Codebase list ariba / fresh-snapshots/main ariba / mic_plotter.py
fresh-snapshots/main

Tree @fresh-snapshots/main (Download .tar.gz)

mic_plotter.py @fresh-snapshots/mainraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import csv
import sys
import random
import re
import os
import itertools
import collections
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.cm as cmx
import math
import pyfastaq
from ariba import reference_data

class Error (Exception): pass

regex_string_to_float = re.compile(r'\s*(?P<lt_or_gt>[<>]?)\s*(?P<equals>=?)\s*(?P<number>[0-9.]+)\s*$')

regex_position_from_var = re.compile(r'^[^0-9]*(?P<coord>[0-9]+)[^0-9]*$')

class MicPlotter:
    def __init__(self,
      refdata_dir,
      antibiotic,
      mic_file,
      summary_file,
      outprefix,
      use_hets='yes',
      main_title=None,
      plot_height=7,
      plot_width=7,
      log_y=2,
      plot_types="points,violin",
      jitter_width=0.1,
      no_combinations=False,
      hlines='',
      point_size=4,
      point_scale=1,
      dot_size=100,
      dot_outline=False,
      dot_y_text_size=7,
      panel_heights='9,2',
      panel_widths='5,1',
      colourmap='Accent',
      number_of_colours=0,
      colour_skip=None,
      interrupted=False,
      violin_width=0.75,
      xkcd=False,
      min_samples=1,
      count_legend_x=-2,
      out_format='pdf',
      p_cutoff=0.05
    ):
        refdata_fa = os.path.join(refdata_dir, '02.cdhit.all.fa')
        refdata_tsv = os.path.join(refdata_dir, '01.filter.check_metadata.tsv')
        self.refdata = reference_data.ReferenceData([refdata_fa], [refdata_tsv])
        self.antibiotic = antibiotic
        self.mic_file = mic_file
        self.summary_file = summary_file
        self.outprefix = outprefix

        allowed_use_hets = {'yes', 'no', 'exclude'}
        if not use_hets in allowed_use_hets:
            raise Error('Error in use_hets option. Allowed options are: ' + str(allowed_use_hets) + '. Got: ' + use_hets)
        self.use_hets = use_hets

        self.main_title = self.antibiotic if main_title is None else main_title
        self.plot_height = plot_height
        self.plot_width = plot_width
        self.log_y = log_y
        self.plot_types = set(plot_types.split(','))

        allowed_plot_types = {'point', 'violin'}
        if not self.plot_types.issubset(allowed_plot_types):
            raise Error('Error in plot_types option. Allowed types are: ' + str(allowed_plot_types) + '. Got: ' +  str(self.plot_types))

        self.jitter_width = jitter_width
        self.no_combinations = no_combinations

        try:
            if len(hlines) == 0:
                self.hlines = []
            else:
                self.hlines = [float(x) for x in hlines.split(',')]
        except:
            raise Error('Error in hlines option. Needs to be a list of numbers separated by commas, or empty. Got this:\n' + hlines)

        self.point_size = point_size
        self.point_scale = point_scale
        self.dot_size = dot_size
        self.dot_outline = dot_outline
        self.dot_y_text_size = dot_y_text_size

        try:
            self.panel_heights = [int(x) for x in panel_heights.split(',')]
        except:
            raise Error('Error in panel_heights option. Needs to be of the form integer1,integer2. Got this:\n' + panel_heights)

        try:
            self.panel_widths = [int(x) for x in panel_widths.split(',')]
        except:
            raise Error('Error in panel_widths option. Needs to be of the form integer1,integer2. Got this:\n' + panel_widths)

        self.colourmap = colourmap
        self.number_of_colours = number_of_colours

        if colour_skip is None:
            self.colour_skip = None
        else:
            try:
                self.colour_skip = [float(x) for x in colour_skip.split(',')]
            except:
                raise Error('Error in colour_skip option. Needs to be of the form a,b where 0 <= a < b <= 1. Got this:\n' + colour_skip)

        self.interrupted = interrupted
        self.violin_width = violin_width
        if xkcd:
            plt.xkcd()
        self.min_samples = min_samples
        self.count_legend_x = count_legend_x
        self.out_format = out_format
        self.p_cutoff = p_cutoff


