Codebase list multimon-ng / debian/1.1.6+dfsg-1 demod_flex.c
debian/1.1.6+dfsg-1

Tree @debian/1.1.6+dfsg-1 (Download .tar.gz)

demod_flex.c @debian/1.1.6+dfsg-1raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
/*
 *      demod_flex.c
 *
 *      Copyright 2004,2006,2010 Free Software Foundation, Inc.
 *      Copyright (C) 2015 Craig Shelley (craig@microtron.org.uk)
 *
 *      FLEX Radio Paging Decoder - Adapted from GNURadio for use with Multimon
 *
 *      GNU Radio is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 3, or (at your option)
 *      any later version.
 *
 *      GNU Radio is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with GNU Radio; see the file COPYING.  If not, write to
 *      the Free Software Foundation, Inc., 51 Franklin Street,
 *      Boston, MA 02110-1301, USA.
 */
/*
 *  Version 0.9.0v (22 May 2018)
 *  Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com)
 *    - Addded Define at top of file to modify the way missed group messages are reported in the debug output (default is 1; report missed capcodes on the same line)
 *                           REPORT_GROUP_CODES   1             // Report each cleared faulty group capcode : 0 = Each on a new line; 1 = All on the same line;
 *  Version 0.8.9 (20 Mar 2018)
 *  Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com)
 *     - Issue #101 created by bertinhollan (https://github.com/bertinholland): Bug flex: Wrong split up group message after a data corruption frame.
 *     - Added logic to the FIW decoding that checks for any 'Group Messages' and if the frame has past them remove the group message and log output
 *     - The following settings (at the top of this file, just under these comments) have changed from:
 *                              PHASE_LOCKED_RATE    0.150
 *                              PHASE_UNLOCKED_RATE  0.150
 *       these new settings appear to work better when attempting to locate the Sync lock in the message preamble.
 *  Version 0.8.8v (20 APR 2018)
 *  Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com)
 *     - Issue #101 created by bertinhollan (https://github.com/bertinholland): Bug flex: Wrong split up group message after a data corruption frame. 
 *  Version 0.8.7v (11 APR 2018)
 *  Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com) and Rob0101 (as seen on github: https://github.com/rob0101)
 *     - Issue *#95 created by rob0101: '-a FLEX dropping first character of some message on regular basis'
 *     - Implemented Rob0101's suggestion of K, F and C flags to indicate the message fragmentation: 
 *         'K' message is complete and O'K' to display to the world.
 *         'F' message is a 'F'ragment and needs a 'C'ontinuation message to complete it. Message = Fragment + Continuation
 *         'C' message is a 'C'ontinuation of another fragmented message
 *  Version 0.8.6v (18 Dec 2017)
 *  Modification (to this file) made by Bruce Quinton (Zanoroy@gmail.com) on behalf of bertinhollan (https://github.com/bertinholland)
 *     - Issue #87 created by bertinhollan: Reported issue is that the flex period timeout was too short and therefore some group messages were not being processed correctly
 *                                          After some testing bertinhollan found that increasing the timeout period fixed the issue in his area. I have done further testing in my local
 *                                          area and found the change has not reduced my success rate. I think the timeout is a localisation setting and I have added "DEMOD_TIMEOUT" 
 *                                          to the definitions in the top of this file (the default value is 100 bertinhollan's prefered value, changed up from 50)
 *  Version 0.8.5v (08 Sep 2017)
 *  Modification made by Bruce Quinton (Zanoroy@gmail.com)
 *     - Issue #78 - Found a problem in the length detection sequence, modified the if statement to ensure the message length is 
 *       only checked for Aplha messages, the other types calculate thier length while decoding
 *  Version 0.8.4v (05 Sep 2017)
 *  Modification made by Bruce Quinton (Zanoroy@gmail.com)
 *     - Found a bug in the code that was not handling multiple group messages within the same frame, 
 *       and the long address bit was being miss treated in the same cases. Both issue have been fixed but further testing will help.
 *  Version 0.8.3v (22 Jun 2017)
 *  Modification made by Bruce Quinton (Zanoroy@gmail.com)
 *     - I had previously tagged Group Messages as GPN message types, 
 *       this was my own identification rather than a Flex standard type. 
 *       Now that I have cleaned up all identified (so far) issues I have changed back to the correct Flex message type of ALN (Alpha).
 *  Version 0.8.2v (21 Jun 2017)
 *  Modification made by Bruce Quinton (Zanoroy@gmail.com)
 *     - Fixed group messaging capcode issue - modified the Capcode Array to be int64_t rather than int (I was incorrectly casting the long to an int) 
 *  Version 0.8.1v (16 Jun 2017)
 *  Modification made by Bruce Quinton (Zanoroy@gmail.com)
 *     - Added Debugging to help track the group messaging issues
 *     - Improved Alpha output and removed several loops to improve CPU cycles
 *  Version 0.8v (08 Jun 2017)
 *  Modification made by Bruce Quinton (Zanoroy@gmail.com)
 *     - Added Group Messaging
 *     - Fixed Phase adjustments (phasing as part of Symbol identification)
 *     - Fixed Alpha numeric length adjustments to stop "Invalid Vector" errors
 *     - Fixed numeric message treatment
 *     - Fixed invalid identification of "unknown" messages
 *     - Added 3200 2 fsk identification to all more message types to be processed (this was a big deal for NZ)
 *     - Changed uint to int variables
 *      
 */

/* ---------------------------------------------------------------------- */

#include "multimon.h"
#include "filter.h"
#include "BCHCode.h"
#include <math.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>

/* ---------------------------------------------------------------------- */

#define FREQ_SAMP            22050
#define FILTLEN              1
#define REPORT_GROUP_CODES   1		   // Report each cleared faulty group capcode : 0 = Each on a new line; 1 = All on the same line;

#define FLEX_SYNC_MARKER     0xA6C6AAAAul  // Synchronisation code marker for FLEX
#define SLICE_THRESHOLD      0.667         // For 4 level code, levels 0 and 3 have 3 times the amplitude of levels 1 and 2, so quantise at 2/3
#define DC_OFFSET_FILTER     0.010         // DC Offset removal IIR filter response (seconds)
#define PHASE_LOCKED_RATE    0.045         // Correction factor for locked state
#define PHASE_UNLOCKED_RATE  0.050         // Correction factor for unlocked state
#define LOCK_LEN             24            // Number of symbols to check for phase locking (max 32)
#define IDLE_THRESHOLD       0             // Number of idle codewords allowed in data section
#define CAPCODES_INDEX       0
#define DEMOD_TIMEOUT        100           // Maximum number of periods with no zero crossings before we decide that the system is not longer within a Timing lock.


