Codebase list mozc / d575d25 prediction / dictionary_predictor.cc
d575d25

Tree @d575d25 (Download .tar.gz)

dictionary_predictor.cc @d575d25raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
// Copyright 2010-2011, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "prediction/dictionary_predictor.h"

#include <limits.h>   // INT_MAX
#include <cctype>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <algorithm>
#include "base/base.h"
#include "base/init.h"
#include "base/singleton.h"
#include "base/util.h"
#include "config/config_handler.h"
#include "config/config.pb.h"
#include "converter/character_form_manager.h"
#include "converter/connector_interface.h"
#include "converter/converter_interface.h"
#include "converter/immutable_converter_interface.h"
#include "converter/node.h"
#include "converter/node_allocator.h"
#include "converter/segmenter_interface.h"
#include "converter/segmenter.h"
#include "converter/segments.h"
#include "dictionary/dictionary_interface.h"
#include "dictionary/pos_matcher.h"
#include "dictionary/suffix_dictionary.h"
#include "prediction/suggestion_filter.h"
#include "prediction/predictor_interface.h"
#include "session/commands.pb.h"


namespace mozc {
namespace {

// Note that PREDICTION mode is much slower than SUGGESTION.
// Number of prediction calls should be minimized.
const size_t kSuggestionMaxNodesSize = 256;
const size_t kPredictionMaxNodesSize = 100000;

void UTF8ToUCS4Array(const string &input,
                     vector<char32> *output) {
  DCHECK(output);
  const char *begin = input.data();
  const char *end = input.data() + input.size();
  while (begin < end) {
    size_t mblen = 0;
    const char32 ucs4 = Util::UTF8ToUCS4(begin, end, &mblen);
    DCHECK_GT(mblen, 0);
    output->push_back(ucs4);
    begin += mblen;
  }
}

}  // namespace

DictionaryPredictor::DictionaryPredictor()
    : dictionary_(DictionaryFactory::GetDictionary()),
      suffix_dictionary_(SuffixDictionaryFactory::GetSuffixDictionary()),
      connector_(ConnectorFactory::GetConnector()),
      segmenter_(Singleton<Segmenter>::get()),
      immutable_converter_(
          ImmutableConverterFactory::GetImmutableConverter()) {}

DictionaryPredictor::DictionaryPredictor(SegmenterInterface *segmenter)
    : dictionary_(DictionaryFactory::GetDictionary()),
      suffix_dictionary_(SuffixDictionaryFactory::GetSuffixDictionary()),
      connector_(ConnectorFactory::GetConnector()),
      segmenter_(segmenter),
      immutable_converter_(
          ImmutableConverterFactory::GetImmutableConverter()) {}

DictionaryPredictor::~DictionaryPredictor() {}

bool DictionaryPredictor::Predict(Segments *segments) const {
  if (segments == NULL) {
    return false;
  }

  const PredictionType prediction_type = GetPredictionType(*segments);
  if (prediction_type == NO_PREDICTION) {
    return false;
  }

  scoped_ptr<NodeAllocatorInterface> allocator(new NodeAllocator);

  vector<Result> results;
  if (segments->request_type() == Segments::PARTIAL_SUGGESTION ||
      segments->request_type() == Segments::PARTIAL_PREDICTION) {
      // This request type is used to get conversion before cursor during
    // composition mode. Thus it should return only the candidates whose key
    // exactly matches the query.
    // Therefore, we use only the realtime conversion result.
    AggregateRealtimeConversion(prediction_type, segments,
                                allocator.get(), &results);
  } else {
    AggregateRealtimeConversion(prediction_type, segments,
                                allocator.get(), &results);
    AggregateUnigramPrediction(prediction_type, segments,
                               allocator.get(), &results);
    AggregateBigramPrediction(prediction_type, segments,
                              allocator.get(), &results);
    AggregateSuffixPrediction(prediction_type, segments,
                              allocator.get(), &results);
  }

  if (results.empty()) {
    VLOG(2) << "|result| is empty";
    return false;
  }

  bool mixed_conversion = false;

  if (mixed_conversion) {
    SetLMCost(*segments, &results);
  } else {
    SetPredictionCost(*segments, &results);
  }

  const string &input_key = segments->conversion_segment(0).key();
  const size_t input_key_len = Util::CharsLen(input_key);

  if (!mixed_conversion) {
    RemoveMissSpelledCandidates(input_key_len, &results);
  }

  const size_t size = min(segments->max_prediction_candidates_size(),
                          results.size());

