Codebase list coq / upstream/8.4_gamma0+really8.4beta2+dfsg tactics / rewrite.ml4
upstream/8.4_gamma0+really8.4beta2+dfsg

Tree @upstream/8.4_gamma0+really8.4beta2+dfsg (Download .tar.gz)

rewrite.ml4 @upstream/8.4_gamma0+really8.4beta2+dfsgraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i camlp4deps: "parsing/grammar.cma" i*)

open Pp
open Util
open Names
open Nameops
open Namegen
open Term
open Termops
open Sign
open Reduction
open Proof_type
open Declarations
open Tacticals
open Tacmach
open Evar_refiner
open Tactics
open Pattern
open Clenv
open Auto
open Glob_term
open Hiddentac
open Typeclasses
open Typeclasses_errors
open Classes
open Topconstr
open Pfedit
open Command
open Libnames
open Evd
open Compat

(** Typeclass-based generalized rewriting. *)

let classes_dirpath =
  make_dirpath (List.map id_of_string ["Classes";"Coq"])

let init_setoid () =
  if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
  else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]

let proper_class =
  lazy (class_info (Nametab.global (Qualid (dummy_loc, qualid_of_string "Coq.Classes.Morphisms.Proper"))))

let proper_proxy_class =
  lazy (class_info (Nametab.global (Qualid (dummy_loc, qualid_of_string "Coq.Classes.Morphisms.ProperProxy"))))

let proper_proj = lazy (mkConst (Option.get (pi3 (List.hd (Lazy.force proper_class).cl_projs))))

let make_dir l = make_dirpath (List.map id_of_string (List.rev l))

let try_find_global_reference dir s =
  let sp = Libnames.make_path (make_dir ("Coq"::dir)) (id_of_string s) in
    Nametab.global_of_path sp

let try_find_reference dir s =
  constr_of_global (try_find_global_reference dir s)

let gen_constant dir s = Coqlib.gen_constant "rewrite" dir s
let coq_eq = lazy(gen_constant ["Init"; "Logic"] "eq")
let coq_f_equal = lazy (gen_constant ["Init"; "Logic"] "f_equal")
let coq_all = lazy (gen_constant ["Init"; "Logic"] "all")
let coq_forall = lazy (gen_constant ["Classes"; "Morphisms"] "forall_def")
let impl = lazy (gen_constant ["Program"; "Basics"] "impl")
let arrow = lazy (gen_constant ["Program"; "Basics"] "arrow")

let reflexive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Reflexive")
let reflexive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "reflexivity")

let symmetric_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Symmetric")
let symmetric_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "symmetry")

let transitive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Transitive")
let transitive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "transitivity")

let coq_inverse = lazy (gen_constant (* ["Classes"; "RelationClasses"] "inverse" *)
			   ["Program"; "Basics"] "flip")

let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; mkProp; rel |])
(* let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; new_Type (); rel |]) *)

let forall_relation = lazy (gen_constant ["Classes"; "Morphisms"] "forall_relation")
let pointwise_relation = lazy (gen_constant ["Classes"; "Morphisms"] "pointwise_relation")

let respectful = lazy (gen_constant ["Classes"; "Morphisms"] "respectful")

let default_relation = lazy (gen_constant ["Classes"; "SetoidTactics"] "DefaultRelation")

let subrelation = lazy (gen_constant ["Classes"; "RelationClasses"] "subrelation")
let do_subrelation = lazy (gen_constant ["Classes"; "Morphisms"] "do_subrelation")
let apply_subrelation = lazy (gen_constant ["Classes"; "Morphisms"] "apply_subrelation")

let coq_relation = lazy (gen_constant ["Relations";"Relation_Definitions"] "relation")
let mk_relation a = mkApp (Lazy.force coq_relation, [| a |])
(* let mk_relation a = mkProd (Anonymous, a, mkProd (Anonymous, a, new_Type ())) *)

let rewrite_relation_class = lazy (gen_constant ["Classes"; "RelationClasses"] "RewriteRelation")

let arrow_morphism a b =
  if isprop a && isprop b then
    Lazy.force impl
  else Lazy.force arrow

let proper_type = lazy (constr_of_global (Lazy.force proper_class).cl_impl)

let proper_proxy_type = lazy (constr_of_global (Lazy.force proper_proxy_class).cl_impl)

let is_applied_rewrite_relation env sigma rels t =
  match kind_of_term t with
  | App (c, args) when Array.length args >= 2 ->
      let head = if isApp c then fst (destApp c) else c in
	if eq_constr (Lazy.force coq_eq) head then None
	else
	  (try
	      let params, args = array_chop (Array.length args - 2) args in
	      let env' = Environ.push_rel_context rels env in
	      let evd, evar = Evarutil.new_evar sigma env' (new_Type ()) in
	      let inst = mkApp (Lazy.force rewrite_relation_class, [| evar; mkApp (c, params) |]) in
	      let _ = Typeclasses.resolve_one_typeclass env' evd inst in
		Some (it_mkProd_or_LetIn t rels)
	  with _ -> None)
  | _ -> None

let _ =
  Equality.register_is_applied_rewrite_relation is_applied_rewrite_relation

let split_head = function
    hd :: tl -> hd, tl
  | [] -> assert(false)

let new_cstr_evar (goal,cstr) env t =
  let cstr', t = Evarutil.new_evar cstr env t in
    (goal, cstr'), t

let new_goal_evar (goal,cstr) env t =
  let goal', t = Evarutil.new_evar goal env t in
    (goal', cstr), t

