)音便,連用タ接続",
  // "書い", "歩い", "言っ", etc) should not connect to verb suffix other
  // than TeSuffix
  if (Util::GetScriptType(nodes[0]->value) != Util::HIRAGANA) {
    if (nodes.size() >= 2) {
      // For node sequence
      if (pos_matcher_->IsKagyoTaConnectionVerb(nodes[0]->rid) &&
          pos_matcher_->IsVerbSuffix(nodes[1]->lid) &&
          !pos_matcher_->IsTeSuffix(nodes[1]->lid)) {
        // "書い" | "ます", "過ぎ", etc
        return CandidateFilter::BAD_CANDIDATE;
      }
      if (pos_matcher_->IsWagyoRenyoConnectionVerb(nodes[0]->rid) &&
          pos_matcher_->IsTeSuffix(nodes[1]->lid)) {
        // "買い" | "て"
        return CandidateFilter::BAD_CANDIDATE;
      }
    }
    if (nodes[0]->lid != nodes[0]->rid) {
      // For compound
      if (pos_matcher_->IsKagyoTaConnectionVerb(nodes[0]->lid) &&
          pos_matcher_->IsVerbSuffix(nodes[0]->rid) &&
          !pos_matcher_->IsTeSuffix(nodes[0]->rid)) {
        // "書い" | "ます", "過ぎ", etc
        return CandidateFilter::BAD_CANDIDATE;
      }
      if (pos_matcher_->IsWagyoRenyoConnectionVerb(nodes[0]->lid) &&
          pos_matcher_->IsTeSuffix(nodes[0]->rid)) {
        // "買い" | "て"
        return CandidateFilter::BAD_CANDIDATE;
      }
    }
  }

  // The candidate consists of only one token
  if (nodes.size() == 1) {
    VLOG(1) << "don't filter single segment";
    return CandidateFilter::GOOD_CANDIDATE;
  }

  // don't drop single character
  if (Util::CharsLen(candidate->value) == 1) {
    VLOG(1) << "don't filter single character";
    return CandidateFilter::GOOD_CANDIDATE;
  }

  // Remove noisy candidates from prefix.
  // For example, "お危機します" for "おききします".
  //
  // Basic idea:
  //   "weak compound": words consist from "prefix + content"
  //   "connected weak compound": noun prefix("名詞接続") + noun words("体言")
  //      or verb prefix("動詞接続") + verb words("用言")
  //   "noisy weak compound": types of prefix and content do not match.
  //   - We do not allow noisy weak compound except for the top result. Even for
  //     the top result, we will check other conditions for filtering.
  //   - We do not allow connected weak compound if the rank is low enough.
  const bool is_noisy_weak_compound = IsNoisyWeakCompound(nodes, pos_matcher_);
  const bool is_connected_weak_compound =
      IsConnectedWeakCompound(nodes, pos_matcher_);

  if (is_noisy_weak_compound && candidate_size >= 1) {
    return CandidateFilter::BAD_CANDIDATE;
  }

  if (is_connected_weak_compound &&
      candidate_size >= kSizeThresholdForWeakCompound) {
    return CandidateFilter::BAD_CANDIDATE;
  }

  // don't drop lid/rid are the same as those
  // of top candidate.
  // http://b/issue?id=4285213
  if (!is_noisy_weak_compound && top_candidate_->structure_cost == 0 &&
      candidate->lid == top_candidate_->lid &&
      candidate->rid == top_candidate_->rid) {
    VLOG(1) << "don't filter lid/rid are the same";
    return CandidateFilter::GOOD_CANDIDATE;
  }

  // "好かっ|たり" vs  "良かっ|たり" have same non_content_value.
  // "良かっ|たり" is also a good candidate but it is not the top candidate.
  if (!is_noisy_weak_compound && top_candidate_ != candidate &&
      top_candidate_->content_value != top_candidate_->value &&
      (top_candidate_->value.compare(
           top_candidate_->content_value.size(),
           top_candidate_->value.size() - top_candidate_->content_value.size(),
           candidate->value, candidate->content_value.size(),
           candidate->value.size() - candidate->content_value.size()) == 0)) {
    VLOG(1) << "don't filter if non-content value are the same";
    return CandidateFilter::GOOD_CANDIDATE;
  }

