Codebase list centrifuge / HEAD diff_sample.h
HEAD

Tree @HEAD (Download .tar.gz)

diff_sample.h @HEADraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef DIFF_SAMPLE_H_
#define DIFF_SAMPLE_H_

#include <stdint.h>
#include <string.h>
#include "assert_helpers.h"
#include "multikey_qsort.h"
#include "timer.h"
#include "ds.h"
#include "mem_ids.h"
#include "ls.h"
#include "btypes.h"

using namespace std;

#ifndef VMSG_NL
#define VMSG_NL(...) \
if(this->verbose()) { \
	stringstream tmp; \
	tmp << __VA_ARGS__ << endl; \
	this->verbose(tmp.str()); \
}
#endif

#ifndef VMSG
#define VMSG(...) \
if(this->verbose()) { \
	stringstream tmp; \
	tmp << __VA_ARGS__; \
	this->verbose(tmp.str()); \
}
#endif

/**
 * Routines for calculating, sanity-checking, and dispensing difference
 * cover samples to clients.
 */

/**
 *
 */
struct sampleEntry {
	uint32_t maxV;
	uint32_t numSamples;
	uint32_t samples[128];
};

/// Array of Colbourn and Ling calculated difference covers up to
/// r = 16 (maxV = 5953)
extern struct sampleEntry clDCs[16];
extern bool clDCs_calced; /// have clDCs been calculated?

/**
 * Check that the given difference cover 'ds' actually covers all
 * differences for a periodicity of v.
 */
template<typename T>
static bool dcRepOk(T v, EList<T>& ds) {
	// diffs[] records all the differences observed
	AutoArray<bool> covered(v, EBWT_CAT);
	for(T i = 1; i < v; i++) {
		covered[i] = false;
	}
	for(T di = T(); di < ds.size(); di++) {
		for(T dj = di+1; dj < ds.size(); dj++) {
			assert_lt(ds[di], ds[dj]);
			T d1 = (ds[dj] - ds[di]);
			T d2 = (ds[di] + v - ds[dj]);
			assert_lt(d1, v);
			assert_lt(d2, v);
			covered[d1] = true;
			covered[d2] = true;
		}
	}
	bool ok = true;
	for(T i = 1; i < v; i++) {
		if(covered[i] == false) {
			ok = false;
			break;
		}
	}
	return ok;
}

/**
 * Return true iff each element of ts (with length 'limit') is greater
 * than the last.
 */
template<typename T>
static bool increasing(T* ts, size_t limit) {
	for(size_t i = 0; i < limit-1; i++) {
		if(ts[i+1] <= ts[i]) return false;
	}
	return true;
}

/**
 * Return true iff the given difference cover covers difference 'diff'
 * mod 'v'.
 */
template<typename T>
static inline bool hasDifference(T *ds, T d, T v, T diff) {
	// diffs[] records all the differences observed
	for(T di = T(); di < d; di++) {
		for(T dj = di+1; dj < d; dj++) {
			assert_lt(ds[di], ds[dj]);
			T d1 = (ds[dj] - ds[di]);
			T d2 = (ds[di] + v - ds[dj]);
			assert_lt(d1, v);
			assert_lt(d2, v);
			if(d1 == diff || d2 == diff) return true;
		}
	}
	return false;
}