    @classmethod
    def _mic_string_to_float(cls, s):
        regex_match = regex_string_to_float.match(s)

        if regex_match is None or regex_match.group('number') == '.':
            if s.strip() in {'NA', 'na', '', '.'}:
                return 'NA'
            else:
                return None

        try:
            flt = float(regex_match.group('number'))
        except:
            return None

        if regex_match.group('equals') == '':
            if regex_match.group('lt_or_gt') == '<':
                return 0.5 * flt
            elif regex_match.group('lt_or_gt') == '>':
                return 2 * flt

        return flt


    @classmethod
    def _load_mic_file(cls, infile):
        mic_data = {}

        with open(infile) as f:
            reader = csv.DictReader(f, delimiter='\t')
            if reader.fieldnames[0] != 'Sample':
                raise Error('Error. Expected first column of MIC file "' + infile + '" to be "Sample"')

            for row in reader:
                mic_data[row['Sample']] = {x: MicPlotter._mic_string_to_float(row[x]) for x in reader.fieldnames[1:]}

        return mic_data


    @classmethod
    def _load_summary_file(cls, infile):
        data = {}

        with open(infile) as f:
            reader = csv.DictReader(f, delimiter=',')

            if reader.fieldnames[0] != 'name':
                raise Error('Error. Expected first column of summary file "' + infile + '" to be "name"')

            clusters = [x.split('.', maxsplit=1)[0] for x in reader.fieldnames[1:]]

            for row in reader:
                data[row['name']] = {}

                for field in row:
                    if field == 'name':
                        continue

                    cluster, col = field.split('.', maxsplit=1)
                    if cluster not in clusters:
                        raise Error('Cluster "' + cluster + '" not recognised. Cannot continue')
                    if cluster not in data[row['name']]:
                        data[row['name']][cluster] = {}

                    try:
                        value = float(row[field])
                    except:
                        value = row[field]
                    data[row['name']][cluster][col] = value

        return data


    @classmethod
    def _get_colours(cls, total_length, number_of_colours, colormap, skip=None):
        if number_of_colours == 1:
            return ["black"] * total_length
        elif number_of_colours == 0:
            cmap = cmx.get_cmap(colormap)
            if skip is None:
                vals = [1.0 * x / (total_length - 1) for x in range(total_length)]
            else:
                assert len(skip) == 2 and 0 <= skip[0] <= 1 and 0 <= skip[1] <= 1
                if skip[-1] == 1:
                    vals = [skip[0] * x / (total_length - 1) for x in range(total_length)]
                elif skip[0] == 0:
                    vals = [skip[1] + (1 - skip[1]) * x / (total_length - 1) for x in range(total_length)]
                else:
                    length = 1 - (skip[1] - skip[0])
                    vals = [(length) * x / (total_length - 1) for x in range(total_length)]
                    vals = [x if x < skip[0] else x + (1-length) for x in vals]

            return [cmap(x) for x in vals]
        else:
            cmap = cmx.get_cmap(colormap)
            colours = []
            for i in itertools.cycle(range(number_of_colours)):
                colours.append(cmap(i))
                if len(colours) >= total_length:
                    break
            return colours


    @classmethod
    def _get_top_plot_data(cls, summary_data, mic_data, antibiotic, use_hets, refdata=None, no_combinations=False, interrupted=False, outfile=None):
        assert use_hets in {'yes', 'no', 'exclude'}
        if outfile is not None:
            f = pyfastaq.utils.open_file_write(outfile)
            print('Sample\tMIC\tMutations', file=f)

        ignore_columns = {'assembled', 'match', 'ref_seq', 'pct_id', 'known_var', 'novel_var', 'MULTIPLE'}
        all_mutations = set()
        all_mutations_seen_combinations = set()
        top_plot_data = {} # cluster combination -> list of y coords (MIC values)

        for sample in sorted(summary_data):
            if sample not in mic_data:
                raise Error('No MIC data found for sample "' + sample + '". Cannot continue')
            if antibiotic not in mic_data[sample]:
                raise Error('Antibiotic "' + antibiotic + '" not found. Cannot continue')

