Codebase list unrar-nonfree / debian/1%6.0.5-1 unpack50mt.cpp
debian/1%6.0.5-1

Tree @debian/1%6.0.5-1 (Download .tar.gz)

unpack50mt.cpp @debian/1%6.0.5-1raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#define UNP_READ_SIZE_MT        0x400000
#define UNP_BLOCKS_PER_THREAD          2


struct UnpackThreadDataList
{
  UnpackThreadData *D;
  uint BlockCount;
};


THREAD_PROC(UnpackDecodeThread)
{
  UnpackThreadDataList *DL=(UnpackThreadDataList *)Data;
  for (uint I=0;I<DL->BlockCount;I++)
    DL->D->UnpackPtr->UnpackDecode(DL->D[I]);
}


void Unpack::InitMT()
{
  if (ReadBufMT==NULL)
  {
    // Even getbits32 can read up to 3 additional bytes after current
    // and our block header and table reading code can look much further.
    // Let's allocate the additional space here, so we do not need to check
    // bounds for every bit field access.
    const size_t Overflow=1024;

    ReadBufMT=new byte[UNP_READ_SIZE_MT+Overflow];
    memset(ReadBufMT,0,UNP_READ_SIZE_MT+Overflow);
  }
  if (UnpThreadData==NULL)
  {
    uint MaxItems=MaxUserThreads*UNP_BLOCKS_PER_THREAD;
    UnpThreadData=new UnpackThreadData[MaxItems];
    memset(UnpThreadData,0,sizeof(UnpackThreadData)*MaxItems);

    for (uint I=0;I<MaxItems;I++)
    {
      UnpackThreadData *CurData=UnpThreadData+I;
      if (CurData->Decoded==NULL)
      {
        // Typical number of items in RAR blocks does not exceed 0x4000.
        CurData->DecodedAllocated=0x4100;
        // It will be freed in the object destructor, not in this file.
        CurData->Decoded=(UnpackDecodedItem *)malloc(CurData->DecodedAllocated*sizeof(UnpackDecodedItem));
        if (CurData->Decoded==NULL)
          ErrHandler.MemoryError();
      }
    }
  }
}


void Unpack::Unpack5MT(bool Solid)
{
  InitMT();
  UnpInitData(Solid);

  for (uint I=0;I<MaxUserThreads*UNP_BLOCKS_PER_THREAD;I++)
  {
    UnpackThreadData *CurData=UnpThreadData+I;
    CurData->LargeBlock=false;
    CurData->Incomplete=false;
  }

  UnpThreadData[0].BlockHeader=BlockHeader;
  UnpThreadData[0].BlockTables=BlockTables;
  uint LastBlockNum=0;

  int DataSize=0;
  int BlockStart=0;


  // 'true' if we found a block too large for multithreaded extraction,
  // so we switched to single threaded mode until the end of file.
  // Large blocks could cause too high memory use in multithreaded mode.
  bool LargeBlock=false;

  bool Done=false;
  while (!Done)
  {
    // Data amount, which is guaranteed to fit block header and tables,
    // so we can safely read them without additional checks.
    const int TooSmallToProcess=1024;

    int ReadSize=UnpIO->UnpRead(ReadBufMT+DataSize,(UNP_READ_SIZE_MT-DataSize)&~0xf);
    if (ReadSize<0)
      break;
    DataSize+=ReadSize;
    if (DataSize==0)
      break;

    // First read chunk can be small if we are near the end of volume
    // and we want it to fit block header and tables.
    if (ReadSize>0 && DataSize<TooSmallToProcess)
      continue;

    while (BlockStart<DataSize && !Done)
    {
      uint BlockNumber=0,BlockNumberMT=0;
      while (BlockNumber<MaxUserThreads*UNP_BLOCKS_PER_THREAD)
      {
        UnpackThreadData *CurData=UnpThreadData+BlockNumber;
        LastBlockNum=BlockNumber;
        CurData->UnpackPtr=this;

        // 'Incomplete' thread is present. This is a thread processing block
        // in the end of buffer, split between two read operations.
        if (CurData->Incomplete)
          CurData->DataSize=DataSize;
        else
        {
          CurData->Inp.SetExternalBuffer(ReadBufMT+BlockStart);
          CurData->Inp.InitBitInput();
          CurData->DataSize=DataSize-BlockStart;
          if (CurData->DataSize==0)
            break;
          CurData->DamagedData=false;
          CurData->HeaderRead=false;
          CurData->TableRead=false;
        }