/**
 * Exhaustively calculate optimal difference cover samples for v = 4,
 * 8, 16, 32, 64, 128, 256 and store results in p2DCs[]
 */
template<typename T>
void calcExhaustiveDC(T i, bool verbose = false, bool sanityCheck = false) {
	T v = i;
	AutoArray<bool> diffs(v, EBWT_CAT);
	// v is the target period
	T ld = (T)ceil(sqrt(v));
	// ud is the upper bound on |D|
	T ud = v / 2;
	// for all possible |D|s
	bool ok = true;
	T *ds = NULL;
	T d;
	for(d = ld; d <= ud+1; d++) {
		// for all possible |D| samples
		AutoArray<T> ds(d, EBWT_CAT);
		for(T j = 0; j < d; j++) {
			ds[j] = j;
		}
		assert(increasing(ds, d));
		while(true) {
			// reset diffs[]
			for(T t = 1; t < v; t++) {
				diffs[t] = false;
			}
			T diffCnt = 0;
			// diffs[] records all the differences observed
			for(T di = 0; di < d; di++) {
				for(T dj = di+1; dj < d; dj++) {
					assert_lt(ds[di], ds[dj]);
					T d1 = (ds[dj] - ds[di]);
					T d2 = (ds[di] + v - ds[dj]);
					assert_lt(d1, v);
					assert_lt(d2, v);
					assert_gt(d1, 0);
					assert_gt(d2, 0);
					if(!diffs[d1]) diffCnt++; diffs[d1] = true;
					if(!diffs[d2]) diffCnt++; diffs[d2] = true;
				}
			}
			// Do we observe all possible differences (except 0)
			ok = diffCnt == v-1;
			if(ok) {
				// Yes, all differences are covered
				break;
			} else {
				// Advance ds
				// (Following is commented out because it turns out
				// it's slow)
				// Find a missing difference
				//uint32_t missing = 0xffffffff;
				//for(uint32_t t = 1; t < v; t++) {
				//	if(diffs[t] == false) {
				//		missing = diffs[t];
				//		break;
				//	}
				//}
				//assert_neq(missing, 0xffffffff);
				assert(increasing(ds, d));
				bool advanced = false;
				bool keepGoing = false;
				do {
					keepGoing = false;
					for(T bd = d-1; bd > 1; bd--) {
						T dif = (d-1)-bd;
						if(ds[bd] < v-1-dif) {
							ds[bd]++;
							assert_neq(0, ds[bd]);
							// Reset subsequent ones
							for(T bdi = bd+1; bdi < d; bdi++) {
								assert_eq(0, ds[bdi]);
								ds[bdi] = ds[bdi-1]+1;
								assert_gt(ds[bdi], ds[bdi-1]);
							}
							assert(increasing(ds, d));
							// (Following is commented out because
							// it turns out it's slow)
							// See if the new DC has the missing value
							//if(!hasDifference(ds, d, v, missing)) {
							//	keepGoing = true;
							//	break;
							//}
							advanced = true;
							break;
						} else {
							ds[bd] = 0;
							// keep going
						}
					}
				} while(keepGoing);
				// No solution for this |D|
				if(!advanced) break;
				assert(increasing(ds, d));
			}
		} // next sample assignment
		if(ok) {
			break;
		}
	} // next |D|
	assert(ok);
	cout << "Did exhaustive v=" << v << " |D|=" << d << endl;
	cout << "  ";
	for(T i = 0; i < d; i++) {
		cout << ds[i];
		if(i < d-1) cout << ",";
	}
	cout << endl;
}

/**
 * Routune for calculating the elements of clDCs up to r = 16 using the
 * technique of Colbourn and Ling.
 *
 * See http://citeseer.ist.psu.edu/211575.html
 */
template <typename T>
void calcColbournAndLingDCs(bool verbose = false, bool sanityCheck = false) {
	for(T r = 0; r < 16; r++) {
		T maxv = 24*r*r + 36*r + 13; // Corollary 2.3
		T numsamp = 6*r + 4;
		clDCs[r].maxV = maxv;
		clDCs[r].numSamples = numsamp;
		memset(clDCs[r].samples, 0, 4 * 128);
		T i;
		// clDCs[r].samples[0] = 0;
		// Fill in the 1^r part of the B series
		for(i = 1; i < r+1; i++) {
			clDCs[r].samples[i] = clDCs[r].samples[i-1] + 1;
		}
		// Fill in the (r + 1)^1 part
		clDCs[r].samples[r+1] = clDCs[r].samples[r] + r + 1;
		// Fill in the (2r + 1)^r part
		for(i = r+2; i < r+2+r; i++) {
			clDCs[r].samples[i] = clDCs[r].samples[i-1] + 2*r + 1;
		}
		// Fill in the (4r + 3)^(2r + 1) part
		for(i = r+2+r; i < r+2+r+2*r+1; i++) {
			clDCs[r].samples[i] = clDCs[r].samples[i-1] + 4*r + 3;
		}
		// Fill in the (2r + 2)^(r + 1) part
		for(i = r+2+r+2*r+1; i < r+2+r+2*r+1+r+1; i++) {
			clDCs[r].samples[i] = clDCs[r].samples[i-1] + 2*r + 2;
		}
		// Fill in the last 1^r part
		for(i = r+2+r+2*r+1+r+1; i < r+2+r+2*r+1+r+1+r; i++) {
			clDCs[r].samples[i] = clDCs[r].samples[i-1] + 1;
		}
		assert_eq(i, numsamp);
		assert_lt(i, 128);
		if(sanityCheck) {
			// diffs[] records all the differences observed
			AutoArray<bool> diffs(maxv, EBWT_CAT);
			for(T i = 0; i < numsamp; i++) {
				for(T j = i+1; j < numsamp; j++) {
					T d1 = (clDCs[r].samples[j] - clDCs[r].samples[i]);
					T d2 = (clDCs[r].samples[i] + maxv - clDCs[r].samples[j]);
					assert_lt(d1, maxv);
					assert_lt(d2, maxv);
					diffs[d1] = true;
					diffs[d2] = true;
				}
			}
			// Should have observed all possible differences (except 0)
			for(T i = 1; i < maxv; i++) {
				if(diffs[i] == false) cout << r << ", " << i << endl;
				assert(diffs[i] == true);
			}
		}
	}
	clDCs_calced = true;
}