  // Instead of sorting all the results, we construct a heap.
  // This is done in linear time and
  // we can pop as many results as we need effectively.
  make_heap(results.begin(), results.end(), ResultCompare());

  Segment *segment = segments->mutable_conversion_segment(0);
  DCHECK(segment);

  int added = 0;
  set<string> seen;

  string history_key, history_value;
  GetHistoryKeyAndValue(*segments, &history_key, &history_value);
  const string bigram_key = history_key + input_key;

  for (size_t i = 0; i < results.size(); ++i) {
    if (added >= size || results[i].cost == INT_MAX) {
      break;
    }

    pop_heap(results.begin(), results.end() - i, ResultCompare());
    const Result &result = results[results.size() - i - 1];
    const Node *node = result.node;
    DCHECK(node);

    if (result.type == NO_PREDICTION) {
      continue;
    }

    // We don't filter the results from realtime conversion if mixed_conversion
    // is true.
    // TODO(manabe): Add a unit test. For that, we'll need a mock class for
    //               SuppressionDictionary.
    if (SuggestionFilter::IsBadSuggestion(node->value) &&
        !(mixed_conversion && result.type & REALTIME)) {
      continue;
    }

    // don't suggest exactly the same candidate as key.
    // if |mixed_conversion| is true, that's not the case.
    if (!mixed_conversion &&
        !(result.type & REALTIME) &&
        (((result.type & BIGRAM) &&
          bigram_key == node->value) ||
         (!(result.type & BIGRAM) &&
          input_key == node->value))) {
      continue;
    }

    string key, value;
    if (result.type & BIGRAM) {
      // remove the prefix of history key and history value.
      key = node->key.substr(history_key.size(),
                             node->key.size() - history_key.size());
      value = node->value.substr(history_value.size(),
                                 node->value.size() - history_value.size());
    } else {
      key = node->key;
      value = node->value;
    }

    if (!seen.insert(value).second) {
      continue;
    }

    // User input: "おーすとり" (len = 5)
    // key/value:  "おーすとりら" "オーストラリア" (miss match pos = 4)
    if ((node->attributes & Node::SPELLING_CORRECTION) &&
        key != input_key &&
        input_key_len <= GetMissSpelledPosition(key, value) + 1) {
      continue;
    }

    Segment::Candidate *candidate = segment->push_back_candidate();
    DCHECK(candidate);

    candidate->Init();
    candidate->content_key = key;
    candidate->content_value = value;
    candidate->key = key;
    candidate->value = value;
    candidate->lid = node->lid;
    candidate->rid = node->rid;
    candidate->wcost = node->wcost;
    candidate->cost = results[i].cost;
    if (node->attributes & Node::SPELLING_CORRECTION) {
      candidate->attributes |= Segment::Candidate::SPELLING_CORRECTION;
    }

    // Don't provide any descriptions for dictionary suggests
#ifdef _DEBUG
    const char kRealtimeConversionDescription[] = "Real-time Conversion";
    const char kDictionarySuggestDescription[] = "Dictionary Suggest";
    if (result.type & REALTIME) {
      candidate->description = kRealtimeConversionDescription;
    } else {
      candidate->description = kDictionarySuggestDescription;
    }
#endif
    ++added;
  }

  return added > 0;
}

// return transition_cost[rid][node.lid] + node.wcost (+ penalties).
int DictionaryPredictor::GetLMCost(PredictionType type,
                                   const Node &node,
                                   int rid) const {
  int lm_cost = connector_->GetTransitionCost(rid, node.lid) + node.wcost;
  if (!(type & REALTIME)) {
    // Relatime conversion already adds perfix/suffix penalties to the nodes.
    // Note that we don't add prefix penalty the role of "bunsetsu" is
    // ambigous on zero-query suggestion.
    lm_cost += segmenter_->GetSuffixPenalty(node.rid);
  }