        // We should not use 'last block in file' block flag here unless
        // we'll check the block size, because even if block is last in file,
        // it can exceed the current buffer and require more reading.
        CurData->NoDataLeft=(ReadSize==0);

        CurData->Incomplete=false;
        CurData->ThreadNumber=BlockNumber;

        if (!CurData->HeaderRead)
        {
          CurData->HeaderRead=true;
          if (!ReadBlockHeader(CurData->Inp,CurData->BlockHeader) ||
              !CurData->BlockHeader.TablePresent && !TablesRead5)
          {
            Done=true;
            break;
          }
          TablesRead5=true;
        }

        // To prevent too high memory use we switch to single threaded mode
        // if block exceeds this size. Typically RAR blocks do not exceed
        // 64 KB, so this protection should not affect most of valid archives.
        const int LargeBlockSize=0x20000;
        if (LargeBlock || CurData->BlockHeader.BlockSize>LargeBlockSize)
          LargeBlock=CurData->LargeBlock=true;
        else
          BlockNumberMT++; // Number of normal blocks processed in MT mode.

        BlockStart+=CurData->BlockHeader.HeaderSize+CurData->BlockHeader.BlockSize;

        BlockNumber++;

        int DataLeft=DataSize-BlockStart;
        if (DataLeft>=0 && CurData->BlockHeader.LastBlockInFile)
          break;

        // For second and following threads we move smaller blocks to buffer
        // start to ensure that we have enough data to fit block header
        // and tables.
        if (DataLeft<TooSmallToProcess)
          break;
      }

//#undef USE_THREADS
      UnpackThreadDataList UTDArray[MaxPoolThreads];
      uint UTDArrayPos=0;

      uint MaxBlockPerThread=BlockNumberMT/MaxUserThreads;
      if (BlockNumberMT%MaxUserThreads!=0)
        MaxBlockPerThread++;

      // Decode all normal blocks until the first 'large' if any.
      for (uint CurBlock=0;CurBlock<BlockNumberMT;CurBlock+=MaxBlockPerThread)
      {
        UnpackThreadDataList *UTD=UTDArray+UTDArrayPos++;
        UTD->D=UnpThreadData+CurBlock;
        UTD->BlockCount=Min(MaxBlockPerThread,BlockNumberMT-CurBlock);

#ifdef USE_THREADS
        if (BlockNumber==1)
          UnpackDecode(*UTD->D);
        else
          UnpThreadPool->AddTask(UnpackDecodeThread,(void*)UTD);
#else
        for (uint I=0;I<UTD->BlockCount;I++)
          UnpackDecode(UTD->D[I]);
#endif
      }

      if (BlockNumber==0)
        break;

#ifdef USE_THREADS
      UnpThreadPool->WaitDone();
#endif

      bool IncompleteThread=false;

      for (uint Block=0;Block<BlockNumber;Block++)
      {
        UnpackThreadData *CurData=UnpThreadData+Block;
        if (!CurData->LargeBlock && !ProcessDecoded(*CurData) ||
            CurData->LargeBlock && !UnpackLargeBlock(*CurData) ||
            CurData->DamagedData)
        {
          Done=true;
          break;
        }
        if (CurData->Incomplete)
        {
          int BufPos=int(CurData->Inp.InBuf+CurData->Inp.InAddr-ReadBufMT);
          if (DataSize<=BufPos) // Thread exceeded input buffer boundary.
          {
            Done=true;
            break;
          }
          IncompleteThread=true;
          memmove(ReadBufMT,ReadBufMT+BufPos,DataSize-BufPos);
          CurData->BlockHeader.BlockSize-=CurData->Inp.InAddr-CurData->BlockHeader.BlockStart;
          CurData->BlockHeader.HeaderSize=0;
          CurData->BlockHeader.BlockStart=0;
          CurData->Inp.InBuf=ReadBufMT;
          CurData->Inp.InAddr=0;

          if (Block!=0)
          {
            // Move the incomplete thread entry to the first position,
            // so we'll start processing from it. Preserve the original
            // buffer for decoded data.
            UnpackDecodedItem *Decoded=UnpThreadData[0].Decoded;
            uint DecodedAllocated=UnpThreadData[0].DecodedAllocated;
            UnpThreadData[0]=*CurData;
            UnpThreadData[0].Decoded=Decoded;
            UnpThreadData[0].DecodedAllocated=DecodedAllocated;
            CurData->Incomplete=false;
          }

