Codebase list coq / lintian-fixes/main theories / Reals / Rtrigo1.v
lintian-fixes/main

Tree @lintian-fixes/main (Download .tar.gz)

Rtrigo1.v @lintian-fixes/mainraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Export Rtrigo_fun.
Require Export Rtrigo_def.
Require Export Rtrigo_alt.
Require Export Cos_rel.
Require Export Cos_plus.
Require Import ZArith_base.
Require Import Zcomplements.
Require Import Lia.
Require Import Lra.
Require Import Ranalysis1.
Require Import Rsqrt_def. 
Require Import PSeries_reg.

Local Open Scope nat_scope.
Local Open Scope R_scope.

Lemma CVN_R_cos :
  forall fn:nat -> R -> R,
    fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) ->
    CVN_R fn.
Proof.
  unfold CVN_R in |- *; intros.
  cut ((r:R) <> 0).
  intro hyp_r; unfold CVN_r in |- *.
  exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)).
  cut
    { l:R |
        Un_cv
        (fun n:nat =>
          sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k)))
          n) l }.
  intros (x,p).
  exists x.
  split.
  apply p.
  intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult.
  rewrite pow_1_abs; rewrite Rmult_1_l.
  cut (0 < / INR (fact (2 * n))).
  intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
  apply Rmult_le_compat_l.
  left; apply H1.
  rewrite <- RPow_abs; apply pow_maj_Rabs.
  rewrite Rabs_Rabsolu.
  unfold Boule in H0; rewrite Rminus_0_r in H0.
  left; apply H0.
  apply Rinv_0_lt_compat; apply INR_fact_lt_0.
  apply Alembert_C2.
  intro; apply Rabs_no_R0.
  apply prod_neq_R0.
  apply Rinv_neq_0_compat.
  apply INR_fact_neq_0.
  apply pow_nonzero; assumption.
  assert (H0 := Alembert_cos).
  unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros.
  cut (0 < eps / Rsqr r).
  intro; elim (H0 _ H2); intros N0 H3.
  exists N0; intros.
  unfold R_dist in |- *; assert (H5 := H3 _ H4).
  unfold R_dist in H5;
    replace
    (Rabs
      (Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) /
        Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with
    (Rsqr r *
      Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))).
  apply Rmult_lt_reg_l with (/ Rsqr r).
  apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
  pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)).
  rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r;
    rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5.
  unfold Rsqr in |- *; apply prod_neq_R0; assumption.
  rewrite Rabs_inv.
  rewrite Rabs_right.
  reflexivity.
  apply Rle_ge; apply Rle_0_sqr.
  rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult;
    rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l;
      repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
  rewrite Rabs_inv.
  rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l;
    rewrite <- Rabs_inv.
  rewrite Rinv_inv.
  rewrite Rinv_mult.
  rewrite Rabs_inv.
  rewrite Rinv_inv.
  rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult;
    rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l.
  rewrite Rabs_inv.
  do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right.
  replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
  repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  unfold Rsqr in |- *; ring.
  apply pow_nonzero; assumption.
  replace (2 * S n)%nat with (S (S (2 * n))).
  simpl in |- *; ring.
  ring.
  apply Rle_ge; apply pow_le; left; apply (cond_pos r).
  apply Rle_ge; apply pow_le; left; apply (cond_pos r).
  unfold Rdiv in |- *; apply Rmult_lt_0_compat.
  apply H1.
  apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
  assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0;
    elim (Rlt_irrefl _ H0).
Qed.

(**********)
Lemma continuity_cos : continuity cos.
Proof.
  set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)).
  cut (CVN_R fn).
  intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
  intro cv; cut (forall n:nat, continuity (fn n)).
  intro; cut (forall x:R, cos x = SFL fn cv x).
  intro; cut (continuity (SFL fn cv) -> continuity cos).
  intro; apply H1.
  apply SFL_continuity; assumption.
  unfold continuity in |- *; unfold continuity_pt in |- *;
    unfold continue_in in |- *; unfold limit1_in in |- *;
      unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
        intros.
  elim (H1 x _ H2); intros.
  exists x0; intros.
  elim H3; intros.
  split.
  apply H4.
  intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6.
  intro; unfold cos, SFL in |- *.
  case (cv x) as (x1,HUn); case (exist_cos (Rsqr x)) as (x0,Hcos); intros.
  symmetry; eapply UL_sequence.
  apply HUn.
  unfold cos_in, infinite_sum in Hcos; unfold Un_cv in |- *; intros.
  elim (Hcos _ H0); intros N0 H1.
  exists N0; intros.
  unfold R_dist in H1; unfold R_dist, SP in |- *.
  replace (sum_f_R0 (fun k:nat => fn k x) n) with
  (sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n).
  apply H1; assumption.
  apply sum_eq; intros.
  unfold cos_n, fn in |- *; apply Rmult_eq_compat_l.
  unfold Rsqr in |- *; rewrite pow_sqr; reflexivity.
  intro; unfold fn in |- *;
    replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with
    (fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F;
    [ idtac | reflexivity ].
  apply continuity_mult.
  apply derivable_continuous; apply derivable_const.
  apply derivable_continuous; apply (derivable_pow (2 * n)).
  apply CVN_R_CVS; apply X.
  apply CVN_R_cos; unfold fn in |- *; reflexivity.
Qed.

Lemma sin_gt_cos_7_8 : sin (7 / 8) > cos (7 / 8).
Proof. 
assert (lo1 : 0 <= 7/8) by lra.
assert (up1 : 7/8 <= 4) by lra.
assert (lo : -2 <= 7/8) by lra.
assert (up : 7/8 <= 2) by lra.
destruct (pre_sin_bound _ 0 lo1 up1) as [lower _ ].
destruct (pre_cos_bound _ 0 lo up) as [_ upper].
apply Rle_lt_trans with (1 := upper).
apply Rlt_le_trans with (2 := lower).
unfold cos_approx, sin_approx.
simpl sum_f_R0.
unfold cos_term, sin_term; simpl fact; rewrite !INR_IZR_INZ.
simpl plus; simpl mult; simpl Z_of_nat.
field_simplify.
match goal with 
  |- IZR ?a / ?b < ?c / ?d =>
  apply Rmult_lt_reg_r with d;[apply (IZR_lt 0); reflexivity |
    unfold Rdiv at 2; rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_comm;
     [ |apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity ]];
  apply Rmult_lt_reg_r with b;[apply (IZR_lt 0); reflexivity | ]
end.
unfold Rdiv; rewrite !Rmult_assoc, Rinv_l, Rmult_1_r;
 [ | apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity].
rewrite <- !mult_IZR.
apply IZR_lt; reflexivity.
Qed.