  return lm_cost;
}

// return dictionary node whose value/key are |key| and |value|.
// return NULL no words are foudn in the dictionary.
const Node *DictionaryPredictor::LookupKeyValueFromDictionary(
    const string &key,
    const string &value,
    NodeAllocatorInterface *allocator) const {
  DCHECK(allocator);
  const Node *node = dictionary_->LookupPrefix(key.data(), key.size(),
                                               allocator);
  for (; node != NULL; node = node->bnext) {
    if (value == node->value) {
      return node;
    }
  }

  return NULL;
}

bool DictionaryPredictor::GetHistoryKeyAndValue(
    const Segments &segments,
    string *key, string *value) const {
  DCHECK(key);
  DCHECK(value);
  if (segments.history_segments_size() > 0) {
    const Segment &history_segment =
        segments.history_segment(segments.history_segments_size() - 1);
    if (history_segment.candidates_size() > 0) {
      key->assign(history_segment.candidate(0).key);
      value->assign(history_segment.candidate(0).value);
      return true;
    }
  }
  return false;
}

void DictionaryPredictor::SetPredictionCost(const Segments &segments,
                                            vector<Result> *results) const {
  int rid = 0;  // 0 (BOS) is default
  if (segments.history_segments_size() > 0) {
    const Segment &history_segment =
        segments.history_segment(segments.history_segments_size() - 1);
    if (history_segment.candidates_size() > 0) {
      rid = history_segment.candidate(0).rid;  // use history segment's id
    }
  }

  DCHECK(results);
  const string &input_key = segments.conversion_segment(0).key();
  string history_key, history_value;
  GetHistoryKeyAndValue(segments, &history_key, &history_value);
  const string bigram_key = history_key + input_key;
  const bool is_suggestion = (segments.request_type() ==
                              Segments::SUGGESTION);

  // use the same scoring function for both unigram/bigram.
  // Bigram will be boosted because we pass the previous
  // key as a context information.
  const size_t bigram_key_len = Util::CharsLen(bigram_key);
  const size_t unigram_key_len = Util::CharsLen(input_key);

  for (size_t i = 0; i < results->size(); ++i) {
    const Node *node = (*results)[i].node;
    const PredictionType type = (*results)[i].type;
    const int32 cost = GetLMCost(type, *node, rid);
    DCHECK(node);

    const size_t query_len =
        ((*results)[i].type & BIGRAM) ? bigram_key_len : unigram_key_len;
    const size_t key_len = Util::CharsLen(node->key);

    if (IsAggressiveSuggestion(query_len, key_len, cost,
                               is_suggestion, results->size())) {
      (*results)[i].cost = INT_MAX;
      continue;
    }

    // cost = -500 * log(lang_prob(w) * (1 + remain_length))    -- (1)
    // where lang_prob(w) is a language model probability of the word "w", and
    // remain_length the length of key user must type to input "w".
    //
    // Example:
    // key/value = "とうきょう/東京"
    // user_input = "とう"
    // remain_length = len("とうきょう") - len("とう") = 3
    //
    // By taking the log of (1),
    // cost  = -500 [log(lang_prob(w)) + log(1 + ramain_length)]
    //       = -500 * log(lang_prob(w)) + 500 * log(1 + remain_length)
    //       = cost - 500 * log(1 + remain_length)
    // Because 500 * log(lang_prob(w)) = -cost.
    //
    // lang_prob(w) * (1 + remain_length) represents how user can reduce
    // the total types by choosing this candidate.
    // Before this simple algorithm, we have been using an SVM-base scoring,
    // but we stop usign it with the following reasons.
    // 1) Hard to maintain the ranking.
    // 2) Hard to control the final results of SVM.
    // 3) Hard to debug.
    // 4) Since we used the log(remain_length) as a feature,
    //    the new ranking algorithm and SVM algorithm was essentially
    //    the same.
    // 5) Since we used the length of value as a feature, we find
    //    inconsistencies between the conversion and the prediction
    //    -- the results of top prediction and the top conversion
    //    (the candidate shown after the space key) may differ.
    //
    // The new function brings consistent results. If two candidate
    // have the same reading (key), they should have the same cost bonus
    // from the length part. This implies that the result is reranked by
    // the language model probability as long as the key part is the same.
    // This behavior is baisically the same as the converter.
    //
    // TODO(team): want find the best parameter instread of kCostFactor.
    const int kCostFactor = 500;
    (*results)[i].cost = cost -
        kCostFactor * log(1.0 + max(0, static_cast<int>(key_len - query_len)));
  }
}