/**
 * A precalculated list of difference covers.
 */
extern uint32_t dc0to64[65][10];

/**
 * Get a difference cover for the requested periodicity v.
 */
template <typename T>
static EList<T> getDiffCover(
	T v,
	bool verbose = false,
	bool sanityCheck = false)
{
	assert_gt(v, 2);
	EList<T> ret;
	ret.clear();
	// Can we look it up in our hardcoded array?
	if(v <= 64 && dc0to64[v][0] == 0xffffffff) {
		if(verbose) cout << "v in hardcoded area, but hardcoded entry was all-fs" << endl;
		return ret;
	} else if(v <= 64) {
		ret.push_back(0);
		for(size_t i = 0; i < 10; i++) {
			if(dc0to64[v][i] == 0) break;
			ret.push_back(dc0to64[v][i]);
		}
		if(sanityCheck) assert(dcRepOk(v, ret));
		return ret;
	}

	// Can we look it up in our calcColbournAndLingDCs array?
	if(!clDCs_calced) {
		calcColbournAndLingDCs<uint32_t>(verbose, sanityCheck);
		assert(clDCs_calced);
	}
	for(size_t i = 0; i < 16; i++) {
		if(v <= clDCs[i].maxV) {
			for(size_t j = 0; j < clDCs[i].numSamples; j++) {
				T s = clDCs[i].samples[j];
				if(s >= v) {
					s %= v;
					for(size_t k = 0; k < ret.size(); k++) {
						if(s == ret[k]) break;
						if(s < ret[k]) {
							ret.insert(s, k);
							break;
						}
					}
				} else {
					ret.push_back(s % v);
				}
			}
			if(sanityCheck) assert(dcRepOk(v, ret));
			return ret;
		}
	}
	cerr << "Error: Could not find a difference cover sample for v=" << v << endl;
	throw 1;
}

/**
 * Calculate and return a delta map based on the given difference cover
 * and periodicity v.
 */
template <typename T>
static EList<T> getDeltaMap(T v, const EList<T>& dc) {
	// Declare anchor-map-related items
	EList<T> amap;
	size_t amapEnts = 1;
	amap.resizeExact((size_t)v);
	amap.fill(0xffffffff);
	amap[0] = 0;
	// Print out difference cover (and optionally calculate
	// anchor map)
	for(size_t i = 0; i < dc.size(); i++) {
		for(size_t j = i+1; j < dc.size(); j++) {
			assert_gt(dc[j], dc[i]);
			T diffLeft  = dc[j] - dc[i];
			T diffRight = dc[i] + v - dc[j];
			assert_lt(diffLeft, v);
			assert_lt(diffRight, v);
			if(amap[diffLeft] == 0xffffffff) {
				amap[diffLeft] = dc[i];
				amapEnts++;
			}
			if(amap[diffRight] == 0xffffffff) {
				amap[diffRight] = dc[j];
				amapEnts++;
			}
		}
	}
	return amap;
}

/**
 * Return population count (count of all bits set to 1) of i.
 */
template<typename T>
static unsigned int popCount(T i) {
	unsigned int cnt = 0;
	for(size_t j = 0; j < sizeof(T)*8; j++) {
		if(i & 1) cnt++;
		i >>= 1;
	}
	return cnt;
}

/**
 * Calculate log-base-2 of i
 */
template<typename T>
static unsigned int myLog2(T i) {
	assert_eq(1, popCount(i)); // must be power of 2
	for(size_t j = 0; j < sizeof(T)*8; j++) {
		if(i & 1) return (int)j;
		i >>= 1;
	}
	assert(false);
	return 0xffffffff;
}

/**
 *
 */
template<typename TStr>
class DifferenceCoverSample {
public:

	DifferenceCoverSample(const TStr& __text,
	                      uint32_t __v,
	                      bool __verbose = false,
	                      bool __sanity = false,
	                      ostream& __logger = cout) :
		_text(__text),
		_v(__v),
		_verbose(__verbose),
		_sanity(__sanity),
		_ds(getDiffCover(_v, _verbose, _sanity)),
		_dmap(getDeltaMap(_v, _ds)),
		_d((uint32_t)_ds.size()),
		_doffs(),
		_isaPrime(),
		_dInv(),
		_log2v(myLog2(_v)),
		_vmask(OFF_MASK << _log2v),
		_logger(__logger)
	{
		assert_gt(_d, 0);
		assert_eq(1, popCount(_v)); // must be power of 2
		// Build map from d's to idx's
		_dInv.resizeExact((size_t)v());
		_dInv.fill(0xffffffff);
		uint32_t lim = (uint32_t)_ds.size();
		for(uint32_t i = 0; i < lim; i++) {
			_dInv[_ds[i]] = i;
		}
	}
	