Definition PI_2_aux : {z | 7/8 <= z <= 7/4 /\ -cos z = 0}.
assert (cc : continuity (fun r =>- cos r)).
 apply continuity_opp, continuity_cos.
assert (cvp : 0 < cos (7/8)).
 assert (int78 : -2 <= 7/8 <= 2) by (split; lra).
 destruct int78 as [lower upper].
 case (pre_cos_bound _ 0 lower upper).
 unfold cos_approx; simpl sum_f_R0; unfold cos_term.
 intros cl _; apply Rlt_le_trans with (2 := cl); simpl.
 lra.
assert (cun : cos (7/4) < 0).
 replace (7/4) with (7/8 + 7/8) by field.
 rewrite cos_plus.
 apply Rlt_minus; apply Rsqr_incrst_1.
   exact sin_gt_cos_7_8.
  apply Rlt_le; assumption.
 apply Rlt_le; apply Rlt_trans with (1 := cvp); exact sin_gt_cos_7_8.
apply IVT; auto; lra.
Qed.

Definition PI2 := proj1_sig PI_2_aux.

Definition PI := 2 * PI2.

Lemma cos_pi2 : cos PI2 = 0.
unfold PI2; case PI_2_aux; simpl.
intros x [_ q]; rewrite <- (Ropp_involutive (cos x)), q; apply Ropp_0.
Qed.

Lemma pi2_int : 7/8 <= PI2 <= 7/4.
unfold PI2; case PI_2_aux; simpl; tauto.
Qed.

(**********)
Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y.
Proof.
  intros; unfold Rminus in |- *; rewrite cos_plus.
  rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.

(**********)
Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1.
Proof.
  intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x);
    unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0.
Qed.

Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x).
Proof.
  intros x; rewrite <- (sin2_cos2 x); ring.
Qed.

Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x).
Proof.
  intro x; generalize (cos2 x); intro H1; rewrite H1.
  unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
    rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry  in |- *;
      apply Ropp_involutive.
Qed.

(**********)
Lemma cos_PI2 : cos (PI / 2) = 0.
Proof.
 unfold PI; generalize cos_pi2; replace ((2 * PI2)/2) with PI2 by field; tauto.
Qed.

Lemma sin_pos_tech : forall x, 0 < x < 2 -> 0 < sin x. 
intros x [int1 int2].
assert (lo : 0 <= x) by (apply Rlt_le; assumption).
assert (up : x <= 4) by (apply Rlt_le, Rlt_trans with (1:=int2); lra).
destruct (pre_sin_bound _ 0 lo up) as [t _]; clear lo up.
apply Rlt_le_trans with (2:= t); clear t.
unfold sin_approx; simpl sum_f_R0; unfold sin_term; simpl.
match goal with |- _ < ?a =>
  replace a with (x * (1 - x^2/6)) by (simpl; field)
end.
assert (t' : x ^ 2 <= 4).
 replace 4 with (2 ^ 2) by field.
 apply (pow_incr x 2); split; apply Rlt_le; assumption.
apply Rmult_lt_0_compat;[assumption | lra ].
Qed.

Lemma sin_PI2 : sin (PI / 2) = 1.
replace (PI / 2) with PI2 by (unfold PI; field).
assert (int' : 0 < PI2 < 2).
 destruct pi2_int; split; lra.
assert (lo2 := sin_pos_tech PI2 int').
assert (t2 : Rabs (sin PI2) = 1).
 rewrite <- Rabs_R1; apply Rsqr_eq_abs_0.
 rewrite Rsqr_1, sin2, cos_pi2, Rsqr_0, Rminus_0_r; reflexivity.
revert t2; rewrite Rabs_pos_eq;[| apply Rlt_le]; tauto.
Qed.

Lemma PI_RGT_0 : PI > 0.
Proof. unfold PI; destruct pi2_int; lra. Qed.

Lemma PI_4 : PI <= 4.
Proof. unfold PI; destruct pi2_int; lra. Qed.

(**********)
Lemma PI_neq0 : PI <> 0.
Proof.
  red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0;
    elim (Rlt_irrefl _ H0).
Qed.


(**********)
Lemma cos_PI : cos PI = -1.
Proof.
  replace PI with (PI / 2 + PI / 2).
  rewrite cos_plus.
  rewrite sin_PI2; rewrite cos_PI2.
  ring.
  symmetry  in |- *; apply double_var.
Qed.

Lemma sin_PI : sin PI = 0.
Proof.
  assert (H := sin2_cos2 PI).
  rewrite cos_PI in H.
  change (-1) with (-(1)) in H.
  rewrite <- Rsqr_neg in H.
  rewrite Rsqr_1 in H.
  cut (Rsqr (sin PI) = 0).
  intro; apply (Rsqr_eq_0 _ H0).
  apply Rplus_eq_reg_l with 1.
  rewrite Rplus_0_r; rewrite Rplus_comm; exact H.
Qed.

Lemma sin_bound : forall (a : R) (n : nat), 0 <= a -> a <= PI ->
       sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)).
Proof.
intros a n a0 api; apply pre_sin_bound.
 assumption.
apply Rle_trans with (1:= api) (2 := PI_4).
Qed.

Lemma cos_bound : forall (a : R) (n : nat), - PI / 2 <= a -> a <= PI / 2 ->
       cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)).
Proof.
intros a n lower upper; apply pre_cos_bound.
 apply Rle_trans with (2 := lower).
 apply Rmult_le_reg_r with 2; [lra |].
 replace ((-PI/2) * 2) with (-PI) by field.
 assert (t := PI_4); lra.
apply Rle_trans with (1 := upper).
apply Rmult_le_reg_r with 2; [lra | ].
replace ((PI/2) * 2) with PI by field.
generalize PI_4; intros; lra.
Qed.
(**********)
Lemma neg_cos : forall x:R, cos (x + PI) = - cos x.
Proof.
  intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.