void DictionaryPredictor::SetLMCost(const Segments &segments,
                                    vector<Result> *results) const {
  DCHECK(results);

  int rid = 0;  // 0 (BOS) is default
  int prev_cost = 0;
  if (segments.history_segments_size() > 0) {
    const Segment &history_segment =
        segments.history_segment(segments.history_segments_size() - 1);
    if (history_segment.candidates_size() > 0) {
      rid = history_segment.candidate(0).rid;  // use history segment's id
      prev_cost = history_segment.candidate(0).cost;
      if (prev_cost == 0) {
        // if prev_cost is set to be 0 for some reason, use default cost.
        prev_cost = 5000;
      }
    }
  }

  for (size_t i = 0; i < results->size(); ++i) {
    const Node *node = (*results)[i].node;
    const PredictionType type = (*results)[i].type;
    DCHECK(node);
    int cost = GetLMCost(type, *node, rid);
    if (type & BIGRAM) {
      // When user inputs "六本木" and there is an entry
      // "六本木ヒルズ" in the dictionary, we can suggest
      // "ヒルズ" as a ZeroQuery suggestion. In this case,
      // We can't calcurate the transition cost between "六本木"
      // and "ヒルズ". If we ignore the transition cost,
      // bigram-based suggestion will be overestimated.
      // Here we use |default_transition_cost| as an
      // transition cost between "六本木" and "ヒルズ". Currently,
      // the cost is basically the same as the cost between
      // "名詞,一般" and "名詞,一般".
      const int kDefaultTransitionCost = 1347;
      cost += (kDefaultTransitionCost - prev_cost);
    }
    (*results)[i].cost = cost;
  }
}

size_t DictionaryPredictor::GetMissSpelledPosition(
    const string &key, const string &value) const {
  string hiragana_value;
  Util::KatakanaToHiragana(value, &hiragana_value);
  // value is mixed type. return true if key == request_key.
  if (Util::GetScriptType(hiragana_value) != Util::HIRAGANA) {
    return Util::CharsLen(key);
  }

  vector<char32> ucs4_hiragana_values, ucs4_keys;
  UTF8ToUCS4Array(hiragana_value, &ucs4_hiragana_values);
  UTF8ToUCS4Array(key, &ucs4_keys);

  // Find the first position of character where miss spell occurs.
  const size_t size = min(ucs4_hiragana_values.size(), ucs4_keys.size());
  for (size_t i = 0; i < size; ++i) {
    if (ucs4_hiragana_values[i] != ucs4_keys[i]) {
      return i;
    }
  }

  // not find. return the length of key.
  return ucs4_keys.size();
}

void DictionaryPredictor::RemoveMissSpelledCandidates(
    size_t request_key_len,
    vector<Result> *results) const {
  DCHECK(results);

  if (results->size() <= 1) {
    return;
  }

  int spelling_correction_size = 5;
  for (size_t i = 0; i < results->size(); ++i) {
    const Result &result = (*results)[i];
    DCHECK(result.node);
    if (!(result.node->attributes & Node::SPELLING_CORRECTION)) {
      continue;
    }

    // Only checks at most 5 spelling corrections to avoid the case
    // like all candidates have SPELLING_CORRECTION.
    if (--spelling_correction_size == 0) {
      return;
    }

    vector<size_t> same_key_index, same_value_index;
    for (size_t j = 0; j < results->size(); ++j) {
      if (i == j) {
        continue;
      }
      const Result &target_result = (*results)[j];
      if (target_result.node->attributes & Node::SPELLING_CORRECTION) {
        continue;
      }
      if (target_result.node->key == result.node->key) {
        same_key_index.push_back(j);
      }
      if (target_result.node->value == result.node->value) {
        same_value_index.push_back(j);
      }
    }