          BlockStart=0;
          DataSize-=BufPos;
          break;
        }
        else
          if (CurData->BlockHeader.LastBlockInFile)
          {
            Done=true;
            break;
          }
      }

      if (IncompleteThread || Done)
        break; // Current buffer is done, read more data or quit.
      else
      {
        int DataLeft=DataSize-BlockStart;
        if (DataLeft<TooSmallToProcess)
        {
          if (DataLeft<0) // Invalid data, must not happen in valid archive.
          {
            Done=true;
            break;
          }

          // If we do not have incomplete thread and have some data
          // in the end of buffer, too small for single thread,
          // let's move it to beginning of next buffer.
          if (DataLeft>0)
            memmove(ReadBufMT,ReadBufMT+BlockStart,DataLeft);
          DataSize=DataLeft;
          BlockStart=0;
          break; // Current buffer is done, try to read more data.
        }
      }
    }
  }
  UnpPtr&=MaxWinMask; // ProcessDecoded and maybe others can leave UnpPtr > MaxWinMask here.
  UnpWriteBuf();

  BlockHeader=UnpThreadData[LastBlockNum].BlockHeader;
  BlockTables=UnpThreadData[LastBlockNum].BlockTables;
}


// Decode Huffman block and save decoded data to memory.
void Unpack::UnpackDecode(UnpackThreadData &D)
{
  if (!D.TableRead)
  {
    D.TableRead=true;
    if (!ReadTables(D.Inp,D.BlockHeader,D.BlockTables))
    {
      D.DamagedData=true;
      return;
    }
  }

  if (D.Inp.InAddr>D.BlockHeader.HeaderSize+D.BlockHeader.BlockSize)
  {
    D.DamagedData=true;
    return;
  }

  D.DecodedSize=0;
  int BlockBorder=D.BlockHeader.BlockStart+D.BlockHeader.BlockSize-1;

  // Reserve enough space even for filter entry.
  int DataBorder=D.DataSize-16;
  int ReadBorder=Min(BlockBorder,DataBorder);

  while (true)
  {
    if (D.Inp.InAddr>=ReadBorder)
    {
      if (D.Inp.InAddr>BlockBorder || D.Inp.InAddr==BlockBorder && 
          D.Inp.InBit>=D.BlockHeader.BlockBitSize)
        break;

      // If we do not have any more data in file to read, we must process
      // what we have until last byte. Otherwise we can return and append
      // more data to unprocessed few bytes.
      if ((D.Inp.InAddr>=DataBorder) && !D.NoDataLeft || D.Inp.InAddr>=D.DataSize)
      {
        D.Incomplete=true;
        break;
      }
    }
    if (D.DecodedSize>D.DecodedAllocated-8) // Filter can use several slots.
    {
      D.DecodedAllocated=D.DecodedAllocated*2;
      void *Decoded=realloc(D.Decoded,D.DecodedAllocated*sizeof(UnpackDecodedItem));
      if (Decoded==NULL)
        ErrHandler.MemoryError(); // D.Decoded will be freed in the destructor.
      D.Decoded=(UnpackDecodedItem *)Decoded;
    }

    UnpackDecodedItem *CurItem=D.Decoded+D.DecodedSize++;

    uint MainSlot=DecodeNumber(D.Inp,&D.BlockTables.LD);
    if (MainSlot<256)
    {
      if (D.DecodedSize>1)
      {
        UnpackDecodedItem *PrevItem=CurItem-1;
        if (PrevItem->Type==UNPDT_LITERAL && PrevItem->Length<3)
        {
          PrevItem->Length++;
          PrevItem->Literal[PrevItem->Length]=(byte)MainSlot;
          D.DecodedSize--;
          continue;
        }
      }
      CurItem->Type=UNPDT_LITERAL;
      CurItem->Literal[0]=(byte)MainSlot;
      CurItem->Length=0;
      continue;
    }
    if (MainSlot>=262)
    {
      uint Length=SlotToLength(D.Inp,MainSlot-262);