let build_signature evars env m (cstrs : (types * types option) option list)
    (finalcstr : (types * types option) option) =
  let new_evar evars env t =
    new_cstr_evar evars env
      (* ~src:(dummy_loc, ImplicitArg (ConstRef (Lazy.force respectful), (n, Some na))) *) t
  in
  let mk_relty evars env ty obj =
    match obj with
      | None | Some (_, None) ->
	  let relty = mk_relation ty in
	    new_evar evars env relty
      | Some (x, Some rel) -> evars, rel
  in
  let rec aux env evars ty l =
    let t = Reductionops.whd_betadeltaiota env (fst evars) ty in
      match kind_of_term t, l with
      | Prod (na, ty, b), obj :: cstrs ->
	  if noccurn 1 b (* non-dependent product *) then
	    let ty = Reductionops.nf_betaiota (fst evars) ty in
	    let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
	    let evars, relty = mk_relty evars env ty obj in
	    let newarg = mkApp (Lazy.force respectful, [| ty ; b' ; relty ; arg |]) in
	      evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
	  else
	    let (evars, b, arg, cstrs) = aux (Environ.push_rel (na, None, ty) env) evars b cstrs in
	    let ty = Reductionops.nf_betaiota (fst evars) ty in
	    let pred = mkLambda (na, ty, b) in
	    let liftarg = mkLambda (na, ty, arg) in
	    let arg' = mkApp (Lazy.force forall_relation, [| ty ; pred ; liftarg |]) in
	      if obj = None then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
	      else error "build_signature: no constraint can apply on a dependent argument"
      | _, obj :: _ -> anomaly "build_signature: not enough products"
      | _, [] ->
	  (match finalcstr with
	  | None | Some (_, None) ->
	      let t = Reductionops.nf_betaiota (fst evars) ty in
	      let evars, rel = mk_relty evars env t None in
		evars, t, rel, [t, Some rel]
	  | Some (t, Some rel) -> evars, t, rel, [t, Some rel])
  in aux env evars m cstrs

let proper_proof env evars carrier relation x =
  let goal = mkApp (Lazy.force proper_proxy_type, [| carrier ; relation; x |])
  in new_cstr_evar evars env goal

let extends_undefined evars evars' =
  let f ev evi found = found || not (Evd.mem evars ev)
  in fold_undefined f evars' false
  

let find_class_proof proof_type proof_method env evars carrier relation =
  try
    let goal = mkApp (Lazy.force proof_type, [| carrier ; relation |]) in
    let evars', c = Typeclasses.resolve_one_typeclass env evars goal in
      if extends_undefined evars evars' then raise Not_found
      else mkApp (Lazy.force proof_method, [| carrier; relation; c |])
  with e when Logic.catchable_exception e -> raise Not_found

let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env

exception FoundInt of int

let array_find (arr: 'a array) (pred: int -> 'a -> bool): int =
  try
    for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (FoundInt i) done;
    raise Not_found
  with FoundInt i -> i

type hypinfo = {
  cl : clausenv;
  prf : constr;
  car : constr;
  rel : constr;
  l2r : bool;
  c1 : constr;
  c2 : constr;
  c  : (Tacinterp.interp_sign * Genarg.glob_constr_and_expr with_bindings) option;
  abs : (constr * types) option;
  flags : Unification.unify_flags;
}

let goalevars evars = fst evars
let cstrevars evars = snd evars

let evd_convertible env evd x y =
  try ignore(Evarconv.the_conv_x env x y evd); true
  with _ -> false

let rec decompose_app_rel env evd t = 
  match kind_of_term t with
  | App (f, args) -> 
      if Array.length args > 1 then 
	let fargs, args = array_chop (Array.length args - 2) args in
	  mkApp (f, fargs), args
      else 
	let (f', args) = decompose_app_rel env evd args.(0) in
	let ty = Typing.type_of env evd args.(0) in
	let f'' = mkLambda (Name (id_of_string "x"), ty,
	  mkLambda (Name (id_of_string "y"), lift 1 ty,
	    mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |])))
	in (f'', args)
  | _ -> error "The term provided is not an applied relation."

(*   let nc, c', cl = push_rel_context_to_named_context env c in *)
(*   let env' = reset_with_named_context nc env in *)

let decompose_applied_relation env sigma flags orig (c,l) left2right =
  let c' = c in
  let ctype = Typing.type_of env sigma c' in
  let find_rel ty =
    let eqclause = Clenv.make_clenv_binding_env_apply env sigma None (c',ty) l in
    let (equiv, args) = decompose_app_rel env eqclause.evd (Clenv.clenv_type eqclause) in
    let c1 = args.(0) and c2 = args.(1) in 
    let ty1, ty2 =
      Typing.type_of env eqclause.evd c1, Typing.type_of env eqclause.evd c2
    in
      if not (evd_convertible env eqclause.evd ty1 ty2) then None
      else
	Some { cl=eqclause; prf=(Clenv.clenv_value eqclause);
	       car=ty1; rel = equiv;
	       l2r=left2right; c1=c1; c2=c2; c=orig; abs=None;
	       flags = flags }
  in
    match find_rel ctype with
    | Some c -> c
    | None ->
	let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *)
	match find_rel (it_mkProd_or_LetIn t' ctx) with
	| Some c -> c
	| None -> error "The term does not end with an applied homogeneous relation."