    // delete same_key_index and same_value_index
    if (!same_key_index.empty() && !same_value_index.empty()) {
      (*results)[i].type = NO_PREDICTION;
      for (size_t k = 0; k < same_key_index.size(); ++k) {
        (*results)[same_key_index[k]].type = NO_PREDICTION;
      }
    } else if (same_key_index.empty() && !same_value_index.empty()) {
      (*results)[i].type = NO_PREDICTION;
    } else if (!same_key_index.empty() && same_value_index.empty()) {
      for (size_t k = 0; k < same_key_index.size(); ++k) {
        (*results)[same_key_index[k]].type = NO_PREDICTION;
      }
      if (request_key_len <=
          GetMissSpelledPosition(result.node->key,
                                 result.node->value)) {
        (*results)[i].type = NO_PREDICTION;
      }
    }
  }
}

bool DictionaryPredictor::IsAggressiveSuggestion(
    size_t query_len, size_t key_len, int32 cost,
    bool is_suggestion, size_t total_candidates_size) const {
  // Temporal workaround for fixing the problem where longer sentence-like
  // suggestions are shown when user input is very short.
  // "ただしい" => "ただしいけめんにかぎる"
  // "それでもぼ" => "それでもぼくはやっていない".
  // If total_candidates_size is small enough, we don't perform
  // special filtering. e.g., "せんとち" has only two candidates, so
  // showing "千と千尋の神隠し" is OK.
  // Also, if the cost is too small (< 5000), we allow to display
  // long phrases. Examples include "よろしくおねがいします".
  if (is_suggestion && total_candidates_size >= 10 && key_len >= 8 &&
      cost >= 5000 && query_len <= static_cast<size_t>(0.4 * key_len)) {
    return true;
  }

  return false;
}

size_t DictionaryPredictor::GetRealtimeCandidateMaxSize(
    const Segments &segments, bool mixed_conversion, size_t max_size) const {
  const Segments::RequestType request_type = segments.request_type();
  DCHECK(request_type == Segments::PREDICTION ||
         request_type == Segments::SUGGESTION ||
         request_type == Segments::PARTIAL_PREDICTION ||
         request_type == Segments::PARTIAL_SUGGESTION);
  const int kFewResultThreshold = 8;
  size_t default_size = 6;
  if (segments.segments_size() > 0 &&
      Util::CharsLen(segments.segment(0).key()) >= kFewResultThreshold) {
    // We don't make so many realtime conversion prediction
    // even if we have enough margin, as it's expected less useful.
    max_size = min(max_size, static_cast<size_t>(8));
    default_size = 3;
  }
  size_t size = 0;
  switch (request_type) {
    case Segments::PREDICTION:
      size = mixed_conversion ? max_size - default_size : default_size;
      break;
    case Segments::SUGGESTION:
      // Fewer candidatats are needed basically.
      // But on mixed_conversion mode we should behave like as conversion mode.
      size = mixed_conversion ? default_size : 1;
      break;
    case Segments::PARTIAL_PREDICTION:
      // This is kind of prediction so richer result than PARTIAL_SUGGESTION
      // is needed.
      size = max_size;
      break;
    case Segments::PARTIAL_SUGGESTION:
      // PARTIAL_SUGGESTION works like as conversion mode so returning
      // some candidates is needed.
      size = default_size;
      break;
    default:
      size = 0;  // Never reach here
  }
  return min(max_size, size);
}

void DictionaryPredictor::AggregateRealtimeConversion(
    PredictionType type,
    Segments *segments,
    NodeAllocatorInterface *allocator,
    vector<Result> *results) const {
  if (!(type & REALTIME)) {
    return;
  }

  DCHECK(immutable_converter_);
  DCHECK(segments);
  DCHECK(results);
  DCHECK(allocator);

  Segment *segment = segments->mutable_conversion_segment(0);
  DCHECK(segment);
  DCHECK(!segment->key().empty());

  // preserve the previous max_prediction_candidates_size,
  // and candidates_size.
  const size_t prev_candidates_size = segment->candidates_size();
  const size_t prev_max_prediction_candidates_size =
      segments->max_prediction_candidates_size();