      uint DBits,Distance=1,DistSlot=DecodeNumber(D.Inp,&D.BlockTables.DD);
      if (DistSlot<4)
      {
        DBits=0;
        Distance+=DistSlot;
      }
      else
      {
        DBits=DistSlot/2 - 1;
        Distance+=(2 | (DistSlot & 1)) << DBits;
      }

      if (DBits>0)
      {
        if (DBits>=4)
        {
          if (DBits>4)
          {
            Distance+=((D.Inp.getbits32()>>(36-DBits))<<4);
            D.Inp.addbits(DBits-4);
          }
          uint LowDist=DecodeNumber(D.Inp,&D.BlockTables.LDD);
          Distance+=LowDist;
        }
        else
        {
          Distance+=D.Inp.getbits32()>>(32-DBits);
          D.Inp.addbits(DBits);
        }
      }

      if (Distance>0x100)
      {
        Length++;
        if (Distance>0x2000)
        {
          Length++;
          if (Distance>0x40000)
            Length++;
        }
      }

      CurItem->Type=UNPDT_MATCH;
      CurItem->Length=(ushort)Length;
      CurItem->Distance=Distance;
      continue;
    }
    if (MainSlot==256)
    {
      UnpackFilter Filter;
      ReadFilter(D.Inp,Filter);

      CurItem->Type=UNPDT_FILTER;
      CurItem->Length=Filter.Type;
      CurItem->Distance=Filter.BlockStart;

      CurItem=D.Decoded+D.DecodedSize++;

      CurItem->Type=UNPDT_FILTER;
      CurItem->Length=Filter.Channels;
      CurItem->Distance=Filter.BlockLength;

      continue;
    }
    if (MainSlot==257)
    {
      CurItem->Type=UNPDT_FULLREP;
      continue;
    }
    if (MainSlot<262)
    {
      CurItem->Type=UNPDT_REP;
      CurItem->Distance=MainSlot-258;
      uint LengthSlot=DecodeNumber(D.Inp,&D.BlockTables.RD);
      uint Length=SlotToLength(D.Inp,LengthSlot);
      CurItem->Length=(ushort)Length;
      continue;
    }
  }
}


// Process decoded Huffman block data.
bool Unpack::ProcessDecoded(UnpackThreadData &D)
{
  UnpackDecodedItem *Item=D.Decoded,*Border=D.Decoded+D.DecodedSize;
  while (Item<Border)
  {
    UnpPtr&=MaxWinMask;
    if (((WriteBorder-UnpPtr) & MaxWinMask)<MAX_INC_LZ_MATCH && WriteBorder!=UnpPtr)
    {
      UnpWriteBuf();
      if (WrittenFileSize>DestUnpSize)
        return false;
    }

    if (Item->Type==UNPDT_LITERAL)
    {
#if defined(LITTLE_ENDIAN) && defined(ALLOW_MISALIGNED)
      if (Item->Length==3 && UnpPtr<MaxWinSize-4)
      {
        *(uint32 *)(Window+UnpPtr)=*(uint32 *)Item->Literal;
        UnpPtr+=4;
      }
      else
#endif
        for (uint I=0;I<=Item->Length;I++)
          Window[UnpPtr++ & MaxWinMask]=Item->Literal[I];
    }
    else
      if (Item->Type==UNPDT_MATCH)
      {
        InsertOldDist(Item->Distance);
        LastLength=Item->Length;
        CopyString(Item->Length,Item->Distance);
      }
      else
        if (Item->Type==UNPDT_REP)
        {
          uint Distance=OldDist[Item->Distance];
          for (uint I=Item->Distance;I>0;I--)
            OldDist[I]=OldDist[I-1];
          OldDist[0]=Distance;
          LastLength=Item->Length;
          CopyString(Item->Length,Distance);
        }
        else
          if (Item->Type==UNPDT_FULLREP)
          {
            if (LastLength!=0)
              CopyString(LastLength,OldDist[0]);
          }
          else
            if (Item->Type==UNPDT_FILTER)
            {
              UnpackFilter Filter;

              Filter.Type=(byte)Item->Length;
              Filter.BlockStart=Item->Distance;