open Tacinterp
let decompose_applied_relation_expr env sigma flags (is, (c,l)) left2right =
  let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma (c,l) in
    decompose_applied_relation env sigma flags (Some (is, (c,l))) cbl left2right

let rewrite_db = "rewrite"

let conv_transparent_state = (Idpred.empty, Cpred.full)

let _ = 
  Auto.add_auto_init
    (fun () ->
       Auto.create_hint_db false rewrite_db conv_transparent_state true)

let rewrite_transparent_state () =
  Auto.Hint_db.transparent_state (Auto.searchtable_map rewrite_db)

let rewrite_unif_flags = {
  Unification.modulo_conv_on_closed_terms = None;
  Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
  Unification.modulo_delta = empty_transparent_state;
  Unification.modulo_delta_types = full_transparent_state;
  Unification.check_applied_meta_types = true;
  Unification.resolve_evars = true;
  Unification.use_pattern_unification = true;
  Unification.use_meta_bound_pattern_unification = true;
  Unification.frozen_evars = ExistentialSet.empty;
  Unification.restrict_conv_on_strict_subterms = false;
  Unification.modulo_betaiota = false;
  Unification.modulo_eta = true;
  Unification.allow_K_in_toplevel_higher_order_unification = true
}

let rewrite2_unif_flags = 
  {  Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
     Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
     Unification.modulo_delta = empty_transparent_state;
     Unification.modulo_delta_types = conv_transparent_state;
     Unification.check_applied_meta_types = true;
     Unification.resolve_evars = true;
     Unification.use_pattern_unification = true;
     Unification.use_meta_bound_pattern_unification = true;
     Unification.frozen_evars = ExistentialSet.empty;
     Unification.restrict_conv_on_strict_subterms = false;
     Unification.modulo_betaiota = true;
     Unification.modulo_eta = true;
     Unification.allow_K_in_toplevel_higher_order_unification = true
  }

let general_rewrite_unif_flags () = 
  let ts = rewrite_transparent_state () in
    {  Unification.modulo_conv_on_closed_terms = Some ts;
       Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
       Unification.modulo_delta = ts;
       Unification.modulo_delta_types = ts;
       Unification.check_applied_meta_types = true;
       Unification.resolve_evars = true;
       Unification.use_pattern_unification = true;
       Unification.use_meta_bound_pattern_unification = true;
       Unification.frozen_evars = ExistentialSet.empty;
       Unification.restrict_conv_on_strict_subterms = false;
       Unification.modulo_betaiota = true;
       Unification.modulo_eta = true;
       Unification.allow_K_in_toplevel_higher_order_unification = true }

let convertible env evd x y =
  Reductionops.is_conv env evd x y

let refresh_hypinfo env sigma hypinfo =
  if hypinfo.abs = None then
    let {l2r=l2r; c=c;cl=cl;flags=flags} = hypinfo in
      match c with
	| Some c ->
	    (* Refresh the clausenv to not get the same meta twice in the goal. *)
	    decompose_applied_relation_expr env sigma flags c l2r;
	| _ -> hypinfo
  else hypinfo

let unify_eqn env sigma hypinfo t =
  if isEvar t then None
  else try
    let {cl=cl; prf=prf; car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in
    let left = if l2r then c1 else c2 in
    let env', prf, c1, c2, car, rel =
      match abs with
      | Some (absprf, absprfty) ->
	  let env' = clenv_unify ~flags:rewrite_unif_flags CONV left t cl in
	    env', prf, c1, c2, car, rel
      | None ->
	  let env' = clenv_unify ~flags:!hypinfo.flags CONV left t cl
	  in
	  let env' = Clenvtac.clenv_pose_dependent_evars true env' in
(* 	  let env' = Clenv.clenv_pose_metas_as_evars env' (Evd.undefined_metas env'.evd) in *)
	  let evd' = Typeclasses.resolve_typeclasses ~fail:true env'.env env'.evd in
	  let env' = { env' with evd = evd' } in
	  let nf c = Evarutil.nf_evar evd' (Clenv.clenv_nf_meta env' c) in
	  let c1 = nf c1 and c2 = nf c2
	  and car = nf car and rel = nf rel
	  and prf = nf (Clenv.clenv_value env') in
	  let ty1 = Typing.type_of env'.env env'.evd c1
	  and ty2 = Typing.type_of env'.env env'.evd c2
	  in
	    if convertible env env'.evd ty1 ty2 then (
	      if occur_meta_or_existential prf then
		hypinfo := refresh_hypinfo env env'.evd !hypinfo;
	      env', prf, c1, c2, car, rel)
	    else raise Reduction.NotConvertible
    in
    let res =
      if l2r then (prf, (car, rel, c1, c2))
      else
	try (mkApp (get_symmetric_proof env env'.evd car rel,
		   [| c1 ; c2 ; prf |]),
	    (car, rel, c2, c1))
	with Not_found ->
	  (prf, (car, inverse car rel, c2, c1))
    in Some (env'.evd, res)
  with e when Class_tactics.catchable e -> None