  // set how many candidates we want to obtain with
  // immutable converter.
  bool mixed_conversion = false;
  const size_t realtime_candidates_size = GetRealtimeCandidateMaxSize(
      *segments,
      mixed_conversion,
      prev_max_prediction_candidates_size - prev_candidates_size);

  segments->set_max_prediction_candidates_size(prev_candidates_size +
                                               realtime_candidates_size);

  if (immutable_converter_->Convert(segments) &&
      prev_candidates_size < segment->candidates_size()) {
    // A little tricky treatment:
    // Since ImmutableConverter::Converter creates a set of new candidates,
    // copy them into the array of Results.
    for (size_t i = prev_candidates_size;
         i < segment->candidates_size(); ++i) {
      const Segment::Candidate &candidate = segment->candidate(i);
      Node *node= allocator->NewNode();
      DCHECK(node);
      node->Init();
      node->lid = candidate.lid;
      node->rid = candidate.rid;
      node->wcost = candidate.wcost;
      node->key = candidate.key;
      node->value = candidate.value;
      if (candidate.attributes & Segment::Candidate::SPELLING_CORRECTION) {
        node->attributes |= Node::SPELLING_CORRECTION;
      }
      results->push_back(Result(node, REALTIME));
    }
    // remove candidates created by ImmutableConverter.
    segment->erase_candidates(prev_candidates_size,
                              segment->candidates_size() -
                              prev_candidates_size);
    // restore the max_prediction_candidates_size.
    segments->set_max_prediction_candidates_size(
        prev_max_prediction_candidates_size);
  } else {
    LOG(WARNING) << "Convert failed";
  }
}

size_t DictionaryPredictor::GetUnigramCandidateCutoffThreshold(
    const Segments &segments,
    bool mixed_conversion) const {
  DCHECK(segments.request_type() == Segments::PREDICTION ||
         segments.request_type() == Segments::SUGGESTION);
  if (mixed_conversion) {
    return kSuggestionMaxNodesSize;
  }
  if (segments.request_type() == Segments::PREDICTION) {
    // If PREDICTION, many candidates are needed than SUGGESTION.
    return kPredictionMaxNodesSize;
  }
  return kSuggestionMaxNodesSize;
}

void DictionaryPredictor::AggregateUnigramPrediction(
    PredictionType type,
    Segments *segments,
    NodeAllocatorInterface *allocator,
    vector<Result> *results) const {
  if (!(type & UNIGRAM)) {
    return;
  }

  DCHECK(segments);
  DCHECK(results);
  DCHECK(dictionary_);
  DCHECK(allocator);
  DCHECK(!segments->conversion_segment(0).key().empty());

  const string &input_key = segments->conversion_segment(0).key();

  bool mixed_conversion = false;
  const size_t cutoff_threshold = GetUnigramCandidateCutoffThreshold(
      *segments,
      mixed_conversion);
  allocator->set_max_nodes_size(cutoff_threshold);

  const size_t prev_results_size = results->size();

  const Node *unigram_node = dictionary_->LookupPredictive(input_key.c_str(),
                                                           input_key.size(),
                                                           allocator);
  size_t unigram_results_size = 0;
  for (; unigram_node != NULL; unigram_node = unigram_node->bnext) {
    results->push_back(Result(unigram_node, UNIGRAM));
    ++unigram_results_size;
  }

  // if size reaches max_nodes_size (== cutoff_threshold).
  // we don't show the candidates, since disambiguation from
  // 256 candidates is hard. (It may exceed max_nodes_size, because this is
  // just a limit for each backend, so total number may be larger)
  if (unigram_results_size >= allocator->max_nodes_size()) {
    results->resize(prev_results_size);
  }
}

void DictionaryPredictor::AggregateBigramPrediction(
    PredictionType type,
    Segments *segments,
    NodeAllocatorInterface *allocator,
    vector<Result> *results) const {
  if (!(type & BIGRAM)) {
    return;
  }

  DCHECK(segments);
  DCHECK(results);
  DCHECK(dictionary_);
  DCHECK(allocator);

  const string &input_key = segments->conversion_segment(0).key();
  const bool is_zero_query = input_key.empty();

  string history_key, history_value;
  GetHistoryKeyAndValue(*segments, &history_key, &history_value);