	/**
	 * Allocate an amount of memory that simulates the peak memory
	 * usage of the DifferenceCoverSample with the given text and v.
	 * Throws bad_alloc if it's not going to fit in memory.  Returns
	 * the approximate number of bytes the Cover takes at all times.
	 */
	static size_t simulateAllocs(const TStr& text, uint32_t v) {
		EList<uint32_t> ds(getDiffCover(v, false /*verbose*/, false /*sanity*/));
		size_t len = text.length();
		size_t sPrimeSz = (len / v) * ds.size();
		// sPrime, sPrimeOrder, _isaPrime all exist in memory at
		// once and that's the peak
		AutoArray<TIndexOffU> aa(sPrimeSz * 3 + (1024 * 1024 /*out of caution*/), EBWT_CAT);
		return sPrimeSz * 4; // sPrime array
	}

	uint32_t v() const                   { return _v; }
	uint32_t log2v() const               { return _log2v; }
	uint32_t vmask() const               { return _vmask; }
	uint32_t modv(TIndexOffU i) const    { return (uint32_t)(i & ~_vmask); }
	TIndexOffU divv(TIndexOffU i) const  { return i >> _log2v; }
	uint32_t d() const                   { return _d; }
	bool verbose() const                 { return _verbose; }
	bool sanityCheck() const             { return _sanity; }
	const TStr& text() const             { return _text; }
	const EList<uint32_t>& ds() const    { return _ds; }
	const EList<uint32_t>& dmap() const  { return _dmap; }
	ostream& log() const                 { return _logger; }

	void     build(int nthreads);
	uint32_t tieBreakOff(TIndexOffU i, TIndexOffU j) const;
	int64_t  breakTie(TIndexOffU i, TIndexOffU j) const;
	bool     isCovered(TIndexOffU i) const;
	TIndexOffU rank(TIndexOffU i) const;

	/**
	 * Print out the suffix array such that every sample offset has its
	 * rank filled in and every non-sample offset is shown as '-'.
	 */
	void print(ostream& out) {
		for(size_t i = 0; i < _text.length(); i++) {
			if(isCovered(i)) {
				out << rank(i);
			} else {
				out << "-";
			}
			if(i < _text.length()-1) {
				out << ",";
			}
		}
		out << endl;
	}

private:

	void doBuiltSanityCheck() const;
	void buildSPrime(EList<TIndexOffU>& sPrime, size_t padding);

	bool built() const {
		return _isaPrime.size() > 0;
	}

	void verbose(const string& s) const {
		if(this->verbose()) {
			this->log() << s.c_str();
			this->log().flush();
		}
	}

	const TStr&      _text;     // text to sample
	uint32_t         _v;        // periodicity of sample
	bool             _verbose;  //
	bool             _sanity;   //
	EList<uint32_t>  _ds;       // samples: idx -> d
	EList<uint32_t>  _dmap;     // delta map
	uint32_t         _d;        // |D| - size of sample
	EList<TIndexOffU>  _doffs;    // offsets into sPrime/isaPrime for each d idx
	EList<TIndexOffU>  _isaPrime; // ISA' array
	EList<uint32_t>  _dInv;     // Map from d -> idx
	uint32_t         _log2v;
	TIndexOffU         _vmask;
	ostream&         _logger;
};

/**
 * Sanity-check the difference cover by first inverting _isaPrime then
 * checking that each successive suffix really is less than the next.
 */
template <typename TStr>
void DifferenceCoverSample<TStr>::doBuiltSanityCheck() const {
	uint32_t v = this->v();
	assert(built());
	VMSG_NL("  Doing sanity check");
	TIndexOffU added = 0;
	EList<TIndexOffU> sorted;
	sorted.resizeExact(_isaPrime.size());
	sorted.fill(OFF_MASK);
	for(size_t di = 0; di < this->d(); di++) {
		uint32_t d = _ds[di];
		size_t i = 0;
		for(size_t doi = _doffs[di]; doi < _doffs[di+1]; doi++, i++) {
			assert_eq(OFF_MASK, sorted[_isaPrime[doi]]);
			// Maps the offset of the suffix to its rank
			sorted[_isaPrime[doi]] = (TIndexOffU)(v*i + d);
			added++;
		}
	}
	assert_eq(added, _isaPrime.size());
#ifndef NDEBUG
	for(size_t i = 0; i < sorted.size()-1; i++) {
		assert(sstr_suf_lt(this->text(), sorted[i], this->text(), sorted[i+1], false));
	}
#endif
}

