Codebase list coq / lintian-fixes/main theories / Reals / ArithProp.v
lintian-fixes/main

Tree @lintian-fixes/main (Download .tar.gz)

ArithProp.v @lintian-fixes/mainraw · history · blame

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rdefinitions Raxioms RIneq.
Require Import Rbasic_fun.
Require Import ArithRing.

Local Open Scope Z_scope.
Local Open Scope R_scope.

Lemma minus_neq_O : forall n i:nat, (i < n)%nat -> (n - i)%nat <> 0%nat.
Proof.
  intros n i Hlt.
  apply Nat.neq_0_lt_0, Nat.lt_add_lt_sub_r; assumption.
Qed.

Lemma le_minusni_n : forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat.
Proof.
  intros n i _.
  induction i as [ | i IHi ].
  - rewrite Nat.sub_0_r; reflexivity.
  - etransitivity; [ | apply IHi ].
    rewrite Nat.sub_succ_r.
    apply Nat.le_pred_l.
Qed.

Lemma lt_minus_O_lt : forall m n:nat, (m < n)%nat -> (0 < n - m)%nat.
Proof.
  intros n i Hlt.
  apply Nat.lt_add_lt_sub_r; assumption.
Qed.

Lemma even_odd_cor :
  forall n:nat, exists p : nat, n = (2 * p)%nat \/ n = S (2 * p).
Proof.
  intros n; exists (Nat.div2 n).
  case_eq (Nat.odd n); intros H; [right|left].
  - assert (Nat.b2n (Nat.odd n) = 1%nat) as Hb by now rewrite H.
    rewrite Nat.div2_odd at 1; rewrite Hb, Nat.add_1_r; reflexivity.
  - assert (Nat.b2n (Nat.odd n) = 0%nat) as Hb by now rewrite H.
    rewrite Nat.div2_odd at 1; rewrite Hb, Nat.add_0_r; reflexivity.
Qed.

  (* 2m <= 2n => m<=n *)
Lemma le_double : forall m n:nat, (2 * m <= 2 * n)%nat -> (m <= n)%nat.
Proof.
  intros; apply INR_le.
  assert (H1 := le_INR _ _ H).
  do 2 rewrite mult_INR in H1.
  apply Rmult_le_reg_l with (INR 2).
  apply lt_0_INR. apply Nat.lt_0_2.
  assumption.
Qed.

(** Here, we have the euclidian division *)
(** This lemma is used in the proof of sin_eq_0 : (sin x)=0<->x=kPI *)
Lemma euclidian_division :
  forall x y:R,
    y <> 0 ->
    exists k : Z, (exists r : R, x = IZR k * y + r /\ 0 <= r < Rabs y).
Proof.
  intros.
  set
    (k0 :=
      match Rcase_abs y with
	| left _ => (1 - up (x / - y))%Z
	| right _ => (up (x / y) - 1)%Z
      end).
  exists k0.
  exists (x - IZR k0 * y).
  split.
  ring.
  unfold k0; case (Rcase_abs y) as [Hlt|Hge].
  assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl;
    unfold Rminus.
  replace (- ((1 + - IZR (up (x / - y))) * y)) with
    ((IZR (up (x / - y)) - 1) * y); [ idtac | ring ].
  split.
  apply Rmult_le_reg_l with (/ - y).
  apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact Hlt.
  rewrite Rmult_0_r; rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
    rewrite Rinv_opp.
  rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
    rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ].
  apply Rplus_le_reg_l with (IZR (up (x / - y)) - x / - y).
  rewrite Rplus_0_r; unfold Rdiv; pattern (/ - y) at 4;
    rewrite Rinv_opp.
  replace
    (IZR (up (x * / - y)) - x * - / y +
      (- (x * / y) + - (IZR (up (x * / - y)) - 1))) with 1;
    [ idtac | ring ].
  elim H0; intros _ H1; unfold Rdiv in H1; exact H1.
  rewrite (Rabs_left _ Hlt); apply Rmult_lt_reg_l with (/ - y).
  apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact Hlt.
  rewrite <- Rinv_l_sym.
  rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
    rewrite Rinv_opp.
  rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
    rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ];
      apply Rplus_lt_reg_l with (IZR (up (x / - y)) - 1).
  replace (IZR (up (x / - y)) - 1 + 1) with (IZR (up (x / - y)));
    [ idtac | ring ].
  replace (IZR (up (x / - y)) - 1 + (- (x * / y) + - (IZR (up (x / - y)) - 1)))
    with (- (x * / y)); [ idtac | ring ].
  rewrite <- Ropp_mult_distr_r_reverse; rewrite <- Rinv_opp; elim H0;
    unfold Rdiv; intros H1 _; exact H1.
  apply Ropp_neq_0_compat; assumption.
  assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl;
    cut (0 < y).
  intro; unfold Rminus;
    replace (- ((IZR (up (x / y)) + -(1)) * y)) with ((1 - IZR (up (x / y))) * y);
      [ idtac | ring ].
  split.
  apply Rmult_le_reg_l with (/ y).
  apply Rinv_0_lt_compat; assumption.
  rewrite Rmult_0_r; rewrite (Rmult_comm (/ y)); rewrite Rmult_plus_distr_r;
    rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
      [ rewrite Rmult_1_r | assumption ];
      apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y);
	rewrite Rplus_0_r; unfold Rdiv;
	  replace
	    (IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with
	    1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2;
	      exact H2.
  rewrite (Rabs_right _ Hge); apply Rmult_lt_reg_l with (/ y).
  apply Rinv_0_lt_compat; assumption.
  rewrite <- (Rinv_l_sym _ H); rewrite (Rmult_comm (/ y));
    rewrite Rmult_plus_distr_r; rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
      [ rewrite Rmult_1_r | assumption ];
      apply Rplus_lt_reg_l with (IZR (up (x / y)) - 1);
	replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y)));
	  [ idtac | ring ];
	  replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with
	    (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv;
	      intros H2 _; exact H2.
  destruct (total_order_T 0 y) as [[Hlt|Heq]|Hgt].
  assumption.
  elim H; symmetry ; exact Heq.
  apply Rge_le in Hge; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hge Hgt)).
Qed.

Lemma tech8 : forall n i:nat, (n <= S n + i)%nat.
Proof.
  intros; induction  i as [| i Hreci].
  replace (S n + 0)%nat with (S n); [ apply Nat.le_succ_diag_r | ring ].
  replace (S n + S i)%nat with (S (S n + i)).
  apply le_S; assumption.
  apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring.
Qed.

(* TODO #14736 for compatibility only, should be removed after deprecation *)
Require Import Even Div2.