            if mic_data[sample][antibiotic] == 'NA':
                continue

            mutations = set()
            found_het_and_exclude = False

            for cluster in summary_data[sample]:
                if 'assembled' in summary_data[sample][cluster] and summary_data[sample][cluster]['assembled'] == 'interrupted' and interrupted:
                    mutations.add(cluster + '.interrupted')

                if refdata is not None and 'match' in summary_data[sample][cluster] and summary_data[sample][cluster]['match'] == 'yes' and 'ref_seq' in summary_data[sample][cluster]:
                    ref_type, variant_only = refdata.sequence_type(summary_data[sample][cluster]['ref_seq'])
                    if not variant_only:
                        mutations.add(cluster + '.present')

                for column, value in summary_data[sample][cluster].items():
                    if column in ignore_columns or column.endswith('.%'):
                        continue

                    if value == 'yes' or (use_hets == 'yes' and value == 'het'):
                        mutations.add(cluster + '.' + column.strip())
                    elif use_hets == 'exclude' and value == 'het':
                        found_het_and_exclude = True
                        break

                if found_het_and_exclude:
                    break

            if found_het_and_exclude:
                continue


            if len(mutations) == 0:
                mutations.add('without_mutation')

            all_mutations.update(mutations)
            mutations = list(mutations)
            mutations.sort()
            if no_combinations:
                for mutation in mutations:
                    all_mutations_seen_combinations.add((mutation,))
                    if mutation not in top_plot_data:
                        top_plot_data[mutation] = []
                    top_plot_data[mutation].append(mic_data[sample][antibiotic])
                    if outfile is not None:
                        print(sample, mic_data[sample][antibiotic], mutation, sep='\t', file=f)
            else:
                all_mutations_seen_combinations.add(tuple(mutations))
                mutations = '.'.join(mutations)
                if mutations not in top_plot_data:
                    top_plot_data[mutations] = []
                top_plot_data[mutations].append(mic_data[sample][antibiotic])
                if outfile is not None:
                    print(sample, mic_data[sample][antibiotic], mutations, sep='\t', file=f)


        if outfile is not None:
            pyfastaq.utils.close(f)

        return top_plot_data, all_mutations, all_mutations_seen_combinations


    @classmethod
    def _filter_top_plot_data(cls, top_plot_data, all_mutations, seen_combinations, min_samples):
        if min_samples == 1:
            return top_plot_data, all_mutations, seen_combinations

        new_top_plot_data = {}
        new_all_mutations = set()
        new_seen_combinations = set()

        for mutation_tuple in seen_combinations:
            mutation_string = '.'.join(mutation_tuple)
            mics = top_plot_data[mutation_string]

            if len(mics) >= min_samples:
                new_top_plot_data[mutation_string] = mics
                new_seen_combinations.add(mutation_tuple)
                new_all_mutations.update(mutation_tuple)

        return new_top_plot_data, new_all_mutations, new_seen_combinations


    @classmethod
    def _top_plot_y_ticks(cls, mic_data, antibiotic, log_y):
        mic_values = set()
        for sample in mic_data:
            mic = mic_data[sample][antibiotic]
            if mic not in [None, 'NA']:
                mic_values.add(mic)

        max_mic = max(mic_values)
        min_mic = min(mic_values)
        new_mic_values = []
        i = 1
        while i < max_mic * 2:
            new_mic_values.append(i)
            i *= 2

        i = 0.5
        while i > min_mic / 2:
            new_mic_values.append(i)
            i *= 0.5

        new_mic_values.sort()
        new_mic_values = [round(x, 4) for x in new_mic_values]

        if log_y > 0:
            tick_positions = [math.log(x, log_y) for x in new_mic_values]
        else:
            tick_positions = new_mic_values

        return tick_positions, new_mic_values


    @classmethod
    def _top_plot_scatter_counts(cls, mutations, top_plot_data, colours, log_y):
        x_coords = []
        y_coords = []
        sizes = []
        colour_list = []