/**
 * Build the s' array by sampling suffixes (suffix offsets, actually)
 * from t according to the difference-cover sample and pack them into
 * an array of machine words in the order dictated by the "mu" mapping
 * described in Burkhardt.
 *
 * Also builds _doffs map.
 */
template <typename TStr>
void DifferenceCoverSample<TStr>::buildSPrime(
	EList<TIndexOffU>& sPrime,
	size_t padding)
{
	const TStr& t = this->text();
	const EList<uint32_t>& ds = this->ds();
	TIndexOffU tlen = (TIndexOffU)t.length();
	uint32_t v = this->v();
	uint32_t d = this->d();
	assert_gt(v, 2);
	assert_lt(d, v);
	// Record where each d section should begin in sPrime
	TIndexOffU tlenDivV = this->divv(tlen);
	uint32_t tlenModV = this->modv(tlen);
	TIndexOffU sPrimeSz = 0;
	assert(_doffs.empty());
	_doffs.resizeExact((size_t)d+1);
	for(uint32_t di = 0; di < d; di++) {
		// mu mapping
		TIndexOffU sz = tlenDivV + ((ds[di] <= tlenModV) ? 1 : 0);
		assert_geq(sz, 0);
		_doffs[di] = sPrimeSz;
		sPrimeSz += sz;
	}
	_doffs[d] = sPrimeSz;
#ifndef NDEBUG
	if(tlenDivV > 0) {
		for(size_t i = 0; i < d; i++) {
			assert_gt(_doffs[i+1], _doffs[i]);
			TIndexOffU diff = _doffs[i+1] - _doffs[i];
			assert(diff == tlenDivV || diff == tlenDivV+1);
		}
	}
#endif
	assert_eq(_doffs.size(), d+1);
	// Size sPrime appropriately
	sPrime.resizeExact((size_t)sPrimeSz + padding);
	sPrime.fill(OFF_MASK);
	// Slot suffixes from text into sPrime according to the mu
	// mapping; where the mapping would leave a blank, insert a 0
	TIndexOffU added = 0;
	TIndexOffU i = 0;
	for(uint64_t ti = 0; ti <= tlen; ti += v) {
		for(uint32_t di = 0; di < d; di++) {
			TIndexOffU tti = ti + ds[di];
			if(tti > tlen) break;
			TIndexOffU spi = _doffs[di] + i;
			assert_lt(spi, _doffs[di+1]);
			assert_leq(tti, tlen);
			assert_lt(spi, sPrimeSz);
			assert_eq(OFF_MASK, sPrime[spi]);
			sPrime[spi] = tti; added++;
		}
		i++;
	}
	assert_eq(added, sPrimeSz);
}

/**
 * Return true iff suffixes with offsets suf1 and suf2 out of host
 * string 'host' are identical up to depth 'v'.
 */
template <typename TStr>
static inline bool suffixSameUpTo(
	const TStr& host,
	TIndexOffU suf1,
	TIndexOffU suf2,
	TIndexOffU v)
{
	for(TIndexOffU i = 0; i < v; i++) {
		bool endSuf1 = suf1+i >= host.length();
		bool endSuf2 = suf2+i >= host.length();
		if((endSuf1 && !endSuf2) || (!endSuf1 && endSuf2)) return false;
		if(endSuf1 && endSuf2) return true;
		if(host[suf1+i] != host[suf2+i]) return false;
	}
	return true;
}

template<typename TStr>
struct VSortingParam {
    DifferenceCoverSample<TStr>* dcs;
    TIndexOffU*                  sPrimeArr;
    size_t                       sPrimeSz;
    TIndexOffU*                  sPrimeOrderArr;
    size_t                       depth;
    const EList<size_t>*         boundaries;
    size_t*                      cur;
    MUTEX_T*                     mutex;
};

template<typename TStr>
static void VSorting_worker(void *vp)
{
    VSortingParam<TStr>* param = (VSortingParam<TStr>*)vp;
    DifferenceCoverSample<TStr>* dcs = param->dcs;
    const TStr& host = dcs->text();
    const size_t hlen = host.length();
    uint32_t v = dcs->v();
    while(true) {
        size_t cur = 0;
        {
            ThreadSafe ts(param->mutex, true);
            cur = *(param->cur);
            (*param->cur)++;
        }
        if(cur >= param->boundaries->size()) return;
        size_t begin = (cur == 0 ? 0 : (*param->boundaries)[cur-1]);
        size_t end = (*param->boundaries)[cur];
        assert_leq(begin, end);
        if(end - begin <= 1) continue;
        mkeyQSortSuf2(
                      host,
                      hlen,
                      param->sPrimeArr,
                      param->sPrimeSz,
                      param->sPrimeOrderArr,
                      4,
                      begin,
                      end,
                      param->depth,
                      v);
    }
}