(**********)
Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x).
Proof.
  intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

(**********)
Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y.
Proof.
  intros.
  rewrite (sin_cos (x + y)).
  replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ].
  rewrite (sin_cos (PI / 2 + x)).
  replace (PI / 2 + (PI / 2 + x)) with (x + PI).
  rewrite neg_cos.
  replace (cos (PI / 2 + x)) with (- sin x).
  ring.
  rewrite sin_cos; rewrite Ropp_involutive; reflexivity.
  pattern PI at 1 in |- *; rewrite (double_var PI); ring.
Qed.

Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y.
Proof.
  intros; unfold Rminus in |- *; rewrite sin_plus.
  rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.

(**********)
Definition tan (x:R) : R := sin x / cos x.

Lemma tan_plus :
  forall x y:R,
    cos x <> 0 ->
    cos y <> 0 ->
    cos (x + y) <> 0 ->
    1 - tan x * tan y <> 0 ->
    tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).
Proof.
  intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus;
    unfold Rdiv in |- *;
      replace (cos x * cos y - sin x * sin y) with
      (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))).
  rewrite Rinv_mult.
  repeat rewrite <- Rmult_assoc;
    replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with
    (sin x * / cos x + sin y * / cos y).
  reflexivity.
  rewrite Rmult_plus_distr_r; rewrite Rinv_mult.
  repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x));
    repeat rewrite <- Rmult_assoc.
  repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ].
  unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
    apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc;
      rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y));
        rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc;
          rewrite <- Rinv_r_sym.
  rewrite Rmult_1_l; rewrite (Rmult_comm (sin x));
    rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc;
      apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y));
        rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
  apply Rmult_1_r.
  assumption.
  assumption.
Qed.

(*******************************************************)
(** * Some properties of cos, sin and tan              *)
(*******************************************************)

Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x.
Proof.
  intro x; rewrite double; rewrite sin_plus.
  rewrite <- (Rmult_comm (sin x)); symmetry  in |- *; rewrite Rmult_assoc;
    apply double.
Qed.

Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x.
Proof.
  intro x; rewrite double; apply cos_plus.
Qed.

Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1.
Proof.
  intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc;
    rewrite cos_plus; generalize (sin2_cos2 x); rewrite double;
      intro H1; rewrite <- H1; ring_Rsqr.
Qed.

Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x.
Proof.
  intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double.
  generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus;
    ring_Rsqr.
Qed.

Lemma tan_2a :
  forall x:R,
    cos x <> 0 ->
    cos (2 * x) <> 0 ->
    1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x).
Proof.
  repeat rewrite double; intros; repeat rewrite double; rewrite double in H0;
    apply tan_plus; assumption.
Qed.

Lemma sin_neg : forall x:R, sin (- x) = - sin x.
Proof.
  apply sin_antisym.
Qed.

Lemma cos_neg : forall x:R, cos (- x) = cos x.
Proof.
  intro; symmetry  in |- *; apply cos_sym.
Qed.

Lemma tan_0 : tan 0 = 0.
Proof.
  unfold tan in |- *; rewrite sin_0; rewrite cos_0.
  unfold Rdiv in |- *; apply Rmult_0_l.
Qed.

Lemma tan_neg : forall x:R, tan (- x) = - tan x.
Proof.
  intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg;
    unfold Rdiv in |- *.
  apply Ropp_mult_distr_l_reverse.
Qed.

Lemma tan_minus :
  forall x y:R,
    cos x <> 0 ->
    cos y <> 0 ->
    cos (x - y) <> 0 ->
    1 + tan x * tan y <> 0 ->
    tan (x - y) = (tan x - tan y) / (1 + tan x * tan y).
Proof.
  intros; unfold Rminus in |- *; rewrite tan_plus.
  rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
    rewrite Rmult_opp_opp; reflexivity.
  assumption.
  rewrite cos_neg; assumption.
  assumption.
  rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
    rewrite Rmult_opp_opp; assumption.
Qed.

Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0.
Proof.
  replace (3 * (PI / 2)) with (PI + PI / 2).
  rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring.
  pattern PI at 1 in |- *; rewrite (double_var PI).
  ring.
Qed.

Lemma sin_2PI : sin (2 * PI) = 0.
Proof.
  rewrite sin_2a; rewrite sin_PI; ring.
Qed.

Lemma cos_2PI : cos (2 * PI) = 1.
Proof.
  rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring.
Qed.

Lemma neg_sin : forall x:R, sin (x + PI) = - sin x.
Proof.
  intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.

Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x.
Proof.
  intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI.
  ring.
Qed.

Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x.
Proof.
  intros x k; induction  k as [| k Hreck].
  simpl in |- *;  ring_simplify (x + 2 * 0 * PI).
  trivial.

  replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
  rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
  ring_simplify; trivial.
  rewrite S_INR in |- *;  ring.
Qed.

Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x.
Proof.
  intros x k; induction  k as [| k Hreck].
  simpl in |- *;  ring_simplify (x + 2 * 0 * PI).
  trivial.

  replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
  rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
  ring_simplify; trivial.
  rewrite S_INR in |- *;  ring.
Qed.

Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x.
Proof.
  intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x.
Proof.
  intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x).
Proof.
  intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.

Lemma PI2_RGT_0 : 0 < PI / 2.
Proof.
  unfold Rdiv in |- *; apply Rmult_lt_0_compat;
    [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ].
Qed.

Lemma SIN_bound : forall x:R, -1 <= sin x <= 1.
Proof.
  intro; destruct (Rle_dec (-1) (sin x)) as [Hle|Hnle].
  destruct (Rle_dec (sin x) 1) as [Hle'|Hnle'].
  split; assumption.
  cut (1 < sin x).
  intro;
    generalize
      (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1)
        (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H)));
      rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0.
        generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
          repeat rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l;
            rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
              generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
                repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
                  intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
  auto with real.
  cut (sin x < -1).
  intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H);
    change (-1) with (-(1));
    rewrite Ropp_involutive; clear H; intro;
      generalize
        (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1)
          (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H)));
        rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0;
          rewrite sin2 in H0; unfold Rminus in H0;
            generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
              rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l;
                rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
                  generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
                    repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
                      intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
  auto with real.
Qed.

Lemma COS_bound : forall x:R, -1 <= cos x <= 1.
Proof.
  intro; rewrite <- sin_shift; apply SIN_bound.
Qed.

Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0).
Proof.
  intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro;
    rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2;
      rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro;
        rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3).
Qed.

Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0.
Proof.
  intros x.
  destruct (Req_dec (cos x) 0). 2: now left.
  right. intros H'.
  apply (cos_sin_0 x).
  now split.
Qed.

(*****************************************************************)
(** * Using series definitions of cos and sin                    *)
(*****************************************************************)

Definition sin_lb (a:R) : R := sin_approx a 3.
Definition sin_ub (a:R) : R := sin_approx a 4.
Definition cos_lb (a:R) : R := cos_approx a 3.
Definition cos_ub (a:R) : R := cos_approx a 4.

Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a.
Proof.
  intros.
  unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *.
  set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))).
  replace
  (sum_f_R0
    (fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3)
    with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3);
      [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ].
  cut (forall n:nat, Un (S n) < Un n).
  intro; simpl in |- *.
  repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r;
    replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ];
    replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ];
    replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat);
    [ idtac | ring ];
    replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with
    (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ].
  apply Rplus_lt_0_compat.
  unfold Rminus in |- *; apply Rplus_lt_reg_l with (Un 1%nat);
    rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat));
      rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
        apply H1.
  unfold Rminus in |- *; apply Rplus_lt_reg_l with (Un 3%nat);
    rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat));
      rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
        apply H1.
  intro; unfold Un in |- *.
  cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat).
  intro; rewrite H1.
  rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc;
    apply Rmult_lt_compat_l.
  apply pow_lt; assumption.
  rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))).
  apply lt_INR_0; apply Nat.neq_0_lt_0.
  assert (H2 := fact_neq_0 (2 * n + 1)).
  red in |- *; intro; elim H2; assumption.
  rewrite <- Rinv_r_sym.
  apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))).
  apply lt_INR_0; apply Nat.neq_0_lt_0.
  assert (H2 := fact_neq_0 (2 * S n + 1)).
  red in |- *; intro; elim H2; assumption.
  rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym.
  do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4).
  apply Rmult_le_compat_l.
  apply pos_INR.
  simpl in |- *; rewrite Rmult_1_r; change 4 with (Rsqr 2);
    apply Rsqr_incr_1.
  apply Rle_trans with (PI / 2);
    [ assumption
      | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2;
        [ prove_sup0
          | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m;
            [ apply PI_4 | discrR ] ] ].
  left; assumption.
  left; prove_sup0.
  rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))).
  do 2 rewrite fact_simpl; do 2 rewrite mult_INR.
  repeat rewrite <- Rmult_assoc.
  rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))).
  apply Rmult_lt_compat_l.
  apply lt_INR_0; apply Nat.neq_0_lt_0.
  assert (H2 := fact_neq_0 (2 * n + 1)).
  red in |- *; intro; elim H2; assumption.
  do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n);
    unfold INR in |- *.
  replace (((1 + 1) * x + 1 + 1 + 1) * ((1 + 1) * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
  [ idtac | ring ].
  apply Rplus_lt_reg_l with (-(4)); rewrite Rplus_opp_l;
    replace (-(4) + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
    [ idtac | ring ].
  apply Rplus_le_lt_0_compat.
  cut (0 <= x).
  intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos;
    assumption || left; prove_sup.
  apply pos_INR.
  now apply IZR_lt.
  ring.
  apply INR_fact_neq_0.
  apply INR_fact_neq_0.
  ring.
Qed.

Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a.
Proof.
  intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0).
Qed.

Lemma COS :
  forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a.
Proof.
  intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0).
Qed.

(**********)
Lemma _PI2_RLT_0 : - (PI / 2) < 0.
Proof.
  assert (H := PI_RGT_0).
  lra.
Qed.

Lemma PI4_RLT_PI2 : PI / 4 < PI / 2.
Proof.
  assert (H := PI_RGT_0).
  lra.
Qed.

Lemma PI2_Rlt_PI : PI / 2 < PI.
Proof.
  assert (H := PI_RGT_0).
  lra.
Qed.

(***************************************************)
(** * Increasing and decreasing of [cos] and [sin] *)
(***************************************************)
Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x.
Proof.
  intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _;
    case (Rtotal_order x (PI / 2)); intro H2.
  apply Rlt_le_trans with (sin_lb x).
  apply sin_lb_gt_0; [ assumption | left; assumption ].
  assumption.
  elim H2; intro H3.
  rewrite H3; rewrite sin_PI2; apply Rlt_0_1.
  rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3);
    intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4).
  replace (PI + - (PI / 2)) with (PI / 2).
  intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6;
    change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6).
  rewrite Rplus_opp_r.
  intro H7;
    elim
      (SIN (PI - x) (Rlt_le 0 (PI - x) H7)
        (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI)));
      intros H8 _;
        generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5));
          intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8).
  field.
Qed.

Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x.
Proof.
  intros; rewrite cos_sin;
    generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H).
  rewrite Rplus_opp_r; intro H1;
    generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0);
      rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2).
Qed.

Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x.
Proof.
  intros x H1 H2; elim H1; intro H3;
    [ elim H2; intro H4;
      [ left; apply (sin_gt_0 x H3 H4)
        | rewrite H4; right; symmetry  in |- *; apply sin_PI ]
      | rewrite <- H3; right; symmetry  in |- *; apply sin_0 ].
Qed.

Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x.
Proof.
  intros x H1 H2; elim H1; intro H3;
    [ elim H2; intro H4;
      [ left; apply (cos_gt_0 x H3 H4)
        | rewrite H4; right; symmetry  in |- *; apply cos_PI2 ]
      | rewrite <- H3; rewrite cos_neg; right; symmetry  in |- *; apply cos_PI2 ].
Qed.

Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0.
Proof.
  intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
    rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar;
      rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI);
        [ rewrite (sin_period (x - PI) 1); apply sin_ge_0;
          [ replace (x - PI) with (x + - PI);
            [ rewrite Rplus_comm; replace 0 with (- PI + PI);
              [ apply Rplus_le_compat_l; assumption | ring ]
              | ring ]
            | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
              [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
                [ apply Rplus_le_compat_l; assumption | ring ]
                | ring ] ]
          | unfold INR in |- *; ring ].
Qed.

Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0.
Proof.
  intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
    rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar;
      rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI).
  rewrite cos_period; apply cos_ge_0.
  replace (- (PI / 2)) with (- PI + PI / 2) by field.
  unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l;
    assumption.
  unfold Rminus in |- *; rewrite Rplus_comm;
    replace (PI / 2) with (- PI + 3 * (PI / 2)) by field.
  apply Rplus_le_compat_l; assumption.
  unfold INR in |- *; ring.
Qed.

Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0.
Proof.
  intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x));
    apply Ropp_lt_gt_contravar; rewrite <- neg_sin;
      replace (x + PI) with (x - PI + 2 * INR 1 * PI);
      [ rewrite (sin_period (x - PI) 1); apply sin_gt_0;
        [ replace (x - PI) with (x + - PI);
          [ rewrite Rplus_comm; replace 0 with (- PI + PI);
            [ apply Rplus_lt_compat_l; assumption | ring ]
            | ring ]
          | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
            [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
              [ apply Rplus_lt_compat_l; assumption | ring ]
              | ring ] ]
        | unfold INR in |- *; ring ].
Qed.

Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0.
Proof.
  intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H);
    replace (2 * PI + - PI) with PI;
    [ intro H1; rewrite Rplus_comm in H1;
      generalize (Rplus_lt_compat_l (2 * PI) x 0 H0);
        intro H2; rewrite (Rplus_comm (2 * PI)) in H2;
          rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2;
            rewrite <- (sin_period x 1); unfold INR in |- *;
              replace (2 * 1 * PI) with (2 * PI);
              [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ]
      | ring ].
Qed.

Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0.
Proof.
  intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x));
    apply Ropp_lt_gt_contravar; rewrite <- neg_cos;
      replace (x + PI) with (x - PI + 2 * INR 1 * PI).
  rewrite cos_period; apply cos_gt_0.
  replace (- (PI / 2)) with (- PI + PI / 2) by field.
  unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l;
    assumption.
  unfold Rminus in |- *; rewrite Rplus_comm;
    replace (PI / 2) with (- PI + 3 * (PI / 2)) by field.
  apply Rplus_lt_compat_l; assumption.
  unfold INR in |- *; ring.
Qed.

Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x.
Proof.
  intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0;
    generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros;
      generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5;
        generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI);
          intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
  apply sin_gt_0; assumption.
  apply Rinv_0_lt_compat; apply cos_gt_0; assumption.
Qed.

Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0.
Proof.
  intros x H1 H2; unfold tan in |- *;
    generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0));
      intro H3; rewrite <- Ropp_0;
        replace (sin x / cos x) with (- (- sin x / cos x)).
  rewrite <- sin_neg; apply Ropp_gt_lt_contravar;
    change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *;
      apply Rmult_lt_0_compat.
  apply sin_gt_0.
  rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption.
  apply Rlt_trans with (PI / 2).
  rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption.
  apply PI2_Rlt_PI.
  apply Rinv_0_lt_compat; assumption.
  unfold Rdiv in |- *; ring.
Qed.

Lemma cos_ge_0_3PI2 :
  forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x.
Proof.
  intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1);
    unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x) by ring.
  generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1;
    generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1;
      intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1).
  rewrite Rplus_opp_r.
  intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3;
    generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3;
      intro H3;
        generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3).
  replace (2 * PI + - (3 * (PI / 2))) with (PI / 2) by field.
  intro H4;
    apply
      (cos_ge_0 (2 * PI - x)
        (Rlt_le (- (PI / 2)) (2 * PI - x)
          (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4).
Qed.

Lemma form1 :
  forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2) by field.
  rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2) by field.
  rewrite cos_plus; rewrite cos_minus; ring.
Qed.

Lemma form2 :
  forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2) by field.
  rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2) by field.
  rewrite cos_plus; rewrite cos_minus; ring.
Qed.

Lemma form3 :
  forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2).
  pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
  rewrite sin_plus; rewrite sin_minus; ring.
  pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
  pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.

Lemma form4 :
  forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2).
Proof.
  intros p q; pattern p at 1 in |- *;
    replace p with ((p - q) / 2 + (p + q) / 2) by field.
  pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2) by field.
  rewrite sin_plus; rewrite sin_minus; ring.

Qed.

Lemma sin_increasing_0 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y.
Proof.
  intros; cut (sin ((x - y) / 2) < 0).
  intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5.
  assert (Hyp : 0 < 2).
  prove_sup0.
  generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5).
  unfold Rdiv in |- *.
  rewrite <- Rmult_assoc.
  rewrite Rinv_r_simpl_m.
  rewrite Rmult_0_r.
  clear H5; intro H5; apply Rminus_lt; assumption.
  discrR.
  elim H5; intro H6.
  rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4).
  change (0 < (x - y) / 2) in H6;
    generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1).
  rewrite Ropp_involutive.
  intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7;
    generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7).
  rewrite <- double_var.
  intro H8.
  assert (Hyp : 0 < 2).
  prove_sup0.
  generalize
    (Rmult_le_compat_l (/ 2) (x - y) PI
      (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8).
  repeat rewrite (Rmult_comm (/ 2)).
  intro H9;
    generalize
      (sin_gt_0 ((x - y) / 2) H6
        (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI));
      intro H10;
        elim
          (Rlt_irrefl (sin ((x - y) / 2))
            (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)).
  generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3;
    rewrite form4 in H3;
      generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2).
  rewrite <- double_var.
  assert (Hyp : 0 < 2).
  prove_sup0.
  intro H4;
    generalize
      (Rmult_le_compat_l (/ 2) (x + y) PI
        (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4).
  repeat rewrite (Rmult_comm (/ 2)).
  clear H4; intro H4;
    generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1);
      replace (- (PI / 2) + - (PI / 2)) with (- PI) by field.
  intro H5;
    generalize
      (Rmult_le_compat_l (/ 2) (- PI) (x + y)
        (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5).
  replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm.
  replace (/ 2 * - PI) with (- (PI / 2)) by field.
  clear H5; intro H5; elim H4; intro H40.
  elim H5; intro H50.
  generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6;
    generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6).
  rewrite Rmult_0_r.
  clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7.
  assumption.
  generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7;
    generalize
      (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2))
        (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8;
      generalize
        (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3);
        intro H9; elim (Rlt_irrefl 0 H9).
  rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3;
    rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
      elim (Rlt_irrefl 0 H3).
  unfold Rdiv in H3.
  rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50;
    rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
      elim (Rlt_irrefl 0 H3).
Qed.