  // Check that history_key/history_value are in the dictionary.
  const Node *history_node = LookupKeyValueFromDictionary(
      history_key, history_value, allocator);

  // History value is not found in the dictionary.
  // User may create this the history candidate from T13N or segment
  // expand/shrinkg operations.
  if (history_node == NULL) {
    return;
  }

  const size_t max_nodes_size =
      (segments->request_type() == Segments::PREDICTION) ?
      kPredictionMaxNodesSize : kSuggestionMaxNodesSize;
  allocator->set_max_nodes_size(max_nodes_size);

  const size_t prev_results_size = results->size();

  const string bigram_key = history_key + input_key;
  const Node *bigram_node = dictionary_->LookupPredictive(bigram_key.c_str(),
                                                          bigram_key.size(),
                                                          allocator);
  size_t bigram_results_size = 0;
  for (; bigram_node != NULL; bigram_node = bigram_node->bnext) {
    // filter out the output (value)'s prefix doesn't match to
    // the history value.
    if (Util::StartsWith(bigram_node->value, history_value)) {
      results->push_back(Result(bigram_node, BIGRAM));
      ++bigram_results_size;
    }
  }

  // if size reaches max_nodes_size,
  // we don't show the candidates, since disambiguation from
  // 256 candidates is hard. (It may exceed max_nodes_size, because this is
  // just a limit for each backend, so total number may be larger)
  if (bigram_results_size >= allocator->max_nodes_size()) {
    results->resize(prev_results_size);
    return;
  }

  // Obtain the character type of the last history value.
  const size_t history_value_size = Util::CharsLen(history_value);
  if (history_value_size == 0) {
    return;
  }

  const Util::ScriptType last_history_ctype =
      Util::GetScriptType(Util::SubString(history_value,
                                          history_value_size - 1, 1));

  // Filter out irrelevant bigrams. For example, we don't want to
  // suggest "リカ" from the history "アメ".
  for (size_t i = prev_results_size; i < results->size(); ++i) {
    const Node *node = (*results)[i].node;
    DCHECK(node);
    const string key = node->key.substr(history_key.size(),
                                        node->key.size() -
                                        history_key.size());
    const string value = node->value.substr(history_value.size(),
                                            node->value.size() -
                                            history_value.size());
    // Don't suggest 0-length key/value.
    if (key.empty() || value.empty()) {
      (*results)[i].type = NO_PREDICTION;
      continue;
    }

    // If freq("アメ") < freq("アメリカ"), we don't
    // need to suggest it. As "アメリカ" should already be
    // suggested when user type "アメ".
    // Note that wcost = -500 * log(prob).
    if (history_node->wcost > node->wcost) {
      (*results)[i].type = NO_PREDICTION;
      continue;
    }

    // If character type doesn't change, this boundary might NOT
    // be a word boundary. If character type is HIRAGANA,
    // we don't trust it. If Katakana, only trust iif the
    // entire key is reasonably long.
    const Util::ScriptType ctype =
        Util::GetScriptType(Util::SubString(value, 0, 1));
    if (ctype == last_history_ctype &&
        (ctype == Util::HIRAGANA ||
         (ctype == Util::KATAKANA && Util::CharsLen(node->key) <= 5))) {
      (*results)[i].type = NO_PREDICTION;
      continue;
    }

    // The suggested key/value pair must exist in the dictionary.
    // For example, we don't want to suggest "ターネット" from
    // the history "イン".
    // If character type is Kanji and the suggestion is not a
    // zero_query_suggestion, we relax this condition, as there are
    // many Kanji-compounds which may not in the dictionary. For example,
    // we want to suggest "霊長類研究所" from the history "京都大学".
    if (ctype == Util::KANJI && is_zero_query) {
      // Do not filter this.
      continue;
    }

    if (NULL == LookupKeyValueFromDictionary(key, value, allocator)) {
      (*results)[i].type = NO_PREDICTION;
      continue;
    }
  }
}

void DictionaryPredictor::AggregateSuffixPrediction(
    PredictionType type,
    Segments *segments,
    NodeAllocatorInterface *allocator,
    vector<Result> *results) const {
  if (!(type & SUFFIX)) {
    return;
  }