/**
 * Calculates a ranking of all suffixes in the sample and stores them,
 * packed according to the mu mapping, in _isaPrime.
 */
template <typename TStr>
void DifferenceCoverSample<TStr>::build(int nthreads) {
	// Local names for relevant types
	VMSG_NL("Building DifferenceCoverSample");
	// Local names for relevant data
	const TStr& t = this->text();
	uint32_t v = this->v();
	assert_gt(v, 2);
	// Build s'
	EList<TIndexOffU> sPrime;
	// Need to allocate 2 extra elements at the end of the sPrime and _isaPrime
	// arrays.  One element that's less than all others, and another that acts
	// as needed padding for the Larsson-Sadakane sorting code.
	size_t padding = 1;
	VMSG_NL("  Building sPrime");
	buildSPrime(sPrime, padding);
	size_t sPrimeSz = sPrime.size() - padding;
	assert_gt(sPrime.size(), padding);
	assert_leq(sPrime.size(), t.length() + padding + 1);
	TIndexOffU nextRank = 0;
	{
		VMSG_NL("  Building sPrimeOrder");
		EList<TIndexOffU> sPrimeOrder;
		sPrimeOrder.resizeExact(sPrimeSz);
		for(TIndexOffU i = 0; i < sPrimeSz; i++) {
			sPrimeOrder[i] = i;
		}
		// sPrime now holds suffix-offsets for DC samples.
		{
			Timer timer(cout, "  V-Sorting samples time: ", this->verbose());
			VMSG_NL("  V-Sorting samples");
			// Extract backing-store array from sPrime and sPrimeOrder;
			// the mkeyQSortSuf2 routine works on the array for maximum
			// efficiency
			TIndexOffU *sPrimeArr = (TIndexOffU*)sPrime.ptr();
			assert_eq(sPrimeArr[0], sPrime[0]);
			assert_eq(sPrimeArr[sPrimeSz-1], sPrime[sPrimeSz-1]);
			TIndexOffU *sPrimeOrderArr = (TIndexOffU*)sPrimeOrder.ptr();
			assert_eq(sPrimeOrderArr[0], sPrimeOrder[0]);
			assert_eq(sPrimeOrderArr[sPrimeSz-1], sPrimeOrder[sPrimeSz-1]);
            // Sort sample suffixes up to the vth character using a
			// multikey quicksort.  Sort time is proportional to the
			// number of samples times v.  It isn't quadratic.
			// sPrimeOrder is passed in as a swapping partner for
			// sPrimeArr, i.e., every time the multikey qsort swaps
			// elements in sPrime, it swaps the same elements in
			// sPrimeOrder too.  This allows us to easily reconstruct
			// what the sort did.
            if(nthreads == 1) {
                mkeyQSortSuf2(t, sPrimeArr, sPrimeSz, sPrimeOrderArr, 4,
                              this->verbose(), this->sanityCheck(), v);
            } else {
                int query_depth = 0;
                int tmp_nthreads = nthreads;
                while(tmp_nthreads > 0) {
                    query_depth++;
                    tmp_nthreads >>= 1;
                }
                EList<size_t> boundaries; // bucket boundaries for parallelization
                TIndexOffU *sOrig = NULL;
                if(this->sanityCheck()) {
                    sOrig = new TIndexOffU[sPrimeSz];
                    memcpy(sOrig, sPrimeArr, OFF_SIZE * sPrimeSz);
                }
                mkeyQSortSuf2(t, sPrimeArr, sPrimeSz, sPrimeOrderArr, 4,
                              this->verbose(), false, query_depth, &boundaries);
                if(boundaries.size() > 0) {
                    AutoArray<tthread::thread*> threads(nthreads);
                    EList<VSortingParam<TStr> > tparams;
                    size_t cur = 0;
                    MUTEX_T mutex;
                    for(int tid = 0; tid < nthreads; tid++) {
                        // Calculate bucket sizes by doing a binary search for each
                        // suffix and noting where it lands
                        tparams.expand();