enum Flex_PageTypeEnum {
	FLEX_PAGETYPE_SECURE,
	FLEX_PAGETYPE_SHORT_INSTRUCTION,
	FLEX_PAGETYPE_TONE,
	FLEX_PAGETYPE_STANDARD_NUMERIC,
	FLEX_PAGETYPE_SPECIAL_NUMERIC,
	FLEX_PAGETYPE_ALPHANUMERIC,
	FLEX_PAGETYPE_BINARY,
	FLEX_PAGETYPE_NUMBERED_NUMERIC
};


enum Flex_StateEnum {
	FLEX_STATE_SYNC1,
	FLEX_STATE_FIW,
	FLEX_STATE_SYNC2,
	FLEX_STATE_DATA
};

struct Flex_Demodulator {
	unsigned int                sample_freq;
	double                      sample_last;
	int                         locked;
	int                         phase;
	unsigned int                sample_count;
	unsigned int                symbol_count;
	double                      envelope_sum;
	int                         envelope_count;
	uint64_t                    lock_buf;
	int                         symcount[4];
	int                         timeout;
	int                         nonconsec;
	unsigned int                baud;          // Current baud rate
};

struct Flex_GroupHandler {
	int64_t                     GroupCodes[17][1000];
	int	                    GroupCycle[17];
	int     		    GroupFrame[17];
};

struct Flex_Modulation {
	double                      symbol_rate;
	double                      envelope;
	double                      zero;
};


struct Flex_State {
	unsigned int                sync2_count;
	unsigned int                data_count;
	unsigned int                fiwcount;
	enum Flex_StateEnum         Current;
	enum Flex_StateEnum         Previous;
};


struct Flex_Sync {
	unsigned int                sync;          // Outer synchronization code
	unsigned int                baud;          // Baudrate of SYNC2 and DATA
	unsigned int                levels;        // FSK encoding of SYNC2 and DATA
	unsigned int                polarity;      // 0=Positive (Normal) 1=Negative (Inverted)
	uint64_t                    syncbuf;
};


struct Flex_FIW {
	unsigned int                rawdata;
	unsigned int                checksum;
	unsigned int                cycleno;
	unsigned int                frameno;
	unsigned int                fix3;
};


struct Flex_Phase {
	unsigned int                buf[88];
	int                         idle_count;
};


struct Flex_Data {
	int                         phase_toggle;
	unsigned int                data_bit_counter;
	struct Flex_Phase           PhaseA;
	struct Flex_Phase           PhaseB;
	struct Flex_Phase           PhaseC;
	struct Flex_Phase           PhaseD;
};


struct Flex_Decode {
	enum Flex_PageTypeEnum      type;
	int                         long_address;
	int64_t                     capcode;
	struct BCHCode *            BCHCode;
};


struct Flex {
	struct Flex_Demodulator     Demodulator;
	struct Flex_Modulation      Modulation;
	struct Flex_State           State;
	struct Flex_Sync            Sync;
	struct Flex_FIW             FIW;
	struct Flex_Data            Data;
	struct Flex_Decode          Decode;
        struct Flex_GroupHandler    GroupHandler;
};


int is_alphanumeric_page(struct Flex * flex) {
	if (flex==NULL) return 0;
	return (flex->Decode.type == FLEX_PAGETYPE_ALPHANUMERIC ||
			flex->Decode.type == FLEX_PAGETYPE_SECURE);
}


int is_numeric_page(struct Flex * flex) {
	if (flex==NULL) return 0;
	return (flex->Decode.type == FLEX_PAGETYPE_STANDARD_NUMERIC ||
			flex->Decode.type == FLEX_PAGETYPE_SPECIAL_NUMERIC  ||
			flex->Decode.type == FLEX_PAGETYPE_NUMBERED_NUMERIC);
}


int is_tone_page(struct Flex * flex) {
	if (flex==NULL) return 0;
	return (flex->Decode.type == FLEX_PAGETYPE_TONE);
}


unsigned int count_bits(struct Flex * flex, unsigned int data) {
	if (flex==NULL) return 0;
#ifdef USE_BUILTIN_POPCOUNT
	return __builtin_popcount(data);
#else
	unsigned int n = (data >> 1) & 0x77777777;
	data = data - n;
	n = (n >> 1) & 0x77777777;
	data = data - n;
	n = (n >> 1) & 0x77777777;
	data = data - n;
	data = (data + (data >> 4)) & 0x0f0f0f0f;
	data = data * 0x01010101;
	return data >> 24;
#endif
}

static int bch3121_fix_errors(struct Flex * flex, uint32_t * data_to_fix, char PhaseNo) {
	if (flex==NULL) return -1;
	int i=0;
	int recd[31];

	/*Convert the data pattern into an array of coefficients*/
	unsigned int data=*data_to_fix;
	for (i=0; i<31; i++) {
		recd[i] = (data>>30)&1;
		data<<=1;
	}

	/*Decode and correct the coefficients*/
	int decode_error=BCHCode_Decode(flex->Decode.BCHCode, recd);

	/*Decode successful?*/
	if (!decode_error) {
		/*Convert the coefficient array back to a bit pattern*/
		data=0;
		for (i=0; i<31; i++) {
			data<<=1;
			data|=recd[i];
		}
		/*Count the number of fixed errors*/
		int fixed=count_bits(flex, (*data_to_fix & 0x7FFFFFFF) ^ data);
		if (fixed>0) {
			verbprintf(3, "FLEX: Phase %c Fixed %i errors @ 0x%08x  (0x%08x -> 0x%08x)\n", PhaseNo, fixed, (*data_to_fix&0x7FFFFFFF) ^ data, (*data_to_fix&0x7FFFFFFF), data );
		}

		/*Write the fixed data back to the caller*/
		*data_to_fix=data;