  DCHECK(allocator);

    const string &input_key = segments->conversion_segment(0).key();
    Node *node = suffix_dictionary_->LookupPredictive(input_key.data(),
                                                      input_key.size(),
                                                      allocator);
    for (; node != NULL; node = node->bnext) {
      results->push_back(Result(node, SUFFIX));
    }
}

bool DictionaryPredictor::IsZipCodeRequest(const string &key) const {
  if (key.empty()) {
    return false;
  }
  const char *begin = key.data();
  const char *end = key.data() + key.size();
  size_t mblen = 0;
  while (begin < end) {
    Util::UTF8ToUCS2(begin, end, &mblen);
    if (mblen == 1 &&
        ((*begin >= '0' && *begin <= '9') || *begin == '-')) {
      // do nothing
    } else {
      return false;
    }

    begin += mblen;
  }

  return true;
}

DictionaryPredictor::PredictionType
DictionaryPredictor::GetPredictionType(const Segments &segments) const {
  if (segments.request_type() == Segments::CONVERSION) {
    VLOG(2) << "request type is CONVERSION";
    return NO_PREDICTION;
  }

  if (segments.conversion_segments_size() < 1) {
    VLOG(2) << "segment size < 1";
    return NO_PREDICTION;
  }

  const string &key = segments.conversion_segment(0).key();

  // default setting
  int result = NO_PREDICTION;

  // support realtime conversion.
  const size_t kMaxKeySize = 300;   // 300 bytes in UTF8

  bool mixed_conversion = false;

  if (segments.request_type() == Segments::PARTIAL_SUGGESTION) {
    result |= REALTIME;
  } else if ((GET_CONFIG(use_realtime_conversion) || mixed_conversion) &&
      key.size() > 0 && key.size() < kMaxKeySize) {
    result |= REALTIME;
  }

  if (!GET_CONFIG(use_dictionary_suggest) &&
      segments.request_type() == Segments::SUGGESTION) {
    VLOG(2) << "no_dictionary_suggest";
    return static_cast<PredictionType>(result);
  }

  bool zero_query_suggestion = false;

  const size_t key_len = Util::CharsLen(key);
  if (key_len == 0 && !zero_query_suggestion) {
    return static_cast<PredictionType>(result);
  }

  // Never trigger prediction if key looks like zip code.
  const bool is_zip_code = DictionaryPredictor::IsZipCodeRequest(key);

  if (segments.request_type() == Segments::SUGGESTION &&
      is_zip_code && key_len < 6) {
    return static_cast<PredictionType>(result);
  }

  const int kMinUnigramKeyLen = zero_query_suggestion ? 1 : 3;

  // unigram based suggestion requires key_len >= kMinUnigramKeyLen.
  // Providing suggestions from very short user input key is annoying.
  if ((segments.request_type() == Segments::PREDICTION && key_len >= 1) ||
      key_len >= kMinUnigramKeyLen) {
    result |= UNIGRAM;
  }

  const size_t history_segments_size = segments.history_segments_size();
  if (history_segments_size > 0) {
    const Segment &history_segment =
        segments.history_segment(history_segments_size - 1);
    const int kMinHistoryKeyLen = zero_query_suggestion ? 2 : 3;
    // even in PREDICTION mode, bigram-based suggestion requires that
    // the length of previous key is >= kMinBigramKeyLen.
    // It also implies that bigram-based suggestion will be triggered,
    // even if the current key length is short enough.
    // TOOD(taku): this setting might be aggressive if the current key
    // looks like Japanese particle like "が|で|は"
    // If the current key looks like particle, we can make the behavior
    // less aggressive.
    if (history_segment.candidates_size() > 0 &&
        Util::CharsLen(history_segment.candidate(0).key) >= kMinHistoryKeyLen) {
      result |= BIGRAM;
    }
  }

  if (history_segments_size > 0 && zero_query_suggestion) {
    result |= SUFFIX;
  }

  return static_cast<PredictionType>(result);
}
}  // namespace mozc