        for i, mutation in enumerate(mutations):
            counts = collections.Counter(top_plot_data[mutation])
            for mic in sorted(counts):
                x_coords.append(i + 1)
                if log_y > 0:
                    y_coords.append(math.log(mic, log_y))
                else:
                    y_coords.append(mic)
                sizes.append(counts[mic])
                colour_list.append(colours[i])

        return x_coords, y_coords, sizes, colour_list


    @classmethod
    def _top_plot_scatter_data(cls, mutations, top_plot_data, colours, log_y, x_jitter):
        x_coords = []
        y_coords = []
        colour_list = []

        for i, mutation in enumerate(mutations):
            for mic in top_plot_data[mutation]:
                if len(top_plot_data[mutation]) > 1:
                    x_coords.append(i + 1 + random.uniform(-x_jitter, x_jitter))
                else:
                    x_coords.append(i + 1)

                if log_y > 0:
                    y_coords.append(math.log(mic, log_y))
                else:
                    y_coords.append(mic)
                colour_list.append(colours[i])

        return x_coords, y_coords, colour_list


    @classmethod
    def _top_plot_violin_data(cls, mutations, top_plot_data, log_y):
        violin_data = []
        violin_pos = []

        for i, mutation in enumerate(mutations):
            if log_y > 0:
                violin_data.append([math.log(x, log_y) for x in top_plot_data[mutation]])
            else:
                violin_data.append(top_plot_data[mutation])
            violin_pos.append(i + 1)

        return violin_data, violin_pos


    @classmethod
    def _ordered_bottom_plot_rows(cls, mutations):
        l = []
        infinity = float('inf')

        for x in mutations:
            try:
                cluster, variant = x.split('.', maxsplit=1)
            except:
                l.append((x, infinity, x))
                continue

            if '.' in variant:
                try:
                    var_group, var = variant.split('.', maxsplit=1)
                except:
                    var_group = None
                    var = variant

                variant = var

            regex_match = regex_position_from_var.match(variant)
            if regex_match is not None and regex_match.group('coord') != '':
                coord = int(regex_match.group('coord'))
            else:
                coord = infinity

            l.append((cluster, coord, x))

        l.sort()
        return [x[-1] for x in l]


    @classmethod
    def _ordered_columns(cls, mutations, top_plot_data):
        # FIXME
        return sorted(list(mutations))


    @classmethod
    def _bottom_scatter_data(cls, bottom_plot_rows, columns, colours, outline=False):
        x_coords = []
        y_coords = []
        colour_list = []

        for i, row in enumerate(bottom_plot_rows):
            for j, col in enumerate(columns):
                if row in col:
                    x_coords.append(j + 1)
                    y_coords.append(len(bottom_plot_rows) - i)
                    colour_list.append(colours[j])
                elif outline:
                    x_coords.append(j + 1)
                    y_coords.append(len(bottom_plot_rows) - i)
                    colour_list.append("white")

        return x_coords, y_coords, colour_list


    @classmethod
    def _right_plot_data(cls, scatter_count_sizes, x_pos):
        y_max = max(scatter_count_sizes)
        if y_max > 100:
            y_max = int(math.ceil(y_max / 100.0)) * 100
            sizes = [5, 50]
        else:
            y_max = int(math.ceil(y_max / 10.0)) * 10
            sizes = [5, 10]

        while sizes[-1] < y_max:
            sizes.append(sizes[-1]*2)

        x_coords = [x_pos] * len(sizes)
        y_coords = [x + 1 for x in range(len(sizes))]
        y_coords.reverse()
        return x_coords, y_coords, sizes