	} else {
		verbprintf(3, "FLEX: Phase %c Data corruption - Unable to fix errors.\n", PhaseNo);
	}

	return decode_error;
}

static unsigned int flex_sync_check(struct Flex * flex, uint64_t buf) {
	if (flex==NULL) return 0;
	// 64-bit FLEX sync code:
	// AAAA:BBBBBBBB:CCCC
	//
	// Where BBBBBBBB is always 0xA6C6AAAA
	// and AAAA^CCCC is 0xFFFF
	//
	// Specific values of AAAA determine what bps and encoding the
	// packet is beyond the frame information word
	//
	// First we match on the marker field with a hamming distance < 4
	// Then we match on the outer code with a hamming distance < 4

	unsigned int marker =      (buf & 0x0000FFFFFFFF0000ULL) >> 16;
	unsigned short codehigh =  (buf & 0xFFFF000000000000ULL) >> 48;
	unsigned short codelow  = ~(buf & 0x000000000000FFFFULL);

	int retval=0;
	if (count_bits(flex, marker ^ FLEX_SYNC_MARKER) < 4  && count_bits(flex, codelow ^ codehigh) < 4 ) {
		retval=codehigh;
	} else {
		retval=0;
	}

	return retval;
}


static unsigned int flex_sync(struct Flex * flex, unsigned char sym) {
	if (flex==NULL) return 0;
	int retval=0;
	flex->Sync.syncbuf = (flex->Sync.syncbuf << 1) | ((sym < 2)?1:0);

	retval=flex_sync_check(flex, flex->Sync.syncbuf);
	if (retval!=0) {
		flex->Sync.polarity=0;
	} else {
		/*If a positive sync pattern was not found, look for a negative (inverted) one*/
		retval=flex_sync_check(flex, ~flex->Sync.syncbuf);
		if (retval!=0) {
			flex->Sync.polarity=1;
		}
	}

	return retval;
}


static void decode_mode(struct Flex * flex, unsigned int sync_code) {
	if (flex==NULL) return;

	struct {
		int sync;
		unsigned int baud;
		unsigned int levels;
	} flex_modes[] = {
		{ 0x870C, 1600, 2 },
		{ 0xB068, 1600, 4 },
		{ 0x7B18, 3200, 2 },
		{ 0xDEA0, 3200, 4 },
		{ 0x4C7C, 3200, 4 },
		{0,0,0}
	};
	
  int x=0;
	int i=0;
	for (i=0; flex_modes[i].sync!=0; i++) {
		if (count_bits(flex, flex_modes[i].sync ^ sync_code) < 4) {
			flex->Sync.sync   = sync_code;
			flex->Sync.baud   = flex_modes[i].baud;
			flex->Sync.levels = flex_modes[i].levels;
			x = 1;
			break;
		}
	}
	
	if(x==0){
		verbprintf(3, "FLEX: Sync Code not found, defaulting to 1600bps 2FSK\n");
  }
}


static void read_2fsk(struct Flex * flex, unsigned int sym, unsigned int * dat) {
	if (flex==NULL) return;
	*dat = (*dat >> 1) | ((sym > 1)?0x80000000:0);
}


static int decode_fiw(struct Flex * flex) {
	if (flex==NULL) return -1;
	unsigned int fiw = flex->FIW.rawdata;
	int decode_error = bch3121_fix_errors(flex, &fiw, 'F');

	if (decode_error) {
		verbprintf(3, "FLEX: Unable to decode FIW, too much data corruption\n");
		return 1;
	}

	// The only relevant bits in the FIW word for the purpose of this function
	// are those masked by 0x001FFFFF.
	flex->FIW.checksum = fiw & 0xF;
	flex->FIW.cycleno = (fiw >> 4) & 0xF;
	flex->FIW.frameno = (fiw >> 8) & 0x7F;
	flex->FIW.fix3 = (fiw >> 15) & 0x3F;

	unsigned int checksum = (fiw & 0xF);
	checksum += ((fiw >> 4) & 0xF);
	checksum += ((fiw >> 8) & 0xF);
	checksum += ((fiw >> 12) & 0xF);
	checksum += ((fiw >> 16) & 0xF);
	checksum += ((fiw >> 20) & 0x01);

	checksum &= 0xF;

	if (checksum == 0xF) {
		int timeseconds = flex->FIW.cycleno*4*60 + flex->FIW.frameno*4*60/128;
		verbprintf(2, "FLEX: FrameInfoWord: cycleno=%02i frameno=%03i fix3=0x%02x time=%02i:%02i\n",
				flex->FIW.cycleno,
				flex->FIW.frameno,
				flex->FIW.fix3,
				timeseconds/60,
				timeseconds%60);
		// Lets check the FrameNo against the expected group message frames, if we have 'Missed a group message' tell the user and clear the Cap Codes
                for(int g = 0; g < 17 ;g++)
                {
			// Do we have a group message pending for this groupbit?
			if(flex->GroupHandler.GroupFrame[g] >= 0)
			{
				int Reset = 0;
				verbprintf(4, "Flex: GroupBit %i, FrameNo: %i, Cycle No: %i target Cycle No: %i\n", g, flex->GroupHandler.GroupFrame[g], flex->GroupHandler.GroupCycle[g], (int)flex->FIW.cycleno);	
				// Now lets check if its expected in this frame..
				if((int)flex->FIW.cycleno == flex->GroupHandler.GroupCycle[g])
				{
					if(flex->GroupHandler.GroupFrame[g] < (int)flex->FIW.frameno)
					{
						Reset = 1;
					}
				}
                                // Check if we should have sent a group message in the previous cycle 
				else if(flex->FIW.cycleno == 0) 
				{
					if(flex->GroupHandler.GroupCycle[g] == 15)
					{
						Reset = 1;
					}
				}
                                // If we are waiting for the cycle to roll over then move onto the next for loop item 
				else if(flex->FIW.cycleno == 15 && flex->GroupHandler.GroupCycle[g] == 0)
				{
					continue;
				} 
				// Otherwise if the target cycle is less than the current cycle, reset the data
				else if(flex->GroupHandler.GroupCycle[g] < (int)flex->FIW.cycleno)
				{
					Reset = 1;
				}
			

 				if(Reset == 1)
				{
                        			
                			int endpoint = flex->GroupHandler.GroupCodes[g][CAPCODES_INDEX];
					if(REPORT_GROUP_CODES > 0)
					{
						verbprintf(3,"FLEX: Group messages seem to have been missed; Groupbit: %i; Total Capcodes: %i; Clearing Data; Capcodes: ", g, endpoint);
					}
					
			                for(int capIndex = 1; capIndex <= endpoint; capIndex++)
					{
						if(REPORT_GROUP_CODES == 0)
						{
							verbprintf(3,"FLEX: Group messages seem to have been missed; Groupbit: %i; Clearing data; Capcode: [%09lld]\n", g, flex->GroupHandler.GroupCodes[g][capIndex]);
						}
						else
						{
							if(capIndex > 1)
							{
								verbprintf(3,",");
							}
							verbprintf(3,"[%09lld]", flex->GroupHandler.GroupCodes[g][capIndex]);
						}
					}

					if(REPORT_GROUP_CODES > 0)
                                        {
                                                verbprintf(3,"\n");
                                        }