(* let unify_eqn env sigma hypinfo t = *)
(*   if isEvar t then None *)
(*   else try *)
(*     let {cl=cl; prf=prf; car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in *)
(*     let left = if l2r then c1 else c2 in *)
(*     let evd', prf, c1, c2, car, rel = *)
(*       match abs with *)
(*       | Some (absprf, absprfty) -> *)
(* 	  let env' = clenv_unify allowK ~flags:rewrite_unif_flags CONV left t cl in *)
(* 	    env'.evd, prf, c1, c2, car, rel *)
(*       | None -> *)
(* 	  let cl' = Clenv.clenv_pose_metas_as_evars cl (Evd.undefined_metas cl.evd) in *)
(* 	  let sigma = cl'.evd in *)
(* 	  let c1 = Clenv.clenv_nf_meta cl' c1 *)
(* 	  and c2 = Clenv.clenv_nf_meta cl' c2 *)
(* 	  and prf = Clenv.clenv_nf_meta cl' prf *)
(* 	  and car = Clenv.clenv_nf_meta cl' car *)
(* 	  and rel = Clenv.clenv_nf_meta cl' rel *)
(* 	  in *)
(* 	  let sigma' = *)
(* 	    try Evarconv.the_conv_x ~ts:empty_transparent_state env t c1 sigma *)
(* 	    with Reduction.NotConvertible _ ->  *)
(* 	      Evarconv.the_conv_x ~ts:conv_transparent_state env t c1 sigma *)
(* 	  in *)
(* 	  let sigma' = Evarconv.consider_remaining_unif_problems ~ts:conv_transparent_state env sigma' in *)
(* 	  let evd' = Typeclasses.resolve_typeclasses ~fail:true env sigma' in *)
(* 	  let nf c = Evarutil.nf_evar evd' c in *)
(* 	  let c1 = nf c1 and c2 = nf c2 *)
(* 	  and car = nf car and rel = nf rel *)
(* 	  and prf' = nf prf in *)
(* 	    if occur_meta_or_existential prf then *)
(* 	      hypinfo := refresh_hypinfo env evd' !hypinfo; *)
(* 	    evd', prf', c1, c2, car, rel *)
(*     in *)
(*     let res = *)
(*       if l2r then (prf, (car, rel, c1, c2)) *)
(*       else *)
(* 	try (mkApp (get_symmetric_proof env Evd.empty car rel, *)
(* 		   [| c1 ; c2 ; prf |]), *)
(* 	    (car, rel, c2, c1)) *)
(* 	with Not_found -> *)
(* 	  (prf, (car, inverse car rel, c2, c1)) *)
(*     in Some (evd', res) *)
(*   with Reduction.NotConvertible -> None *)
(*   | e when Class_tactics.catchable e -> None *)

let unfold_impl t =
  match kind_of_term t with
    | App (arrow, [| a; b |])(*  when eq_constr arrow (Lazy.force impl) *) ->
	mkProd (Anonymous, a, lift 1 b)
    | _ -> assert false

let unfold_all t =
  match kind_of_term t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
	(match kind_of_term b with
	  | Lambda (n, ty, b) -> mkProd (n, ty, b)
	  | _ -> assert false)
    | _ -> assert false

let unfold_forall t =
  match kind_of_term t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
	(match kind_of_term b with
	  | Lambda (n, ty, b) -> mkProd (n, ty, b)
	  | _ -> assert false)
    | _ -> assert false

let rec decomp_pointwise n c =
  if n = 0 then c
  else
    match kind_of_term c with
    | App (f, [| a; b; relb |]) when eq_constr f (Lazy.force pointwise_relation) ->
	decomp_pointwise (pred n) relb
    | App (f, [| a; b; arelb |]) when eq_constr f (Lazy.force forall_relation) ->
	decomp_pointwise (pred n) (Reductionops.beta_applist (arelb, [mkRel 1]))
    | _ -> raise (Invalid_argument "decomp_pointwise")
	
let rec apply_pointwise rel = function
  | arg :: args ->
      (match kind_of_term rel with
      | App (f, [| a; b; relb |]) when eq_constr f (Lazy.force pointwise_relation) ->
	  apply_pointwise relb args
      | App (f, [| a; b; arelb |]) when eq_constr f (Lazy.force forall_relation) ->
	  apply_pointwise (Reductionops.beta_applist (arelb, [arg])) args
      | _ -> raise (Invalid_argument "apply_pointwise"))
  | [] -> rel

let pointwise_or_dep_relation n t car rel =
  if noccurn 1 car then
    mkApp (Lazy.force pointwise_relation, [| t; lift (-1) car; lift (-1) rel |])
  else
    mkApp (Lazy.force forall_relation, 
	  [| t; mkLambda (n, t, car); mkLambda (n, t, rel) |])

let lift_cstr env sigma evars (args : constr list) c ty cstr =
  let start env car =
    match cstr with
    | None | Some (_, None) ->
	Evarutil.e_new_evar evars env (mk_relation car)
    | Some (ty, Some rel) -> rel
  in
  let rec aux env prod n = 
    if n = 0 then start env prod
    else
      match kind_of_term (Reduction.whd_betadeltaiota env prod) with
      | Prod (na, ty, b) ->
	  if noccurn 1 b then
	    let b' = lift (-1) b in
	    let rb = aux env b' (pred n) in
	      mkApp (Lazy.force pointwise_relation, [| ty; b'; rb |])
	  else
	    let rb = aux (Environ.push_rel (na, None, ty) env) b (pred n) in
	      mkApp (Lazy.force forall_relation, 
		    [| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |])
      | _ -> raise Not_found
  in 
  let rec find env c ty = function
    | [] -> None
    | arg :: args ->
	try Some (aux env ty (succ (List.length args)), c, ty, arg :: args)
	with Not_found ->
	  find env (mkApp (c, [| arg |])) (prod_applist ty [arg]) args
  in find env c ty args

let unlift_cstr env sigma = function
  | None -> None
  | Some codom -> Some (decomp_pointwise 1 codom)

type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }

let default_flags = { under_lambdas = true; on_morphisms = true; }

type evars = evar_map * evar_map (* goal evars, constraint evars *)

type rewrite_proof = 
  | RewPrf of constr * constr
  | RewCast of cast_kind

let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None

type rewrite_result_info = {
  rew_car : constr;
  rew_from : constr;
  rew_to : constr;
  rew_prf : rewrite_proof;
  rew_evars : evars;
}

type rewrite_result = rewrite_result_info option

type strategy = Environ.env -> identifier list -> constr -> types ->
  constr option -> evars -> rewrite_result option

let get_rew_rel r = match r.rew_prf with
  | RewPrf (rel, prf) -> rel
  | RewCast c -> mkApp (Coqlib.build_coq_eq (), [| r.rew_car; r.rew_from; r.rew_to |])