  // Check Katakana transliterations
  // Skip this check when the conversion mode is real-time;
  // otherwise this ruins the whole sentence
  // that starts with alphabets.
  if (!(candidate->attributes & Segment::Candidate::REALTIME_CONVERSION)) {
    const bool is_top_english_t13n =
        Util::IsEnglishTransliteration(nodes[0]->value);
    for (size_t i = 1; i < nodes.size(); ++i) {
      // EnglishT13N must be the prefix of the candidate.
      if (Util::IsEnglishTransliteration(nodes[i]->value)) {
        return CandidateFilter::BAD_CANDIDATE;
      }
      // nodes[1..] are non-functional candidates.
      // In other words, the node just after KatakanaT13n candidate should
      // be a functional word.
      if (is_top_english_t13n && !pos_matcher_->IsFunctional(nodes[i]->lid)) {
        return CandidateFilter::BAD_CANDIDATE;
      }
    }
  }

  const int64 top_cost = std::max(kMinCost, top_candidate_->cost);
  const int64 top_structure_cost =
      std::max(kMinCost, top_candidate_->structure_cost);

  // If candidate size < 3, don't filter candidate aggressively
  // TODO(taku): This is a tentative workaround for the case where
  // TOP candidate is compound and the structure cost for it is "0"
  // If 2nd or 3rd candidates are regular candidate but not having
  // non-zero cost, they might be removed. This hack removes such case.
  if (candidate_size < 3 && candidate->cost < top_cost + 2302 &&
      candidate->structure_cost < 6907) {
    return CandidateFilter::GOOD_CANDIDATE;
  }

  // Don't drop personal names aggressivly.
  // We have to show personal names even if they are too minor.
  // We basically ignores the cost threadshould. Filter candidate
  // only by structure cost.
  int cost_offset = kCostOffset;
  if (candidate->lid == pos_matcher_->GetLastNameId() ||
      candidate->lid == pos_matcher_->GetFirstNameId()) {
    cost_offset = INT_MAX - top_cost;
  }

  // Filters out candidates with higher cost.
  if (top_cost + cost_offset < candidate->cost &&
      top_structure_cost + kMinStructureCostOffset <
          candidate->structure_cost) {
    // Stops candidates enumeration when we see sufficiently high cost
    // candidate.
    VLOG(2) << "cost is invalid: "
            << "top_cost=" << top_cost << " cost_offset=" << cost_offset
            << " value=" << candidate->value << " cost=" << candidate->cost
            << " top_structure_cost=" << top_structure_cost
            << " structure_cost=" << candidate->structure_cost
            << " lid=" << candidate->lid << " rid=" << candidate->rid;
    if (candidate_size < kStopEnmerationCacheSize) {
      // Even when the current candidate is classified as bad candidate,
      // we don't return STOP_ENUMERATION here.
      // When the current candidate is removed only with the "structure_cost",
      // there might exist valid candidates just after the current candidate.
      // We don't want to miss them.
      return CandidateFilter::BAD_CANDIDATE;
    } else {
      return CandidateFilter::STOP_ENUMERATION;
    }
  }

  // Filters out candidates with higher cost structure.
  if (top_structure_cost + kStructureCostOffset > INT_MAX ||
      std::max(top_structure_cost,
               static_cast<int64>(kMinStructureCostOffset)) +
              kStructureCostOffset <
          candidate->structure_cost) {
    // We don't stop enumeration here. Just drops high cost structure
    // looks enough.
    // |top_structure_cost| can be so small especially for compound or
    // web dictionary entries.
    // For avoiding over filtering, we use kMinStructureCostOffset if
    // |top_structure_cost| is small.
    VLOG(2) << "structure cost is invalid:  " << candidate->value << " "
            << candidate->content_value << " " << candidate->structure_cost
            << " " << candidate->cost;
    return CandidateFilter::BAD_CANDIDATE;
  }

  return CandidateFilter::GOOD_CANDIDATE;
}

CandidateFilter::ResultType CandidateFilter::FilterCandidate(
    const std::string &original_key, const Segment::Candidate *candidate,
    const std::vector<const Node *> &nodes,
    Segments::RequestType request_type) {
  if (request_type == Segments::REVERSE_CONVERSION) {
    // In reverse conversion, only remove duplicates because the filtering
    // criteria of FilterCandidateInternal() are completely designed for
    // (forward) conversion.
    const bool inserted = seen_.insert(candidate->value).second;
    return inserted ? GOOD_CANDIDATE : BAD_CANDIDATE;
  } else {
    const ResultType result =
        FilterCandidateInternal(original_key, candidate, nodes, request_type);
    if (result != GOOD_CANDIDATE) {
      return result;
    }
    seen_.insert(candidate->value);
    return result;
  }
}

}  // namespace converter
}  // namespace mozc