                			// reset the value
			                flex->GroupHandler.GroupCodes[g][CAPCODES_INDEX] = 0;
	                		flex->GroupHandler.GroupFrame[g] = -1;
		                	flex->GroupHandler.GroupCycle[g] = -1;
				}
			}
                }
		return 0;
	} else {
		verbprintf(3, "FLEX: Bad Checksum 0x%x\n", checksum);

		return 1;
	}
}

static void parse_alphanumeric(struct Flex * flex, unsigned int * phaseptr, char PhaseNo, int mw1, int mw2, int flex_groupmessage) {
        if (flex==NULL) return;
        verbprintf(3, "FLEX: Parse Alpha Numeric\n");

        int i;
        time_t now=time(NULL);
        struct tm * gmt=gmtime(&now);
        // char buf[1024], *message;
        char message[1024];
        int  currentChar = 0; 
        char frag_flag = 'K';
        
        int frag = (phaseptr[mw1] >> 11) & 0x03;
        int cont = ( phaseptr[mw1] >> 0x0A ) & 0x01;

        if (cont == 1) frag_flag = 'F';
        if (cont == 0 && frag == 0) frag_flag = 'C';
				
	mw1++;
				
        for (i = mw1; i <= mw2; i++) {
            unsigned int dw =  phaseptr[i];
            unsigned char ch;

            if (i > mw1 || frag != 0x03) {
                    ch = dw & 0x7F;
                    if (ch != 0x03) {
                        message[currentChar] = ch;      
                        currentChar++;
                    }
            }

            ch = (dw >> 7) & 0x7F;
            if (ch != 0x03) {
                message[currentChar] = ch;      
                currentChar++;
            }

            ch = (dw >> 14) & 0x7F;
            if (ch != 0x03) {
                message[currentChar] = ch;      
                currentChar++;
            }
        }

        message[currentChar] = '\0';

// 	message = '\0';
        verbprintf(0,  "FLEX: %04i-%02i-%02i %02i:%02i:%02i %i/%i/%c/%c %02i.%03i [%09lld] ALN ", 
        		gmt->tm_year+1900, gmt->tm_mon+1, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec,
                        flex->Sync.baud, flex->Sync.levels, frag_flag, PhaseNo, flex->FIW.cycleno, flex->FIW.frameno, flex->Decode.capcode);

        verbprintf(0, "%s\n", message);

        if(flex_groupmessage == 1) {
                int groupbit = flex->Decode.capcode-2029568;
                if(groupbit < 0) return;

                int endpoint = flex->GroupHandler.GroupCodes[groupbit][CAPCODES_INDEX];
                for(int g = 1; g <= endpoint;g++)
                {
                        verbprintf(1, "FLEX Group message output: Groupbit: %i Total Capcodes; %i; index %i; Capcode: [%09lld]\n", groupbit, endpoint, g, flex->GroupHandler.GroupCodes[groupbit][g]);

                        verbprintf(0,  "FLEX: %04i-%02i-%02i %02i:%02i:%02i %i/%i/%c/%c %02i.%03i [%09lld] ALN ", gmt->tm_year+1900, gmt->tm_mon+1, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec,
                                        flex->Sync.baud, flex->Sync.levels, frag_flag, PhaseNo, flex->FIW.cycleno, flex->FIW.frameno, flex->GroupHandler.GroupCodes[groupbit][g]);

                        verbprintf(0, "%s\n", message);
                }
                // reset the value
                flex->GroupHandler.GroupCodes[groupbit][CAPCODES_INDEX] = 0;
		flex->GroupHandler.GroupFrame[groupbit] = -1;
		flex->GroupHandler.GroupCycle[groupbit] = -1;
        }

}

static void parse_numeric(struct Flex * flex, unsigned int * phaseptr, char PhaseNo, int j) {
	if (flex==NULL) return;
	unsigned const char flex_bcd[17] = "0123456789 U -][";

	int w1 = phaseptr[j] >> 7;
	int w2 = w1 >> 7;
	w1 = w1 & 0x7f;
	w2 = (w2 & 0x07) + w1;	// numeric message is 7 words max

	time_t now=time(NULL);
	struct tm * gmt=gmtime(&now);
	verbprintf(0,  "FLEX: %04i-%02i-%02i %02i:%02i:%02i %i/%i/%c %02i.%03i [%09lld] NUM ", gmt->tm_year+1900, gmt->tm_mon+1, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec,
			flex->Sync.baud, flex->Sync.levels, PhaseNo, flex->FIW.cycleno, flex->FIW.frameno, flex->Decode.capcode);

	// Get first dataword from message field or from second
	// vector word if long address
	int dw;
	if(!flex->Decode.long_address) {
		dw = phaseptr[w1];
		w1++;
		w2++;
	} else {
		dw = phaseptr[j+1];
	}

	unsigned char digit = 0;
	int count = 4;
	if(flex->Decode.type == FLEX_PAGETYPE_NUMBERED_NUMERIC) {
		count += 10;        // Skip 10 header bits for numbered numeric pages
	} else {
		count += 2;        // Otherwise skip 2
	}
	int i;
	for(i = w1; i <= w2; i++) {
		int k;
		for(k = 0; k < 21; k++) {
			// Shift LSB from data word into digit
			digit = (digit >> 1) & 0x0F;
			if(dw & 0x01) {
				digit ^= 0x08;
			}
			dw >>= 1;
			if(--count == 0) {
				if(digit != 0x0C) {// Fill
					verbprintf(0, "%c", flex_bcd[digit]);
				}
				count = 4;
			}
		}
		dw = phaseptr[i];
	}
	verbprintf(0, "\n");
}


static void parse_tone_only(struct Flex * flex, char PhaseNo) {
	if (flex==NULL) return;
	time_t now=time(NULL);
	struct tm * gmt=gmtime(&now);
	verbprintf(0,  "FLEX: %04i-%02i-%02i %02i:%02i:%02i %i/%i/%c %02i.%03i [%09lld] TON\n", gmt->tm_year+1900, gmt->tm_mon+1, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec,
			flex->Sync.baud, flex->Sync.levels, PhaseNo, flex->FIW.cycleno, flex->FIW.frameno, flex->Decode.capcode);
}


static void parse_unknown(struct Flex * flex, unsigned int * phaseptr, char PhaseNo, int mw1, int mw2) {
	if (flex==NULL) return;
	time_t now=time(NULL);
	struct tm * gmt=gmtime(&now);
	verbprintf(0,  "FLEX: %04i-%02i-%02i %02i:%02i:%02i %i/%i/%c %02i.%03i [%09lld] UNK", gmt->tm_year+1900, gmt->tm_mon+1, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec,
			flex->Sync.baud, flex->Sync.levels, PhaseNo, flex->FIW.cycleno, flex->FIW.frameno, flex->Decode.capcode);

	int i;
	for (i = mw1; i <= mw2; i++) {
		verbprintf(0, " %08x", phaseptr[i]);
	}
	verbprintf(0, "\n");
}