              Item++;

              Filter.Channels=(byte)Item->Length;
              Filter.BlockLength=Item->Distance;

              AddFilter(Filter);
            }
    Item++;
  }
  return true;
}


// For large blocks we decode and process in same function in single threaded
// mode, so we do not need to store intermediate data in memory.
bool Unpack::UnpackLargeBlock(UnpackThreadData &D)
{
  if (!D.TableRead)
  {
    D.TableRead=true;
    if (!ReadTables(D.Inp,D.BlockHeader,D.BlockTables))
    {
      D.DamagedData=true;
      return false;
    }
  }

  if (D.Inp.InAddr>D.BlockHeader.HeaderSize+D.BlockHeader.BlockSize)
  {
    D.DamagedData=true;
    return false;
  }

  int BlockBorder=D.BlockHeader.BlockStart+D.BlockHeader.BlockSize-1;

  // Reserve enough space even for filter entry.
  int DataBorder=D.DataSize-16;
  int ReadBorder=Min(BlockBorder,DataBorder);

  while (true)
  {
    UnpPtr&=MaxWinMask;
    if (D.Inp.InAddr>=ReadBorder)
    {
      if (D.Inp.InAddr>BlockBorder || D.Inp.InAddr==BlockBorder && 
          D.Inp.InBit>=D.BlockHeader.BlockBitSize)
        break;

      // If we do not have any more data in file to read, we must process
      // what we have until last byte. Otherwise we can return and append
      // more data to unprocessed few bytes.
      if ((D.Inp.InAddr>=DataBorder) && !D.NoDataLeft || D.Inp.InAddr>=D.DataSize)
      {
        D.Incomplete=true;
        break;
      }
    }
    if (((WriteBorder-UnpPtr) & MaxWinMask)<MAX_INC_LZ_MATCH && WriteBorder!=UnpPtr)
    {
      UnpWriteBuf();
      if (WrittenFileSize>DestUnpSize)
        return false;
    }

    uint MainSlot=DecodeNumber(D.Inp,&D.BlockTables.LD);
    if (MainSlot<256)
    {
      Window[UnpPtr++]=(byte)MainSlot;
      continue;
    }
    if (MainSlot>=262)
    {
      uint Length=SlotToLength(D.Inp,MainSlot-262);

      uint DBits,Distance=1,DistSlot=DecodeNumber(D.Inp,&D.BlockTables.DD);
      if (DistSlot<4)
      {
        DBits=0;
        Distance+=DistSlot;
      }
      else
      {
        DBits=DistSlot/2 - 1;
        Distance+=(2 | (DistSlot & 1)) << DBits;
      }

      if (DBits>0)
      {
        if (DBits>=4)
        {
          if (DBits>4)
          {
            Distance+=((D.Inp.getbits32()>>(36-DBits))<<4);
            D.Inp.addbits(DBits-4);
          }
          uint LowDist=DecodeNumber(D.Inp,&D.BlockTables.LDD);
          Distance+=LowDist;
        }
        else
        {
          Distance+=D.Inp.getbits32()>>(32-DBits);
          D.Inp.addbits(DBits);
        }
      }

      if (Distance>0x100)
      {
        Length++;
        if (Distance>0x2000)
        {
          Length++;
          if (Distance>0x40000)
            Length++;
        }
      }

      InsertOldDist(Distance);
      LastLength=Length;
      CopyString(Length,Distance);
      continue;
    }
    if (MainSlot==256)
    {
      UnpackFilter Filter;
      if (!ReadFilter(D.Inp,Filter) || !AddFilter(Filter))
        break;
      continue;
    }
    if (MainSlot==257)
    {
      if (LastLength!=0)
        CopyString(LastLength,OldDist[0]);
      continue;
    }
    if (MainSlot<262)
    {
      uint DistNum=MainSlot-258;
      uint Distance=OldDist[DistNum];
      for (uint I=DistNum;I>0;I--)
        OldDist[I]=OldDist[I-1];
      OldDist[0]=Distance;

      uint LengthSlot=DecodeNumber(D.Inp,&D.BlockTables.RD);
      uint Length=SlotToLength(D.Inp,LengthSlot);
      LastLength=Length;
      CopyString(Length,Distance);
      continue;
    }
  }
  return true;
}