let get_rew_prf r = match r.rew_prf with
  | RewPrf (rel, prf) -> rel, prf 
  | RewCast c ->
    let rel = mkApp (Coqlib.build_coq_eq (), [| r.rew_car |]) in
      rel, mkCast (mkApp (Coqlib.build_coq_eq_refl (), [| r.rew_car; r.rew_from |]),
		   c, mkApp (rel, [| r.rew_from; r.rew_to |]))

let resolve_subrelation env avoid car rel prf rel' res =
  if eq_constr rel rel' then res
  else
(*   try let evd' = Evarconv.the_conv_x env rel rel' res.rew_evars in *)
(* 	{ res with rew_evars = evd' } *)
(*   with NotConvertible -> *)
    let app = mkApp (Lazy.force subrelation, [|car; rel; rel'|]) in
    let evars, subrel = new_cstr_evar res.rew_evars env app in
    let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in
      { res with
	rew_prf = RewPrf (rel', appsub);
	rew_evars = evars }

let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' cstr evars =
  let evars, morph_instance, proj, sigargs, m', args, args' =
    let first = try (array_find args' (fun i b -> b <> None)) 
      with Not_found -> raise (Invalid_argument "resolve_morphism") in
    let morphargs, morphobjs = array_chop first args in
    let morphargs', morphobjs' = array_chop first args' in
    let appm = mkApp(m, morphargs) in
    let appmtype = Typing.type_of env (goalevars evars) appm in
    let cstrs = List.map (Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf)) (Array.to_list morphobjs') in
      (* Desired signature *)
    let evars, appmtype', signature, sigargs = 
      build_signature evars env appmtype cstrs cstr
    in
      (* Actual signature found *)
    let cl_args = [| appmtype' ; signature ; appm |] in
    let app = mkApp (Lazy.force proper_type, cl_args) in
    let env' = Environ.push_named
      (id_of_string "do_subrelation", Some (Lazy.force do_subrelation), Lazy.force apply_subrelation)
      env
    in
    let evars, morph = new_cstr_evar evars env' app in
      evars, morph, morph, sigargs, appm, morphobjs, morphobjs'
  in
  let projargs, subst, evars, respars, typeargs =
    array_fold_left2
      (fun (acc, subst, evars, sigargs, typeargs') x y ->
	let (carrier, relation), sigargs = split_head sigargs in
	  match relation with
	  | Some relation ->
	      let carrier = substl subst carrier
	      and relation = substl subst relation in
	      (match y with
	      | None ->
		  let evars, proof = proper_proof env evars carrier relation x in
		    [ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
	      | Some r ->
		  [ snd (get_rew_prf r); r.rew_to; x ] @ acc, subst, evars, sigargs, r.rew_to :: typeargs')
	  | None ->
	      if y <> None then error "Cannot rewrite the argument of a dependent function";
	      x :: acc, x :: subst, evars, sigargs, x :: typeargs')
      ([], [], evars, sigargs, []) args args'
  in
  let proof = applistc proj (List.rev projargs) in
  let newt = applistc m' (List.rev typeargs) in
    match respars with
	[ a, Some r ] -> evars, proof, a, r, oldt, fnewt newt
      | _ -> assert(false)

let apply_constraint env avoid car rel prf cstr res =
  match cstr with
  | None -> res
  | Some r -> resolve_subrelation env avoid car rel prf r res

let eq_env x y = x == y

let apply_rule hypinfo loccs : strategy =
  let (nowhere_except_in,occs) = loccs in
  let is_occ occ =
    if nowhere_except_in then List.mem occ occs else not (List.mem occ occs) in
  let occ = ref 0 in
    fun env avoid t ty cstr evars ->
      if not (eq_env !hypinfo.cl.env env) then
	hypinfo := refresh_hypinfo env (goalevars evars) !hypinfo;
      let unif = unify_eqn env (goalevars evars) hypinfo t in
	if unif <> None then incr occ;
	match unif with
	| Some (evd', (prf, (car, rel, c1, c2))) when is_occ !occ ->
	    begin
	      if eq_constr t c2 then Some None
	      else
		let res = { rew_car = ty; rew_from = c1;
			    rew_to = c2; rew_prf = RewPrf (rel, prf); 
			    rew_evars = evd', cstrevars evars }
		in Some (Some (apply_constraint env avoid car rel prf cstr res))
	    end
	| _ -> None

let apply_lemma flags (evm,c) left2right loccs : strategy =
  fun env avoid t ty cstr evars ->
    let hypinfo = ref (decompose_applied_relation env (goalevars evars) flags None c left2right) in
      apply_rule hypinfo loccs env avoid t ty cstr evars

let make_leibniz_proof c ty r =
  let prf = 
    match r.rew_prf with
    | RewPrf (rel, prf) -> 
	let rel = mkApp (Lazy.force coq_eq, [| ty |]) in
	let prf =
	  mkApp (Lazy.force coq_f_equal,
		[| r.rew_car; ty;
		   mkLambda (Anonymous, r.rew_car, c);
		   r.rew_from; r.rew_to; prf |])
	in RewPrf (rel, prf)
    | RewCast k -> r.rew_prf
  in
    { r with rew_car = ty; 
      rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf }

open Elimschemes

let reset_env env =
  let env' = Global.env_of_context (Environ.named_context_val env) in
    Environ.push_rel_context (Environ.rel_context env) env'
      