//static void parse_capcode(struct Flex * flex, uint32_t aw1, uint32_t aw2) {
static void parse_capcode(struct Flex * flex, uint32_t aw1) {
	if (flex==NULL) return;

	flex->Decode.long_address = (aw1 < 0x008001L) ||
		(aw1 > 0x1E0000L) ||
		(aw1 > 0x1E7FFEL);

	///if (flex->Decode.long_address)
	//	flex->Decode.capcode = (int64_t)aw1+((int64_t)(aw2^0x001FFFFFul)<<15)+0x1F9000ull;  // Don't ask
	//else
	flex->Decode.capcode = aw1-0x8000;
}


static void decode_phase(struct Flex * flex, char PhaseNo) {
	if (flex==NULL) return;

	uint32_t *phaseptr=NULL;
	int i, j;

	switch (PhaseNo) {
		case 'A': phaseptr=flex->Data.PhaseA.buf; break;
		case 'B': phaseptr=flex->Data.PhaseB.buf; break;
		case 'C': phaseptr=flex->Data.PhaseC.buf; break;
		case 'D': phaseptr=flex->Data.PhaseD.buf; break;
	}

	for (i=0; i<88; i++) {
		int decode_error=bch3121_fix_errors(flex, &phaseptr[i], PhaseNo);

		if (decode_error) {
			verbprintf(3, "FLEX: Garbled message at block %i\n", i);

                        // If the previous frame was a short message then we need to Null out the Group Message pointer
                        // this issue and sugested resolution was presented by 'bertinholland'


			return;
		}

		/*Extract just the message bits*/
		phaseptr[i]&=0x001FFFFF;
	}

	// Block information word is the first data word in frame
	uint32_t biw = phaseptr[0];

	// Nothing to see here, please move along
	if (biw == 0 || biw == 0x001FFFFF) {
		verbprintf(3, "FLEX: Nothing to see here, please move along\n");
		return;
	}

	// Vector start index is bits 15-10
	// Address start address is bits 9-8, plus one for offset
	int voffset = (biw >> 10) & 0x3f;
	int aoffset = ((biw >> 8) & 0x03) + 1;

	verbprintf(3, "FLEX: BlockInfoWord: (Phase %c) BIW:%08X AW:%02i-%02i (%i pages)\n", PhaseNo, biw, aoffset, voffset, voffset-aoffset);

	int flex_groupmessage = 0;

	// Iterate through pages and dispatch to appropriate handler
	for (i = aoffset; i < voffset; i++) {
		j = voffset+i-aoffset;		// Start of vector field for address @ i

		if (phaseptr[i] == 0x00000000 ||
				phaseptr[i] == 0x001FFFFF) {
			verbprintf(3, "FLEX: Idle codewords, invalid address\n");
			continue;				// Idle codewords, invalid address
		}

		parse_capcode(flex, phaseptr[i]);
		// parse_capcode(flex, phaseptr[i], phaseptr[i+1]); // Older version maybe still needed so I'm not removing it (yet)
		if (flex->Decode.long_address)
		{
			verbprintf(4, "FLEX: Found 'Long Address' bit, ignoring as I think this is handled incorrectly at the moment issue#79\n");
			// i++;
		}

        	if ((flex->Decode.capcode >= 2029568) && (flex->Decode.capcode <= 2029583)) {
	           flex_groupmessage = 1;
	        }

		if (flex->Decode.capcode > 4297068542ll || flex->Decode.capcode < 0) {		// Invalid address (by spec, maximum address)
			verbprintf(3, "FLEX: Invalid address\n");
			continue;
		}

		verbprintf(3, "FLEX: CAPCODE:%016lx\n", flex->Decode.capcode);

		// Parse vector information word for address @ offset 'i'
		uint32_t viw = phaseptr[j];
		flex->Decode.type = ((viw >> 4) & 0x00000007);
		int mw1 = (viw >> 7) & 0x00000007F;
		int len = (viw >> 14) & 0x0000007F;

                int w1 = (int)(viw >> 7);
                int w2 = w1 >> 7;
                w1 = w1 & 0x7f;
                w2 = (w2 & 0x7f) + w1 - 1;
                // int wL = w2 - w1;

		if (flex->Decode.type == FLEX_PAGETYPE_SHORT_INSTRUCTION)
                {
                    // if (flex_groupmessage == 1) continue;
                    unsigned int iAssignedFrame = (int)((viw >> 10) & 0x7f);  // Frame with groupmessage
                    int groupbit = (int)((viw >> 17) & 0x7f);    // Listen to this groupcode
										
	 	    ////////#############################################################################									
	 	    ////////#############################################################################									
                    flex->GroupHandler.GroupCodes[groupbit][CAPCODES_INDEX]++;
                    int CapcodePlacement = flex->GroupHandler.GroupCodes[groupbit][CAPCODES_INDEX];
                    verbprintf(1, "FLEX: Found Short Instruction, Group bit: %i capcodes in group so far %i, adding Capcode: [%09lld]\n", groupbit, CapcodePlacement, flex->Decode.capcode);

                    flex->GroupHandler.GroupCodes[groupbit][CapcodePlacement] = flex->Decode.capcode;
                    flex->GroupHandler.GroupFrame[groupbit] = iAssignedFrame;

		    // Ok, so the cycle and frame can be used to make sure we haven't missed the message frame.
		    // but the cycle is 0 - 15 and the frame is 0 - 127
		    if(iAssignedFrame > flex->FIW.frameno)
		    {
			flex->GroupHandler.GroupCycle[groupbit] = (int)flex->FIW.cycleno;
			verbprintf(4, "FLEX: Message frame is in this cycle: %i\n", flex->GroupHandler.GroupCycle[groupbit]);