Lemma sin_increasing_1 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y.
Proof.
  intros; generalize (Rplus_lt_compat_l x x y H3); intro H4;
    generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H);
      replace (- (PI / 2) + - (PI / 2)) with (- PI) by field.
  assert (Hyp : 0 < 2).
  prove_sup0.
  intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6;
    generalize
      (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6);
      replace (/ 2 * - PI) with (- (PI / 2)) by field.
  replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm.
  clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5;
    rewrite Rplus_comm in H5;
      generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2).
  rewrite <- double_var.
  intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7;
    generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7);
      replace (/ 2 * PI) with (PI / 2) by apply Rmult_comm.
  replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm.
  clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1);
    rewrite Ropp_involutive; clear H1; intro H1;
      generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1;
        generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2;
          intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2);
            clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3);
              replace (- y + x) with (x - y) by apply Rplus_comm.
  rewrite Rplus_opp_l.
  intro H6;
    generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6);
      rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2) by apply Rmult_comm.
  clear H6; intro H6;
    generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2);
      replace (- (PI / 2) + - (PI / 2)) with (- PI) by field.
  intro H7;
    generalize
      (Rmult_le_compat_l (/ 2) (- PI) (x - y)
        (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7);
      replace (/ 2 * - PI) with (- (PI / 2)) by field.
  replace (/ 2 * (x - y)) with ((x - y) / 2) by apply Rmult_comm.
  clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4;
    generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8;
      generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8);
        clear H8; intro H8; cut (- PI < - (PI / 2)).
  intro H9;
    generalize
      (sin_lt_0_var ((x - y) / 2)
        (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6);
      intro H10;
        generalize
          (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 (
            2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11;
          rewrite Rmult_comm; assumption.
  apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI.
Qed.

Lemma sin_decreasing_0 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x.
Proof.
  intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3;
    generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3);
      repeat rewrite <- sin_neg;
        generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
          generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
            generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
              generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
                replace (- PI + x) with (x - PI) by apply Rplus_comm.
  replace (- PI + PI / 2) with (- (PI / 2)) by field.
  replace (- PI + y) with (y - PI) by apply Rplus_comm.
  replace (- PI + 3 * (PI / 2)) with (PI / 2) by field.
  replace (- (PI - x)) with (x - PI) by ring.
  replace (- (PI - y)) with (y - PI) by ring.
  intros; change (sin (y - PI) < sin (x - PI)) in H8;
    apply Rplus_lt_reg_l with (- PI); rewrite Rplus_comm.
  rewrite (Rplus_comm _ x).
  apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8).
Qed.

Lemma sin_decreasing_1 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x.
Proof.
  intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y);
    generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
      generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
        generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
          generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
            generalize (Rplus_lt_compat_l (- PI) x y H3);
              replace (- PI + PI / 2) with (- (PI / 2)) by field.
  replace (- PI + y) with (y - PI) by apply Rplus_comm.
  replace (- PI + 3 * (PI / 2)) with (PI / 2) by field.
  replace (- PI + x) with (x - PI) by apply Rplus_comm.
  intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg;
    replace (- (PI - x)) with (x - PI) by ring.
  replace (- (PI - y)) with (y - PI) by ring.
  apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4).
Qed.

Lemma sin_inj x y : -(PI/2)  <= x <= PI/2 -> -(PI/2) <= y <= PI/2 -> sin x = sin y -> x = y.
Proof.
intros xP yP Hsin.
destruct (total_order_T x y) as [[H|H]|H]; auto.
- assert (sin x < sin y).
    now apply sin_increasing_1; lra.
  now lra.
- assert (sin y < sin x).
    now apply sin_increasing_1; lra.
  now lra.
Qed.

Lemma cos_increasing_0 :
  forall x y:R,
    PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y.
Proof.
  intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y);
    rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
      unfold INR in |- *;
        replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field.
  replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field.
  repeat rewrite cos_shift; intro H5;
    generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
      generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
        generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
          generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4).
  replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
  replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
  replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field.
  replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field.
  clear H1 H2 H3 H4; intros H1 H2 H3 H4;
    apply Rplus_lt_reg_l with (-3 * (PI / 2));
      replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
  replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
  apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5).
Qed.

Lemma cos_increasing_1 :
  forall x y:R,
    PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y.
Proof.
  intros x y H1 H2 H3 H4 H5;
    generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
      generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
        generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
          generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4);
            generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5);
              rewrite <- (cos_neg x); rewrite <- (cos_neg y);
                rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
                  unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
  replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
  replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field.
  replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field.
  clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5;
    replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field.
  replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field.
  repeat rewrite cos_shift;
    apply
      (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1).
Qed.

Lemma cos_decreasing_0 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x.
Proof.
  intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3);
    repeat rewrite <- neg_cos; intro H4;
      change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4;
        rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H);
          generalize (Rplus_le_compat_l PI x PI H0);
            generalize (Rplus_le_compat_l PI 0 y H1);
              generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
  rewrite <- double.
  clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_l with PI;
    apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4).
Qed.

Lemma cos_decreasing_1 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x.
Proof.
  intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos;
    rewrite (Rplus_comm x); rewrite (Rplus_comm y);
      generalize (Rplus_le_compat_l PI 0 x H);
        generalize (Rplus_le_compat_l PI x PI H0);
          generalize (Rplus_le_compat_l PI 0 y H1);
            generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
  rewrite <- double.
  generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros;
    apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H).
Qed.

Lemma cos_inj x y : 0 <= x <= PI -> 0 <= y <= PI -> cos x = cos y -> x = y.
Proof.
intros xP yP Hcos.
destruct (total_order_T x y) as [[H|H]|H]; auto.
- assert (cos y < cos x).
    now apply cos_decreasing_1; lra.
  now lra.
- assert (cos x < cos y).
    now apply cos_decreasing_1; lra.
  now lra.
Qed.

Lemma tan_diff :
  forall x y:R,
    cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y).
Proof.
  intros; unfold tan in |- *; rewrite sin_minus.
  field.
  now split.
Qed.