let fold_match ?(force=false) env sigma c =
  let (ci, p, c, brs) = destCase c in
  let cty = Retyping.get_type_of env sigma c in
  let dep, pred, exists, sk = 
    let env', ctx, body =
      let ctx, pred = decompose_lam_assum p in
      let env' = Environ.push_rel_context ctx env in
	env', ctx, pred
    in
    let sortp = Retyping.get_sort_family_of env' sigma body in
    let sortc = Retyping.get_sort_family_of env sigma cty in
    let dep = not (noccurn 1 body) in
    let pred = if dep then p else
	it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx)
    in
    let sk = 
      if sortp = InProp then
	if sortc = InProp then
	  if dep then case_dep_scheme_kind_from_prop
	  else case_scheme_kind_from_prop
	else (
	  if dep
	  then case_dep_scheme_kind_from_type_in_prop
	  else case_scheme_kind_from_type)
      else ((* sortc <> InProp by typing *)
	if dep
	then case_dep_scheme_kind_from_type
	else case_scheme_kind_from_type)
    in 
    let exists = Ind_tables.check_scheme sk ci.ci_ind in
      if exists || force then
	dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind
      else raise Not_found
  in
  let app =
    let ind, args = Inductive.find_rectype env cty in
    let pars, args = list_chop ci.ci_npar args in
    let meths = List.map (fun br -> br) (Array.to_list brs) in
      applist (mkConst sk, pars @ [pred] @ meths @ args @ [c])
  in 
    sk, (if exists then env else reset_env env), app
      
let unfold_match env sigma sk app =
  match kind_of_term app with
  | App (f', args) when f' = mkConst sk ->
      let v = Environ.constant_value (Global.env ()) sk in
	Reductionops.whd_beta sigma (mkApp (v, args))
  | _ -> app

let is_rew_cast = function RewCast _ -> true | _ -> false

let coerce env avoid cstr res = 
  let rel, prf = get_rew_prf res in
    apply_constraint env avoid res.rew_car rel prf cstr res

let subterm all flags (s : strategy) : strategy =
  let rec aux env avoid t ty cstr evars =
    let cstr' = Option.map (fun c -> (ty, Some c)) cstr in
      match kind_of_term t with
      | App (m, args) ->
	  let rewrite_args success =
	    let args', evars', progress =
	      Array.fold_left
		(fun (acc, evars, progress) arg ->
		  if progress <> None && not all then (None :: acc, evars, progress)
		  else
		    let res = s env avoid arg (Typing.type_of env (goalevars evars) arg) None evars in
		      match res with
		      | Some None -> (None :: acc, evars, if progress = None then Some false else progress)
		      | Some (Some r) -> (Some r :: acc, r.rew_evars, Some true)
		      | None -> (None :: acc, evars, progress))
		([], evars, success) args
	    in
	      match progress with
	      | None -> None
	      | Some false -> Some None
	      | Some true ->
		  let args' = Array.of_list (List.rev args') in
		    if array_exists
		      (function 
			 | None -> false 
			 | Some r -> not (is_rew_cast r.rew_prf)) args'
		    then
		      let evars', prf, car, rel, c1, c2 = resolve_morphism env avoid t m args args' cstr' evars' in
		      let res = { rew_car = ty; rew_from = c1;
				  rew_to = c2; rew_prf = RewPrf (rel, prf);
				  rew_evars = evars' } 
		      in Some (Some res)
		    else 
		      let args' = array_map2
			(fun aorig anew ->
			   match anew with None -> aorig
			   | Some r -> r.rew_to) args args' 
		      in
		      let res = { rew_car = ty; rew_from = t;
				  rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast;
				  rew_evars = evars' }
		      in Some (Some res)

	  in
	    if flags.on_morphisms then
	      let evarsref = ref (snd evars) in
	      let mty = Typing.type_of env (goalevars evars) m in
	      let cstr', m, mty, argsl, args = 
		let argsl = Array.to_list args in
		  match lift_cstr env (goalevars evars) evarsref argsl m mty None with
		  | Some (cstr', m, mty, args) -> Some cstr', m, mty, args, Array.of_list args
		  | None -> None, m, mty, argsl, args
	      in
	      let m' = s env avoid m mty cstr' (fst evars, !evarsref) in
		match m' with
		| None -> rewrite_args None (* Standard path, try rewrite on arguments *)
		| Some None -> rewrite_args (Some false)
		| Some (Some r) ->
		    (* We rewrote the function and get a proof of pointwise rel for the arguments.
		       We just apply it. *)
		    let prf = match r.rew_prf with
		      | RewPrf (rel, prf) ->
			  RewPrf (apply_pointwise rel argsl, mkApp (prf, args))
		      | x -> x
		    in
		    let res =
		      { rew_car = prod_appvect r.rew_car args;
			rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
			rew_prf = prf;
			rew_evars = r.rew_evars }
		    in 
		      match prf with
		      | RewPrf (rel, prf) ->
			Some (Some (apply_constraint env avoid res.rew_car rel prf cstr res))
		      | _ -> Some (Some res)
	    else rewrite_args None
	      
      | Prod (n, x, b) when noccurn 1 b ->
	  let b = subst1 mkProp b in
	  let tx = Typing.type_of env (goalevars evars) x and tb = Typing.type_of env (goalevars evars) b in
	  let res = aux env avoid (mkApp (arrow_morphism tx tb, [| x; b |])) ty cstr evars in
	    (match res with
	    | Some (Some r) -> Some (Some { r with rew_to = unfold_impl r.rew_to })
	    | _ -> res)