                        tparams.back().dcs = this;
                        tparams.back().sPrimeArr = sPrimeArr;
                        tparams.back().sPrimeSz = sPrimeSz;
                        tparams.back().sPrimeOrderArr = sPrimeOrderArr;
                        tparams.back().depth = query_depth;
                        tparams.back().boundaries = &boundaries;
                        tparams.back().cur = &cur;
                        tparams.back().mutex = &mutex;
                        threads[tid] = new tthread::thread(VSorting_worker<TStr>, (void*)&tparams.back());
                    }
                    for (int tid = 0; tid < nthreads; tid++) {
                        threads[tid]->join();
                    }
                }
                if(this->sanityCheck()) {
                    sanityCheckOrderedSufs(t, t.length(), sPrimeArr, sPrimeSz, v);
                    for(size_t i = 0; i < sPrimeSz; i++) {
                        assert_eq(sPrimeArr[i], sOrig[sPrimeOrderArr[i]]);
                    }
                    delete[] sOrig;
                }
            }
			// Make sure sPrime and sPrimeOrder are consistent with
			// their respective backing-store arrays
			assert_eq(sPrimeArr[0], sPrime[0]);
			assert_eq(sPrimeArr[sPrimeSz-1], sPrime[sPrimeSz-1]);
			assert_eq(sPrimeOrderArr[0], sPrimeOrder[0]);
			assert_eq(sPrimeOrderArr[sPrimeSz-1], sPrimeOrder[sPrimeSz-1]);
		}
		// Now assign the ranking implied by the sorted sPrime/sPrimeOrder
		// arrays back into sPrime.
		VMSG_NL("  Allocating rank array");
		_isaPrime.resizeExact(sPrime.size());
		ASSERT_ONLY(_isaPrime.fill(OFF_MASK));
		assert_gt(_isaPrime.size(), 0);
		{
			Timer timer(cout, "  Ranking v-sort output time: ", this->verbose());
			VMSG_NL("  Ranking v-sort output");
			for(size_t i = 0; i < sPrimeSz-1; i++) {
				// Place the appropriate ranking
				_isaPrime[sPrimeOrder[i]] = nextRank;
				// If sPrime[i] and sPrime[i+1] are identical up to v, then we
				// should give the next suffix the same rank
				if(!suffixSameUpTo(t, sPrime[i], sPrime[i+1], v)) nextRank++;
			}
			_isaPrime[sPrimeOrder[sPrimeSz-1]] = nextRank; // finish off
#ifndef NDEBUG
			for(size_t i = 0; i < sPrimeSz; i++) {
				assert_neq(OFF_MASK, _isaPrime[i]);
				assert_lt(_isaPrime[i], sPrimeSz);
			}
#endif
		}
		// sPrimeOrder is destroyed
		// All the information we need is now in _isaPrime
	}
	_isaPrime[_isaPrime.size()-1] = (TIndexOffU)sPrimeSz;
	sPrime[sPrime.size()-1] = (TIndexOffU)sPrimeSz;
	// _isaPrime[_isaPrime.size()-1] and sPrime[sPrime.size()-1] are just
	// spacer for the Larsson-Sadakane routine to use
	{
		Timer timer(cout, "  Invoking Larsson-Sadakane on ranks time: ", this->verbose());
		VMSG_NL("  Invoking Larsson-Sadakane on ranks");
		if(sPrime.size() >= LS_SIZE) {
			cerr << "Error; sPrime array has so many elements that it can't be converted to a signed array without overflow." << endl;
			throw 1;
		}
		LarssonSadakane<TIndexOff> ls;
		ls.suffixsort(
			(TIndexOff*)_isaPrime.ptr(),
			(TIndexOff*)sPrime.ptr(),
			(TIndexOff)sPrimeSz,
			(TIndexOff)sPrime.size(),
			0);
	}
	// chop off final character of _isaPrime
	_isaPrime.resizeExact(sPrimeSz);
	for(size_t i = 0; i < _isaPrime.size(); i++) {
		_isaPrime[i]--;
	}
#ifndef NDEBUG
	for(size_t i = 0; i < sPrimeSz-1; i++) {
		assert_lt(_isaPrime[i], sPrimeSz);
		assert(i == 0 || _isaPrime[i] != _isaPrime[i-1]);
	}
#endif
	VMSG_NL("  Sanity-checking and returning");
	if(this->sanityCheck()) doBuiltSanityCheck();
}