Lemma tan_increasing_0 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y.
Proof.
  intros; generalize PI4_RLT_PI2; intro H4;
    generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
      intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
        generalize
          (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
            (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
          generalize
            (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
              (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
            generalize
              (not_eq_sym
                (Rlt_not_eq 0 (cos x)
                  (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
                    (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
              intro H6;
                generalize
                  (not_eq_sym
                    (Rlt_not_eq 0 (cos y)
                      (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
                        (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
                  intro H7; generalize (tan_diff x y H6 H7); intro H8;
                    generalize (Rlt_minus (tan x) (tan y) H3); clear H3;
                      intro H3; rewrite H8 in H3; cut (sin (x - y) < 0).
  intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1);
    rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10);
      clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
        intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
          clear H11; intro H11;
            generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
              generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10).
  replace (PI / 4 + PI / 4) with (PI / 2) by field.
  replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)) by field.
  intros; case (Rtotal_order 0 (x - y)); intro H14.
  generalize
    (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI));
    intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)).
  elim H14; intro H15.
  rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9).
  apply Rminus_lt; assumption.
  case (Rcase_abs (sin (x - y))); intro H9.
  assumption.
  generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9;
    generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
      generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
        generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
          replace (/ cos x * / cos y) with (/ (cos x * cos y)).
  intro H12;
    generalize
      (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9
        (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13;
      elim
        (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)).
  apply Rinv_mult.
Qed.

Lemma tan_increasing_1 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y.
Proof.
  intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4;
    generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
      intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
        generalize
          (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
            (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
          generalize
            (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
              (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
            generalize
              (not_eq_sym
                (Rlt_not_eq 0 (cos x)
                  (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
                    (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
              intro H6;
                generalize
                  (not_eq_sym
                    (Rlt_not_eq 0 (cos y)
                      (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
                        (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
                  intro H7; rewrite (tan_diff x y H6 H7);
                    generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
                      generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
                        generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
                          replace (/ cos x * / cos y) with (/ (cos x * cos y)).
  clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
    intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
      clear H11; intro H11;
        generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11).
  replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)) by field.
  clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3;
    clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI;
      intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1);
        clear H1; intro H1;
          generalize
            (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3);
            intro H2;
              generalize
                (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8);
                rewrite Rmult_0_r; intro H4; assumption.
  apply Rinv_mult.
Qed.

Lemma sin_incr_0 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y.
Proof.
  intros; case (Rtotal_order (sin x) (sin y)); intro H4;
    [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ]
          | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.

Lemma sin_incr_1 :
  forall x y:R,
    - (PI / 2) <= x ->
    x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (sin x) (sin y)); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma sin_decr_0 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x ->
    y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x.
Proof.
  intros; case (Rtotal_order (sin x) (sin y)); intro H4;
    [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.

Lemma sin_decr_1 :
  forall x y:R,
    x <= 3 * (PI / 2) ->
    PI / 2 <= x ->
    y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (sin x) (sin y)); intro H6;
          [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl y H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma cos_incr_0 :
  forall x y:R,
    PI <= x ->
    x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y.
Proof.
  intros; case (Rtotal_order (cos x) (cos y)); intro H4;
    [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ]
          | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.

Lemma cos_incr_1 :
  forall x y:R,
    PI <= x ->
    x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (cos x) (cos y)); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma cos_decr_0 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x.
Proof.
  intros; case (Rtotal_order (cos x) (cos y)); intro H4;
    [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.

Lemma cos_decr_1 :
  forall x y:R,
    0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (cos x) (cos y)); intro H6;
          [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8;
            rewrite H5 in H8; elim (Rlt_irrefl y H8)
            | elim H6; intro H7;
              [ right; symmetry  in |- *; assumption | left; assumption ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

Lemma tan_incr_0 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y.
Proof.
  intros; case (Rtotal_order (tan x) (tan y)); intro H4;
    [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order x y); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ]
          | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ].
Qed.

Lemma tan_incr_1 :
  forall x y:R,
    - (PI / 4) <= x ->
    x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y.
Proof.
  intros; case (Rtotal_order x y); intro H4;
    [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4)
      | elim H4; intro H5;
        [ case (Rtotal_order (tan x) (tan y)); intro H6;
          [ left; assumption
            | elim H6; intro H7;
              [ right; assumption
                | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8;
                  rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
          | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.

(**********)
Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0.
Proof.
  intros.
  elim H; intros.
  apply (Zcase_sign x0).
  intro.
  rewrite H1 in H0.
  simpl in H0.
  rewrite H0; rewrite Rmult_0_l; apply sin_0.
  intro.
  cut (0 <= x0)%Z.
  intro.
  elim (IZN x0 H2); intros.
  rewrite H3 in H0.
  rewrite <- INR_IZR_INZ in H0.
  rewrite H0.
  elim (even_odd_cor x1); intros.
  elim H4; intro.
  rewrite H5.
  rewrite mult_INR.
  simpl in |- *.
  rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
  rewrite sin_period.
  apply sin_0.
  rewrite H5.
  rewrite S_INR; rewrite mult_INR.
  simpl in |- *.
  rewrite Rmult_plus_distr_r.
  rewrite Rmult_1_l; rewrite sin_plus.
  rewrite sin_PI.
  rewrite Rmult_0_r.
  rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
  rewrite sin_period.
  rewrite sin_0; ring.
  apply le_IZR.
  left; apply IZR_lt.
  assert (H2 := Z.gt_lt_iff).
  elim (H2 x0 0%Z); intros.
  apply H3; assumption.
  intro.
  rewrite H0.
  replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)).
  cut (0 <= - x0)%Z.
  intro.
  rewrite <- Ropp_Ropp_IZR.
  elim (IZN (- x0) H2); intros.
  rewrite H3.
  rewrite <- INR_IZR_INZ.
  elim (even_odd_cor x1); intros.
  elim H4; intro.
  rewrite H5.
  rewrite mult_INR.
  simpl in |- *.
  rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
  rewrite sin_period.
  rewrite sin_0; ring.
  rewrite H5.
  rewrite S_INR; rewrite mult_INR.
  simpl in |- *.
  rewrite Rmult_plus_distr_r.
  rewrite Rmult_1_l; rewrite sin_plus.
  rewrite sin_PI.
  rewrite Rmult_0_r.
  rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
  rewrite sin_period.
  rewrite sin_0; ring.
  apply le_IZR.
  apply Rplus_le_reg_l with (IZR x0).
  rewrite Rplus_0_r.
  rewrite Ropp_Ropp_IZR.
  rewrite Rplus_opp_r.
  now apply Rlt_le, IZR_lt.
  rewrite <- sin_neg.
  rewrite Ropp_mult_distr_l_reverse.
  rewrite Ropp_involutive.
  reflexivity.
Qed.