      (* 		if x' = None && flags.under_lambdas then *)
      (* 		  let lam = mkLambda (n, x, b) in *)
      (* 		  let lam', occ = aux env lam occ None in *)
      (* 		  let res =  *)
      (* 		    match lam' with *)
      (* 		    | None -> None *)
      (* 		    | Some (prf, (car, rel, c1, c2)) -> *)
      (* 			Some (resolve_morphism env sigma t *)
      (* 				 ~fnewt:unfold_all *)
      (* 				 (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *)
      (* 				 cstr evars) *)
      (* 		  in res, occ *)
      (* 		else *)

      | Prod (n, dom, codom) ->
	  let lam = mkLambda (n, dom, codom) in
	  let app, unfold = 
	    if eq_constr ty mkProp then
	      mkApp (Lazy.force coq_all, [| dom; lam |]), unfold_all
	    else mkApp (Lazy.force coq_forall, [| dom; lam |]), unfold_forall
	  in
	  let res = aux env avoid app ty cstr evars in
	    (match res with
	     | Some (Some r) -> Some (Some { r with rew_to = unfold r.rew_to })
	     | _ -> res)

      | Lambda (n, t, b) when flags.under_lambdas ->
	  let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in
	  let env' = Environ.push_rel (n', None, t) env in
	  let b' = s env' avoid b (Typing.type_of env' (goalevars evars) b) (unlift_cstr env (goalevars evars) cstr) evars in
	    (match b' with
	    | Some (Some r) ->
		let prf = match r.rew_prf with
		  | RewPrf (rel, prf) ->
		      let rel = pointwise_or_dep_relation n' t r.rew_car rel in
		      let prf = mkLambda (n', t, prf) in
			RewPrf (rel, prf)
		  | x -> x
		in
		  Some (Some { r with
		    rew_prf = prf;
		    rew_car = mkProd (n, t, r.rew_car);
		    rew_from = mkLambda(n, t, r.rew_from);
		    rew_to = mkLambda (n, t, r.rew_to) })
	    | _ -> b')

      | Case (ci, p, c, brs) ->
	  let cty = Typing.type_of env (goalevars evars) c in
	  let cstr' = Some (mkApp (Lazy.force coq_eq, [| cty |])) in
	  let c' = s env avoid c cty cstr' evars in
	  let res = 
	    match c' with
	    | Some (Some r) ->
		let res = make_leibniz_proof (mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs)) ty r in
		  Some (Some (coerce env avoid cstr res))
	    | x ->
	      if array_for_all ((=) 0) ci.ci_cstr_ndecls then
		let cstr = Some (mkApp (Lazy.force coq_eq, [| ty |])) in
		let found, brs' = Array.fold_left 
		  (fun (found, acc) br ->
		   if found <> None then (found, fun x -> lift 1 br :: acc x)
		   else
		     match s env avoid br ty cstr evars with
		     | Some (Some r) -> (Some r, fun x -> mkRel 1 :: acc x)
		     | _ -> (None, fun x -> lift 1 br :: acc x))
		  (None, fun x -> []) brs
		in
		  match found with
		  | Some r ->
		    let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' x))) in
		      Some (Some (make_leibniz_proof ctxc ty r))
		  | None -> x
	      else
		match try Some (fold_match env (goalevars evars) t) with Not_found -> None with
		| None -> x
		| Some (cst, _, t') ->
		  match aux env avoid t' ty cstr evars with
		  | Some (Some prf) -> 
		    Some (Some { prf with
				 rew_from = t; rew_to = unfold_match env (goalevars evars) cst prf.rew_to })
		  | x' -> x
	  in 
	    (match res with
	     | Some (Some r) ->  
	       let rel, prf = get_rew_prf r in
		 Some (Some (apply_constraint env avoid r.rew_car rel prf cstr r))
	     | x -> x)
      | _ -> None
  in aux

let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags

(** Requires transitivity of the rewrite step, if not a reduction.
    Not tail-recursive. *)

let transitivity env avoid (res : rewrite_result_info) (next : strategy) : rewrite_result option =
  match next env avoid res.rew_to res.rew_car (get_opt_rew_rel res.rew_prf) res.rew_evars with
  | None -> None
  | Some None -> Some (Some res)
  | Some (Some res') ->
      match res.rew_prf with
      | RewCast c -> Some (Some { res' with rew_from = res.rew_from })
      | RewPrf (rew_rel, rew_prf) ->
	  match res'.rew_prf with
	  | RewCast _ -> Some (Some ({ res with rew_to = res'.rew_to }))
	  | RewPrf (res'_rel, res'_prf) ->
	      let prfty = mkApp (Lazy.force transitive_type, [| res.rew_car; rew_rel |]) in
	      let evars, prf = new_cstr_evar res'.rew_evars env prfty in
	      let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
				      rew_prf; res'_prf |])
	      in Some (Some { res' with rew_from = res.rew_from; 
		rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) })
		
(** Rewriting strategies.

    Inspired by ELAN's rewriting strategies:
    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)

module Strategies =
  struct

    let fail : strategy =
      fun env avoid t ty cstr evars -> None

    let id : strategy =
      fun env avoid t ty cstr evars -> Some None

    let refl : strategy =
      fun env avoid t ty cstr evars ->
	let evars, rel = match cstr with
	  | None -> new_cstr_evar evars env (mk_relation ty)
	  | Some r -> evars, r
	in
	let evars, proof =
	  let mty = mkApp (Lazy.force proper_proxy_type, [| ty ; rel; t |]) in
	    new_cstr_evar evars env mty
	in
	  Some (Some { rew_car = ty; rew_from = t; rew_to = t;
		       rew_prf = RewPrf (rel, proof); rew_evars = evars })

    let progress (s : strategy) : strategy =
      fun env avoid t ty cstr evars ->
	match s env avoid t ty cstr evars with
	| None -> None
	| Some None -> None
	| r -> r