    @classmethod
    def _pairwise_compare(cls, violin_data, columns, outfile, p_cutoff, compare_test):
        try:
            import scipy.stats
        except:
            print('WARNING: skipping Mann Whitney tests because scipy.stats not found', file=sys.stderr)
            return

        output = []

        for i, list1 in enumerate(violin_data):
            for j, list2 in enumerate(violin_data):
                if j <= i or len(list1) < 2 or len(list2) < 2:
                    continue

                list1set = set(list1)

                if len(list1set) == 1 and list1set == set(list2):
                    statistic = 'NA'
                    pvalue = 1
                else:
                    if compare_test == 'mannwhitneyu':
                        statistic, pvalue = scipy.stats.mannwhitneyu(list1, list2, alternative='two-sided')
                    elif compare_test == 'ks_2samp':
                        statistic, pvalue = scipy.stats.ks_2samp(list1, list2)
                    else:
                        raise Error('Test "' + compare_test + '" not recognised. Cannot continue')

                effect_size = abs(scipy.stats.norm.ppf(pvalue) / math.sqrt(len(list1) + len(list2)))
                significant = 'yes' if pvalue < p_cutoff else 'no'
                output.append((columns[i], columns[j], len(list1), len(list2), pvalue, significant, effect_size))

        output.sort(key=lambda x: x[4])

        with open(outfile, 'w') as f:
            print('Combination1', 'Combination2', 'Size1', 'Size2', 'p-value', 'significant', 'effect_size', 'corrected_p-value', 'corrected_significant', 'corrected_effect_size', sep='\t', file=f)
            for x in output:
                corrected_p = min(1, len(output) * x[4])
                corrected_significant = 'yes' if corrected_p < p_cutoff else 'no'
                corrected_effect_size = scipy.stats.norm.ppf(corrected_p) / math.sqrt(x[2] + x[3])
                print('\t'.join([str(z) for z in x]), corrected_p, corrected_significant, corrected_effect_size, sep='\t', file=f)


    def _make_plot(self, mic_data, top_plot_data, all_mutations, mut_combinations):
        bottom_plot_rows = MicPlotter._ordered_bottom_plot_rows(all_mutations)
        columns = MicPlotter._ordered_columns(mut_combinations, top_plot_data)
        colours = MicPlotter._get_colours(len(columns), self.number_of_colours, self.colourmap, self.colour_skip)
        bottom_scatter_x, bottom_scatter_y, bottom_colours = MicPlotter._bottom_scatter_data(bottom_plot_rows, columns, colours, outline=self.dot_outline)
        columns = ['.'.join(x) for x in columns]
        assert len(colours) == len(columns)
        max_x = len(colours) + 1

        scatter_count_x, scatter_count_y, scatter_count_sizes, scatter_count_colours = MicPlotter._top_plot_scatter_counts(columns, top_plot_data, colours, self.log_y)
        scatter_data_x, scatter_data_y, scatter_data_colours = MicPlotter._top_plot_scatter_data(columns, top_plot_data, colours, self.log_y, self.jitter_width)
        violin_data, violin_positions = MicPlotter._top_plot_violin_data(columns, top_plot_data, self.log_y)
        MicPlotter._pairwise_compare(violin_data, columns, self.outprefix + '.mannwhitney.tsv', self.p_cutoff, 'mannwhitneyu')
        MicPlotter._pairwise_compare(violin_data, columns, self.outprefix + '.ks_2sample.tsv', self.p_cutoff, 'ks_2samp')

        # -------------------- SET UP GRID & PLOTS -----------------
        fig=plt.figure(figsize=(self.plot_width, self.plot_height))
        if 'point' not in self.plot_types:
            self.point_size = 42

        if self.point_size == 0:
            gs = gridspec.GridSpec(2, 2, height_ratios=self.panel_heights, width_ratios=self.panel_widths)
        else:
            gs = gridspec.GridSpec(2, 1, height_ratios=self.panel_heights)

        plots=[]
        plots.append(plt.subplot(gs[0]))
        plots.append(plt.subplot(gs[1]))
        if self.point_size == 0:
            plots.append(plt.subplot(gs[2]))
            bottom_plot_index = 2
        else:
            bottom_plot_index = 1