		    }
		    else
		    {
			if(flex->FIW.cycleno == 15)
                        {
				flex->GroupHandler.GroupCycle[groupbit] = 0;
			}
			else
			{
				flex->GroupHandler.GroupCycle[groupbit] = (int)flex->FIW.cycleno++;
		    	}
			verbprintf(4, "FLEX: Message frame is in the next cycle: %i\n", flex->GroupHandler.GroupCycle[groupbit]);
		    }


                    // Nothing else to do with this word.. move on!!
                    continue;
                }

		int mw2 = mw1+(len - 1);

		if (mw1 == 0 && mw2 == 0){
			verbprintf(3, "FLEX: Invalid VIW\n");
			continue;  // Invalid VIW
		}

		if (is_tone_page(flex))
			mw1 = mw2 = 0;


                // Check if this is an alpha message
                if (is_alphanumeric_page(flex)) { 
    			if (mw1 > 87 || mw2 > 87){
				verbprintf(3, "FLEX: Invalid Offsets\n");
				continue;				// Invalid offsets
			}
			parse_alphanumeric(flex, phaseptr, PhaseNo, mw1, mw2, flex_groupmessage);
                }
		else if (is_numeric_page(flex))
			parse_numeric(flex, phaseptr, PhaseNo, j);
		else if (is_tone_page(flex))
			parse_tone_only(flex, PhaseNo);
		else
			parse_unknown(flex, phaseptr, PhaseNo, mw1, mw2);
	}
}


static void clear_phase_data(struct Flex * flex) {
	if (flex==NULL) return;
	int i;
	for (i=0; i<88; i++) {
		flex->Data.PhaseA.buf[i]=0;
		flex->Data.PhaseB.buf[i]=0;
		flex->Data.PhaseC.buf[i]=0;
		flex->Data.PhaseD.buf[i]=0;
	}

	flex->Data.PhaseA.idle_count=0;
	flex->Data.PhaseB.idle_count=0;
	flex->Data.PhaseC.idle_count=0;
	flex->Data.PhaseD.idle_count=0;

	flex->Data.phase_toggle=0;
	flex->Data.data_bit_counter=0;

}


static void decode_data(struct Flex * flex) {
	if (flex==NULL) return;

	if (flex->Sync.baud == 1600) {
		if (flex->Sync.levels==2) {
			decode_phase(flex, 'A');
		} else {
			decode_phase(flex, 'A');
			decode_phase(flex, 'B');
		}
	} else {
		if (flex->Sync.levels==2) {
			decode_phase(flex, 'A');
			decode_phase(flex, 'C');
		} else {
			decode_phase(flex, 'A');
			decode_phase(flex, 'B');
			decode_phase(flex, 'C');
			decode_phase(flex, 'D');
		}
	}
}


static int read_data(struct Flex * flex, unsigned char sym) {
	if (flex==NULL) return -1;
	// Here is where we output a 1 or 0 on each phase according
	// to current FLEX mode and symbol value.  Unassigned phases
	// are zero from the enter_idle() initialization.
	//
	// FLEX can transmit the data portion of the frame at either
	// 1600 bps or 3200 bps, and can use either two- or four-level
	// FSK encoding.
	//
	// At 1600 bps, 2-level, a single "phase" is transmitted with bit
	// value '0' using level '3' and bit value '1' using level '0'.
	//
	// At 1600 bps, 4-level, a second "phase" is transmitted, and the
	// di-bits are encoded with a gray code:
	//
	// Symbol	Phase 1  Phase 2
	// ------   -------  -------
	//   0         1        1
	//   1         1        0
	//   2         0        0
	//   3         0        1
	//
	// At 1600 bps, 4-level, these are called PHASE A and PHASE B.
	//
	// At 3200 bps, the same 1 or 2 bit encoding occurs, except that
	// additionally two streams are interleaved on alternating symbols.
	// Thus, PHASE A (and PHASE B if 4-level) are decoded on one symbol,
	// then PHASE C (and PHASE D if 4-level) are decoded on the next.

	int bit_a=0; //Received data bit for Phase A
	int bit_b=0; //Received data bit for Phase B

	bit_a = (sym > 1);
	if (flex->Sync.levels == 4) {
		bit_b = (sym == 1) || (sym == 2);
	}

	if (flex->Sync.baud == 1600) {
		flex->Data.phase_toggle=0;
	}

	//By making the index scan the data words in this way, the data is deinterlaced
	//Bits 0, 1, and 2 map straight through to give a 0-7 sequence that repeats 32 times before moving to 8-15 repeating 32 times
	unsigned int idx= ((flex->Data.data_bit_counter>>5)&0xFFF8) |  (flex->Data.data_bit_counter&0x0007);

	if (flex->Data.phase_toggle==0) {
		flex->Data.PhaseA.buf[idx] = (flex->Data.PhaseA.buf[idx]>>1) | (bit_a?(0x80000000):0);
		flex->Data.PhaseB.buf[idx] = (flex->Data.PhaseB.buf[idx]>>1) | (bit_b?(0x80000000):0);
		flex->Data.phase_toggle=1;

		if ((flex->Data.data_bit_counter & 0xFF) == 0xFF) {
			if (flex->Data.PhaseA.buf[idx] == 0x00000000 || flex->Data.PhaseA.buf[idx] == 0xffffffff) flex->Data.PhaseA.idle_count++;
			if (flex->Data.PhaseB.buf[idx] == 0x00000000 || flex->Data.PhaseB.buf[idx] == 0xffffffff) flex->Data.PhaseB.idle_count++;
		}
	} else {
		flex->Data.PhaseC.buf[idx] = (flex->Data.PhaseC.buf[idx]>>1) | (bit_a?(0x80000000):0);
		flex->Data.PhaseD.buf[idx] = (flex->Data.PhaseD.buf[idx]>>1) | (bit_b?(0x80000000):0);
		flex->Data.phase_toggle=0;

		if ((flex->Data.data_bit_counter & 0xFF) == 0xFF) {
			if (flex->Data.PhaseC.buf[idx] == 0x00000000 || flex->Data.PhaseC.buf[idx] == 0xffffffff) flex->Data.PhaseC.idle_count++;
			if (flex->Data.PhaseD.buf[idx] == 0x00000000 || flex->Data.PhaseD.buf[idx] == 0xffffffff) flex->Data.PhaseD.idle_count++;
		}
	}

	if (flex->Sync.baud == 1600 || flex->Data.phase_toggle==0) {
		flex->Data.data_bit_counter++;
	}