Lemma sin_eq_0_0 (x:R) : sin x = 0 ->  exists k : Z, x = IZR k * PI.
Proof.
  intros Hx.
  destruct (euclidian_division x PI PI_neq0) as (q & r & EQ & Hr & Hr').
  exists q.
  rewrite <- (Rplus_0_r (_*_)). subst. apply Rplus_eq_compat_l.
  rewrite sin_plus in Hx.
  assert (H : sin (IZR q * PI) = 0) by (apply sin_eq_0_1; now exists q).
  rewrite H, Rmult_0_l, Rplus_0_l in Hx.
  destruct (Rmult_integral _ _ Hx) as [H'|H'].
  - exfalso.
    generalize (sin2_cos2 (IZR q * PI)).
    rewrite H, H', Rsqr_0, Rplus_0_l.
    intros; now apply R1_neq_R0.
  - rewrite Rabs_right in Hr'; [|left; apply PI_RGT_0].
    destruct Hr as [Hr | ->]; trivial.
    exfalso.
    generalize (sin_gt_0 r Hr Hr'). rewrite H'. apply Rlt_irrefl.
Qed.

Lemma cos_eq_0_0 (x:R) :
  cos x = 0 ->  exists k : Z, x = IZR k * PI + PI / 2.
Proof.
  rewrite cos_sin. intros Hx.
  destruct (sin_eq_0_0 (PI/2 + x) Hx) as (k,Hk). clear Hx.
  exists (k-1)%Z. rewrite <- Z_R_minus; simpl.
  symmetry in Hk. field_simplify [Hk]. field.
Qed.

Lemma cos_eq_0_1 (x:R) :
  (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0.
Proof.
  rewrite cos_sin. intros (k,->).
  replace (_ + _) with (IZR k * PI + PI) by field.
  rewrite neg_sin, <- Ropp_0. apply Ropp_eq_compat.
  apply sin_eq_0_1. now exists k.
Qed.

Lemma sin_eq_O_2PI_0 (x:R) :
  0 <= x -> x <= 2 * PI -> sin x = 0 ->
  x = 0 \/ x = PI \/ x = 2 * PI.
Proof.
  intros Lo Hi Hx. destruct (sin_eq_0_0 x Hx) as (k,Hk). clear Hx.
  destruct (Rtotal_order PI x) as [Hx|[Hx|Hx]].
  - right; right.
    clear Lo. subst.
    f_equal. change 2 with (IZR (- (-2))). f_equal.
    apply Z.add_move_0_l.
    apply one_IZR_lt1.
    rewrite plus_IZR; simpl.
    split.
    + replace (-1) with (-2 + 1) by ring.
      apply Rplus_lt_compat_l.
      apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|].
      now rewrite Rmult_1_l.
    + apply Rle_lt_trans with 0; [|apply Rlt_0_1].
      replace 0 with (-2 + 2) by ring.
      apply Rplus_le_compat_l.
      apply Rmult_le_reg_r with PI; [apply PI_RGT_0|].
      trivial.
  - right; left; auto.
  - left.
    clear Hi. subst.
    replace 0 with (IZR 0 * PI) by apply Rmult_0_l. f_equal. f_equal.
    apply one_IZR_lt1.
    split.
    + apply Rlt_le_trans with 0;
       [rewrite <- Ropp_0; apply Ropp_gt_lt_contravar, Rlt_0_1 | ].
      apply Rmult_le_reg_r with PI; [apply PI_RGT_0|].
      now rewrite Rmult_0_l.
    + apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|].
      now rewrite Rmult_1_l.
Qed.

Lemma sin_eq_O_2PI_1 (x:R) :
  0 <= x -> x <= 2 * PI ->
  x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0.
Proof.
  intros _ _ [ -> |[ -> | -> ]].
  - now rewrite sin_0.
  - now rewrite sin_PI.
  - now rewrite sin_2PI.
Qed.

Lemma cos_eq_0_2PI_0 (x:R) :
  0 <= x -> x <= 2 * PI -> cos x = 0 ->
  x = PI / 2 \/ x = 3 * (PI / 2).
Proof.
  intros Lo Hi Hx.
  destruct (Rtotal_order x (3 * (PI / 2))) as [LT|[EQ|GT]].
  - rewrite cos_sin in Hx.
    assert (Lo' : 0 <= PI / 2 + x).
    { apply Rplus_le_le_0_compat. apply Rlt_le, PI2_RGT_0. trivial. }
    assert (Hi' : PI / 2 + x <= 2 * PI).
    { apply Rlt_le.
      replace (2 * PI) with (PI / 2 + 3 * (PI / 2)) by field.
      now apply Rplus_lt_compat_l. }
    destruct (sin_eq_O_2PI_0 (PI / 2 + x) Lo' Hi' Hx) as [H|[H|H]].
    + exfalso.
      apply (Rplus_le_compat_l (PI/2)) in Lo.
      rewrite Rplus_0_r, H in Lo.
      apply (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 Lo)).
    + left.
      apply (Rplus_eq_compat_l (-(PI/2))) in H.
      ring_simplify in H. rewrite H. field.
    + right.
      apply (Rplus_eq_compat_l (-(PI/2))) in H.
      ring_simplify in H. rewrite H. field.
  - now right.
  - exfalso.
    destruct (cos_eq_0_0 x Hx) as (k,Hk). clear Hx Lo.
    subst.
    assert (LT : (k < 2)%Z).
    { apply lt_IZR. simpl.
      apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|].
      apply Rlt_le_trans with (IZR k * PI + PI/2); trivial.
      rewrite <- (Rplus_0_r (IZR k * PI)) at 1.
      apply Rplus_lt_compat_l. apply PI2_RGT_0. }
    assert (GT' : (1 < k)%Z).
    { apply lt_IZR. simpl.
      apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|rewrite Rmult_1_l].
      replace (3*(PI/2)) with (PI/2 + PI) in GT by field.
      rewrite Rplus_comm in GT.
      now apply Rplus_lt_reg_l in GT. }
    lia.
Qed.

Lemma cos_eq_0_2PI_1 (x:R) :
  0 <= x -> x <= 2 * PI ->
  x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0.
Proof.
 intros Lo Hi [ -> | -> ].
 - now rewrite cos_PI2.
 - now rewrite cos_3PI2.
Qed.