/**
 * Return true iff index i within the text is covered by the difference
 * cover sample.  Allow i to be off the end of the text; simplifies
 * logic elsewhere.
 */
template <typename TStr>
bool DifferenceCoverSample<TStr>::isCovered(TIndexOffU i) const {
	assert(built());
	uint32_t modi = this->modv(i);
	assert_lt(modi, _dInv.size());
	return _dInv[modi] != 0xffffffff;
}

/**
 * Given a text offset that's covered, return its lexicographical rank
 * among the sample suffixes.
 */
template <typename TStr>
TIndexOffU DifferenceCoverSample<TStr>::rank(TIndexOffU i) const {
	assert(built());
	assert_lt(i, this->text().length());
	uint32_t imodv = this->modv(i);
	assert_neq(0xffffffff, _dInv[imodv]); // must be in the sample
	TIndexOffU ioff = this->divv(i);
	assert_lt(ioff, _doffs[_dInv[imodv]+1] - _doffs[_dInv[imodv]]);
	TIndexOffU isaIIdx = _doffs[_dInv[imodv]] + ioff;
	assert_lt(isaIIdx, _isaPrime.size());
	TIndexOffU isaPrimeI = _isaPrime[isaIIdx];
	assert_leq(isaPrimeI, _isaPrime.size());
	return isaPrimeI;
}

/**
 * Return: < 0 if suffix i is lexicographically less than suffix j; > 0
 * if suffix j is lexicographically greater.
 */
template <typename TStr>
int64_t DifferenceCoverSample<TStr>::breakTie(TIndexOffU i, TIndexOffU j) const {
	assert(built());
	assert_neq(i, j);
	assert_lt(i, this->text().length());
	assert_lt(j, this->text().length());
	uint32_t imodv = this->modv(i);
	uint32_t jmodv = this->modv(j);
	assert_neq(0xffffffff, _dInv[imodv]); // must be in the sample
	assert_neq(0xffffffff, _dInv[jmodv]); // must be in the sample
	uint32_t dimodv = _dInv[imodv];
	uint32_t djmodv = _dInv[jmodv];
	TIndexOffU ioff = this->divv(i);
	TIndexOffU joff = this->divv(j);
	assert_lt(dimodv+1, _doffs.size());
	assert_lt(djmodv+1, _doffs.size());
	// assert_lt: expected (32024) < (0)
	assert_lt(ioff, _doffs[dimodv+1] - _doffs[dimodv]);
	assert_lt(joff, _doffs[djmodv+1] - _doffs[djmodv]);
	TIndexOffU isaIIdx = _doffs[dimodv] + ioff;
	TIndexOffU isaJIdx = _doffs[djmodv] + joff;
	assert_lt(isaIIdx, _isaPrime.size());
	assert_lt(isaJIdx, _isaPrime.size());
	assert_neq(isaIIdx, isaJIdx); // ranks must be unique
	TIndexOffU isaPrimeI = _isaPrime[isaIIdx];
	TIndexOffU isaPrimeJ = _isaPrime[isaJIdx];
	assert_neq(isaPrimeI, isaPrimeJ); // ranks must be unique
	assert_leq(isaPrimeI, _isaPrime.size());
	assert_leq(isaPrimeJ, _isaPrime.size());
	return (int64_t)isaPrimeI - (int64_t)isaPrimeJ;
}

/**
 * Given i, j, return the number of additional characters that need to
 * be compared before the difference cover can break the tie.
 */
template <typename TStr>
uint32_t DifferenceCoverSample<TStr>::tieBreakOff(TIndexOffU i, TIndexOffU j) const {
	const TStr& t = this->text();
	const EList<uint32_t>& dmap = this->dmap();
	assert(built());
	// It's actually convenient to allow this, but we're permitted to
	// return nonsense in that case
	if(t[i] != t[j]) return 0xffffffff;
	//assert_eq(t[i], t[j]); // if they're unequal, there's no tie to break
	uint32_t v = this->v();
	assert_neq(i, j);
	assert_lt(i, t.length());
	assert_lt(j, t.length());
	uint32_t imod = this->modv(i);
	uint32_t jmod = this->modv(j);
	uint32_t diffLeft = (jmod >= imod)? (jmod - imod) : (jmod + v - imod);
	uint32_t diffRight = (imod >= jmod)? (imod - jmod) : (imod + v - jmod);
	assert_lt(diffLeft, dmap.size());
	assert_lt(diffRight, dmap.size());
	uint32_t destLeft = dmap[diffLeft];   // offset where i needs to be
	uint32_t destRight = dmap[diffRight]; // offset where i needs to be
	assert(isCovered(destLeft));
	assert(isCovered(destLeft+diffLeft));
	assert(isCovered(destRight));
	assert(isCovered(destRight+diffRight));
	assert_lt(destLeft, v);
	assert_lt(destRight, v);
	uint32_t deltaLeft = (destLeft >= imod)? (destLeft - imod) : (destLeft + v - imod);
	if(deltaLeft == v) deltaLeft = 0;
	uint32_t deltaRight = (destRight >= jmod)? (destRight - jmod) : (destRight + v - jmod);
	if(deltaRight == v) deltaRight = 0;
	assert_lt(deltaLeft, v);
	assert_lt(deltaRight, v);
	assert(isCovered(i+deltaLeft));
	assert(isCovered(j+deltaLeft));
	assert(isCovered(i+deltaRight));
	assert(isCovered(j+deltaRight));
	return min(deltaLeft, deltaRight);
}

#endif /*DIFF_SAMPLE_H_*/