	/*Report if all active phases have gone idle*/
	int idle=0;
	if (flex->Sync.baud == 1600) {
		if (flex->Sync.levels==2) {
			idle=(flex->Data.PhaseA.idle_count>IDLE_THRESHOLD);
		} else {
			idle=((flex->Data.PhaseA.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseB.idle_count>IDLE_THRESHOLD));
		}
	} else {
		if (flex->Sync.levels==2) {
			idle=((flex->Data.PhaseA.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseC.idle_count>IDLE_THRESHOLD));
		} else {
			idle=((flex->Data.PhaseA.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseB.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseC.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseD.idle_count>IDLE_THRESHOLD));
		}
	}

	return idle;
}


static void report_state(struct Flex * flex) {
	if (flex->State.Current != flex->State.Previous) {
		flex->State.Previous = flex->State.Current;

		char * state="Unknown";
		switch (flex->State.Current) {
			case FLEX_STATE_SYNC1:
				state="SYNC1";
				break;
			case FLEX_STATE_FIW:
				state="FIW";
				break;
			case FLEX_STATE_SYNC2:
				state="SYNC2";
				break;
			case FLEX_STATE_DATA:
				state="DATA";
				break;
			default:
				break;

		}
		verbprintf(1, "FLEX: State: %s\n", state);
	}
}

//Called for each received symbol
static void flex_sym(struct Flex * flex, unsigned char sym) {
	if (flex==NULL) return;
	/*If the signal has a negative polarity, the symbols must be inverted*/
	/*Polarity is determined during the IDLE/sync word checking phase*/
	unsigned char sym_rectified;
	if (flex->Sync.polarity) {
		sym_rectified=3-sym;
	} else {
		sym_rectified=sym;
	}

	switch (flex->State.Current) {
		case FLEX_STATE_SYNC1:
			{
				// Continually compare the received symbol stream
				// against the known FLEX sync words.
				unsigned int sync_code=flex_sync(flex, sym); //Unrectified version of the symbol must be used here
				if (sync_code!=0) {
					decode_mode(flex,sync_code);

					if (flex->Sync.baud!=0 && flex->Sync.levels!=0) {
						flex->State.Current=FLEX_STATE_FIW;

						verbprintf(2, "FLEX: SyncInfoWord: sync_code=0x%04x baud=%i levels=%i polarity=%s zero=%f envelope=%f symrate=%f\n",
								sync_code, flex->Sync.baud, flex->Sync.levels, flex->Sync.polarity?"NEG":"POS", flex->Modulation.zero, flex->Modulation.envelope, flex->Modulation.symbol_rate);
					} else {
						verbprintf(2, "FLEX: Unknown Sync code = 0x%04x\n", sync_code);
						flex->State.Current=FLEX_STATE_SYNC1;
					}
				} else {
					flex->State.Current=FLEX_STATE_SYNC1;
				}

				flex->State.fiwcount=0;
				flex->FIW.rawdata=0;
				break;
			}
		case FLEX_STATE_FIW:
			{
				// Skip 16 bits of dotting, then accumulate 32 bits
				// of Frame Information Word.
				// FIW is accumulated, call BCH to error correct it
				flex->State.fiwcount++;
				if (flex->State.fiwcount>=16) {
					read_2fsk(flex, sym_rectified, &flex->FIW.rawdata);
				}

				if (flex->State.fiwcount==48) {
					if (decode_fiw(flex)==0) {
						flex->State.sync2_count=0;
						flex->Demodulator.baud = flex->Sync.baud;
						flex->State.Current=FLEX_STATE_SYNC2;
					} else {
						flex->State.Current=FLEX_STATE_SYNC1;
					}
				}
				break;
			}
		case FLEX_STATE_SYNC2:
			{
				// This part and the remainder of the frame are transmitted
				// at either 1600 bps or 3200 bps based on the received
				// FLEX sync word. The second SYNC header is 25ms of idle bits
				// at either speed.
				// Skip 25 ms = 40 bits @ 1600 bps, 80 @ 3200 bps
				if (++flex->State.sync2_count == flex->Sync.baud*25/1000) {
					flex->State.data_count=0;
					clear_phase_data(flex);
					flex->State.Current=FLEX_STATE_DATA;
				}

				break;
			}
		case FLEX_STATE_DATA:
			{
				// The data portion of the frame is 1760 ms long at either
				// baudrate.  This is 2816 bits @ 1600 bps and 5632 bits @ 3200 bps.
				// The output_symbol() routine decodes and doles out the bits
				// to each of the four transmitted phases of FLEX interleaved codes.
				int idle=read_data(flex, sym_rectified);
				if (++flex->State.data_count == flex->Sync.baud*1760/1000 || idle) {
					decode_data(flex);
					flex->Demodulator.baud = 1600;
					flex->State.Current=FLEX_STATE_SYNC1;
					flex->State.data_count=0;
				}
				break;
			}
	}
}

int buildSymbol(struct Flex * flex, double sample) {
        if (flex == NULL) return 0;

        const int64_t phase_max = 100 * flex->Demodulator.sample_freq;                           // Maximum value for phase (calculated to divide by sample frequency without remainder)
        const int64_t phase_rate = phase_max*flex->Demodulator.baud / flex->Demodulator.sample_freq;      // Increment per baseband sample
        const double phasepercent = 100.0 *  flex->Demodulator.phase / phase_max;

        /*Update the sample counter*/
        flex->Demodulator.sample_count++;

        /*Remove DC offset (FIR filter)*/
        if (flex->State.Current == FLEX_STATE_SYNC1) {
                flex->Modulation.zero = (flex->Modulation.zero*(FREQ_SAMP*DC_OFFSET_FILTER) + sample) / ((FREQ_SAMP*DC_OFFSET_FILTER) + 1);
        }
        sample -= flex->Modulation.zero;

        if (flex->Demodulator.locked) {
                /*During the synchronisation period, establish the envelope of the signal*/
                if (flex->State.Current == FLEX_STATE_SYNC1) {
                        flex->Demodulator.envelope_sum += fabs(sample);
                        flex->Demodulator.envelope_count++;
                        flex->Modulation.envelope = flex->Demodulator.envelope_sum / flex->Demodulator.envelope_count;
                }
        }
        else {
                /*Reset and hold in initial state*/
                flex->Modulation.envelope = 0;
                flex->Demodulator.envelope_sum = 0;
                flex->Demodulator.envelope_count = 0;
                flex->Demodulator.baud = 1600;
                flex->Demodulator.timeout = 0;
                flex->Demodulator.nonconsec = 0;
                flex->State.Current = FLEX_STATE_SYNC1;
        }