        # ------------------------- TOP PLOT -----------------------
        for h in self.hlines:
            if self.log_y > 0:
                h = math.log(h, self.log_y)
            plots[0].hlines(h, 0, max_x, linestyle='--', linewidth=1, color='black')


        if 'violin' in self.plot_types:
            violins = plots[0].violinplot(violin_data, violin_positions, widths=self.violin_width, showmeans=False, showextrema=False, showmedians=False)
            for x, pc in enumerate(violins['bodies']):
                pc.set_facecolor(colours[x])
                pc.set_edgecolor(colours[x])

        scaled_count_sizes = [self.point_scale * x for x in scatter_count_sizes]

        if 'point' in self.plot_types:
            if self.point_size == 0:
                plots[0].scatter(scatter_count_x, scatter_count_y, s=scaled_count_sizes, c=scatter_count_colours, linewidth=0)
            else:
                plots[0].scatter(scatter_data_x, scatter_data_y, c=scatter_data_colours, s=self.point_size)

        if self.log_y > 0:
            miny = min(scatter_count_y) - 0.5
            maxy = max(scatter_count_y) + 0.5
        else:
            miny = 0
            maxy = 1.05 * max(scatter_count_y)

        plots[0].axis([0,max(bottom_scatter_x) + 1, miny, maxy])

        y_tick_positions, y_tick_labels = MicPlotter._top_plot_y_ticks(mic_data, self.antibiotic, self.log_y)
        plots[0].yaxis.set_ticks(y_tick_positions)
        plots[0].set_yticklabels(y_tick_labels)
        ylabel = r'MIC ($\mu$g/mL)'
        plots[0].set_ylabel(ylabel)
        plots[0].set_xticklabels([])
        plots[0].set_title(self.main_title, fontsize=18)

        # ------------------------- BOTTOM PLOT -----------------------
        edgecolor = "black" if self.dot_outline else bottom_colours
        plots[bottom_plot_index].axis([0,max(bottom_scatter_x) + 1,0,max(bottom_scatter_y) + 1])
        plots[bottom_plot_index].scatter(bottom_scatter_x, bottom_scatter_y, marker='o', s=self.dot_size, c=bottom_colours, edgecolor=edgecolor, lw=1)
        plots[bottom_plot_index].spines["top"].set_visible(False)
        plots[bottom_plot_index].spines["right"].set_visible(False)
        plots[bottom_plot_index].spines["bottom"].set_visible(False)
        plots[bottom_plot_index].spines["left"].set_visible(False)
        plots[bottom_plot_index].yaxis.set_tick_params(length=0)
        plots[bottom_plot_index].xaxis.set_ticks([])
        plots[bottom_plot_index].set_xticklabels([])
        plots[bottom_plot_index].yaxis.set_ticks([(i+1) for i in range(len(bottom_plot_rows))])
        plots[bottom_plot_index].set_yticklabels(bottom_plot_rows[::-1], fontsize=self.dot_y_text_size)

        # ------------------------- RIGHT PLOT -------------------------
        if self.point_size == 0:
            right_x_coord = 0.75
            right_x, right_y, right_sizes = MicPlotter._right_plot_data(scatter_count_sizes, right_x_coord)
            right_scaled_sizes = [self.point_scale * x for x in right_sizes]
            plots[1].scatter(right_x, right_y, s=right_scaled_sizes, c="black")
            plots[1].axis('off')
            plots[1].axis([0,4,-2*len(right_y),len(right_y)+1])
            for i, y in enumerate(right_y):
                plots[1].annotate(right_sizes[i], [right_x_coord + 0.75, y-0.2])
            plots[1].annotate("Counts", [right_x_coord - 0.1, len(right_y) + 0.5])

        plt.tight_layout(w_pad=self.count_legend_x)
        plt.savefig(self.outprefix + '.' + self.out_format)




    def run(self):
        mic_data = MicPlotter._load_mic_file(self.mic_file)
        summary_data = MicPlotter._load_summary_file(self.summary_file)
        boxplot_tsv = self.outprefix + '.data.tsv'
        top_plot_data, all_mutations, combinations = MicPlotter._get_top_plot_data(summary_data, mic_data, self.antibiotic, self.use_hets, refdata=self.refdata, no_combinations=self.no_combinations, interrupted=self.interrupted, outfile=boxplot_tsv)
        top_plot_data, all_mutations, combinations = MicPlotter._filter_top_plot_data(top_plot_data, all_mutations, combinations, self.min_samples)
        self._make_plot(mic_data, top_plot_data, all_mutations, combinations)