        /* MID 80% SYMBOL PERIOD */
        if (phasepercent > 10 && phasepercent <90) {
                /*Count the number of occurrences of each symbol value for analysis at end of symbol period*/
                if (sample > 0) {
                        if (sample > flex->Modulation.envelope*SLICE_THRESHOLD)
                                flex->Demodulator.symcount[3]++;
                        else
                                flex->Demodulator.symcount[2]++;
                }
                else {
                        if (sample < -flex->Modulation.envelope*SLICE_THRESHOLD)
                                flex->Demodulator.symcount[0]++;
                        else
                                flex->Demodulator.symcount[1]++;
                }
        }

        /* ZERO CROSSING */
        if ((flex->Demodulator.sample_last<0 && sample >= 0) || (flex->Demodulator.sample_last >= 0 && sample<0)) {
                /*The phase error has a direction towards the closest symbol boundary*/
                double phase_error = 0.0;
                if (phasepercent<50) {
                        phase_error = flex->Demodulator.phase;
                }
                else {
                        phase_error = flex->Demodulator.phase - phase_max;
                }

                /*Phase lock with the signal*/
                if (flex->Demodulator.locked) {
                        flex->Demodulator.phase -= phase_error * PHASE_LOCKED_RATE;
                }
                else {
                        flex->Demodulator.phase -= phase_error * PHASE_UNLOCKED_RATE;
                }

                /*If too many zero crossing occur within the mid 80% then indicate lock has been lost*/
                if (phasepercent > 10 && phasepercent < 90) {
                        flex->Demodulator.nonconsec++;
                        if (flex->Demodulator.nonconsec>20 && flex->Demodulator.locked) {
                                verbprintf(1, "FLEX: Synchronisation Lost\n");
                                flex->Demodulator.locked = 0;
                        }
                }
                else {
                        flex->Demodulator.nonconsec = 0;
                }

                flex->Demodulator.timeout = 0;
        }
        flex->Demodulator.sample_last = sample;

	/* END OF SYMBOL PERIOD */
	flex->Demodulator.phase += phase_rate;

	if (flex->Demodulator.phase > phase_max) {
		flex->Demodulator.phase -= phase_max;
		return 1;
	} else {
		return 0;
	}

}

void Flex_Demodulate(struct Flex * flex, double sample) {
	if(flex == NULL) return;

	if (buildSymbol(flex, sample) == 1) {
                flex->Demodulator.nonconsec = 0;
		flex->Demodulator.symbol_count++;
		flex->Modulation.symbol_rate = 1.0 * flex->Demodulator.symbol_count*flex->Demodulator.sample_freq / flex->Demodulator.sample_count;

		/*Determine the modal symbol*/
		int j;
		int decmax = 0;
		int modal_symbol = 0;
		for (j = 0; j<4; j++) {
			if (flex->Demodulator.symcount[j] > decmax) {
				modal_symbol = j;
				decmax = flex->Demodulator.symcount[j];
			}
		}
		flex->Demodulator.symcount[0] = 0;
		flex->Demodulator.symcount[1] = 0;
		flex->Demodulator.symcount[2] = 0;
		flex->Demodulator.symcount[3] = 0;


		if (flex->Demodulator.locked) {
			/*Process the symbol*/
			flex_sym(flex, modal_symbol);
		}
		else {
			/*Check for lock pattern*/
			/*Shift symbols into buffer, symbols are converted so that the max and min symbols map to 1 and 2 i.e each contain a single 1 */
			flex->Demodulator.lock_buf = (flex->Demodulator.lock_buf << 2) | (modal_symbol ^ 0x1);
			uint64_t lock_pattern = flex->Demodulator.lock_buf ^ 0x6666666666666666ull;
			uint64_t lock_mask = (1ull << (2 * LOCK_LEN)) - 1;
			if ((lock_pattern&lock_mask) == 0 || ((~lock_pattern)&lock_mask) == 0) {
				verbprintf(1, "FLEX: Locked\n");
				flex->Demodulator.locked = 1;
				/*Clear the syncronisation buffer*/
				flex->Demodulator.lock_buf = 0;
				flex->Demodulator.symbol_count = 0;
				flex->Demodulator.sample_count = 0;
			}
		}

		/*Time out after X periods with no zero crossing*/
		flex->Demodulator.timeout++;
		if (flex->Demodulator.timeout>DEMOD_TIMEOUT) {
			verbprintf(1, "FLEX: Timeout\n");
			flex->Demodulator.locked = 0;
		}
	}

	report_state(flex);
}

void Flex_Delete(struct Flex * flex) {
	if (flex==NULL) return;

	if (flex->Decode.BCHCode!=NULL) {
		BCHCode_Delete(flex->Decode.BCHCode);
		flex->Decode.BCHCode=NULL;
	}

	free(flex);
}


struct Flex * Flex_New(unsigned int SampleFrequency) {
	struct Flex *flex=(struct Flex *)malloc(sizeof(struct Flex));
	if (flex!=NULL) {
		memset(flex, 0, sizeof(struct Flex));

		flex->Demodulator.sample_freq=SampleFrequency;
		// The baud rate of first syncword and FIW is always 1600, so set that
		// rate to start.
		flex->Demodulator.baud = 1600;

		/*Generator polynomial for BCH3121 Code*/
		int p[6];
		p[0] = p[2] = p[5] = 1; p[1] = p[3] = p[4] =0;
		flex->Decode.BCHCode=BCHCode_New( p, 5, 31, 21, 2);
		if (flex->Decode.BCHCode == NULL) {
			Flex_Delete(flex);
			flex=NULL;
		}

		for(int g = 0; g < 17; g++)
		{
			flex->GroupHandler.GroupFrame[g] = -1;
		    	flex->GroupHandler.GroupCycle[g] = -1;
		}
	}

	return flex;
}


static void flex_demod(struct demod_state *s, buffer_t buffer, int length) {
	if (s==NULL) return;
	if (s->l1.flex==NULL) return;
	int i;
	for (i=0; i<length; i++) {
		Flex_Demodulate(s->l1.flex, buffer.fbuffer[i]);
	}
}


static void flex_init(struct demod_state *s) {
	if (s==NULL) return;
	s->l1.flex=Flex_New(FREQ_SAMP);
}


static void flex_deinit(struct demod_state *s) {
	if (s==NULL) return;
	if (s->l1.flex==NULL) return;

	Flex_Delete(s->l1.flex);
	s->l1.flex=NULL;
}


const struct demod_param demod_flex = {
	"FLEX", true, FREQ_SAMP, FILTLEN, flex_init, flex_demod, flex_deinit
};