    let seq fst snd : strategy =
      fun env avoid t ty cstr evars ->
	match fst env avoid t ty cstr evars with
	| None -> None
	| Some None -> snd env avoid t ty cstr evars
	| Some (Some res) -> transitivity env avoid res snd

    let choice fst snd : strategy =
      fun env avoid t ty cstr evars ->
	match fst env avoid t ty cstr evars with
	| None -> snd env avoid t ty cstr evars
	| res -> res

    let try_ str : strategy = choice str id

    let fix (f : strategy -> strategy) : strategy =
      let rec aux env = f (fun env -> aux env) env in aux

    let any (s : strategy) : strategy =
      fix (fun any -> try_ (seq s any))

    let repeat (s : strategy) : strategy =
      seq s (any s)

    let bu (s : strategy) : strategy =
      fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s'))

    let td (s : strategy) : strategy =
      fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s'))

    let innermost (s : strategy) : strategy =
      fix (fun ins -> choice (one_subterm ins) s)

    let outermost (s : strategy) : strategy =
      fix (fun out -> choice s (one_subterm out))

    let lemmas flags cs : strategy =
      List.fold_left (fun tac (l,l2r) ->
	choice tac (apply_lemma flags l l2r (false,[])))
	fail cs

    let inj_open c = (Evd.empty,c)

    let old_hints (db : string) : strategy =
      let rules = Autorewrite.find_rewrites db in
	lemmas rewrite_unif_flags
	  (List.map (fun hint -> (inj_open (hint.Autorewrite.rew_lemma, NoBindings), hint.Autorewrite.rew_l2r)) rules)

    let hints (db : string) : strategy =
      fun env avoid t ty cstr evars ->
      let rules = Autorewrite.find_matches db t in
      let lemma hint = (inj_open (hint.Autorewrite.rew_lemma, NoBindings), hint.Autorewrite.rew_l2r) in
      let lems = List.map lemma rules in
	lemmas rewrite_unif_flags lems env avoid t ty cstr evars

    let reduce (r : Redexpr.red_expr) : strategy =
      let rfn, ckind = Redexpr.reduction_of_red_expr r in
	fun env avoid t ty cstr evars ->
	  let t' = rfn env (goalevars evars) t in
	    if eq_constr t' t then
	      Some None
	    else
	      Some (Some { rew_car = ty; rew_from = t; rew_to = t';
			   rew_prf = RewCast ckind; rew_evars = evars })
	
    let fold c : strategy =
      fun env avoid t ty cstr evars ->
(* 	let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *)
	let sigma, c = Constrintern.interp_open_constr (goalevars evars) env c in
	let unfolded =
	  try Tacred.try_red_product env sigma c
	  with _ -> error "fold: the term is not unfoldable !"
	in
	  try
	    let sigma = Unification.w_unify env sigma CONV ~flags:Unification.elim_flags unfolded t in
	    let c' = Evarutil.nf_evar sigma c in
	      Some (Some { rew_car = ty; rew_from = t; rew_to = c';
			   rew_prf = RewCast DEFAULTcast; 
			   rew_evars = sigma, cstrevars evars })
	  with _ -> None
  

end

(** The strategy for a single rewrite, dealing with occurences. *)

let rewrite_strat flags occs hyp =
  let app = apply_rule hyp occs in
  let rec aux () =
    Strategies.choice app (subterm true flags (fun env -> aux () env))
  in aux ()

let get_hypinfo_ids {c = opt} =
  match opt with
  | None -> []
  | Some (is, gc) -> List.map fst is.lfun @ is.avoid_ids

let rewrite_with flags c left2right loccs : strategy =
  fun env avoid t ty cstr evars ->
    let gevars = goalevars evars in
    let hypinfo = ref (decompose_applied_relation_expr env gevars flags c left2right) in
    let avoid = get_hypinfo_ids !hypinfo @ avoid in
      rewrite_strat default_flags loccs hypinfo env avoid t ty cstr (gevars, cstrevars evars)

let apply_strategy (s : strategy) env avoid concl cstr evars =
  let res =
    s env avoid
 concl (Typing.type_of env (goalevars evars) concl)
      (Option.map snd cstr) evars
  in
    match res with
    | None -> None
    | Some None -> Some None
    | Some (Some res) ->
	Some (Some (res.rew_prf, res.rew_evars, res.rew_car, res.rew_from, res.rew_to))

let merge_evars (goal,cstr) = Evd.merge goal cstr
let solve_constraints env evars =
  Typeclasses.resolve_typeclasses env ~split:false ~fail:true
    (merge_evars evars)

let nf_zeta =
  Reductionops.clos_norm_flags (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA])

let map_rewprf f = function
  | RewPrf (rel, prf) -> RewPrf (f rel, f prf)
  | RewCast c -> RewCast c

exception RewriteFailure

type result = (evar_map * constr option * types) option option

let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result =
  let cstr =
    let sort = mkProp in
    let impl = Lazy.force impl in
      match is_hyp with
      | None -> (sort, inverse sort impl)
      | Some _ -> (sort, impl)
  in
  let evars = (sigma, Evd.empty) in
  let eq = apply_strategy strat env avoid concl (Some cstr) evars in
    match eq with
    | Some (Some (p, evars, car, oldt, newt)) ->
	let evars' = solve_constraints env evars in
	let p = map_rewprf (fun p -> nf_zeta env evars' (Evarutil.nf_evar evars' p)) p in
	let newt = Evarutil.nf_evar evars' newt in
	let abs = Option.map (fun (x, y) ->
				Evarutil.nf_evar evars' x, Evarutil.nf_evar evars' y) abs in
	let evars = (* Keep only original evars (potentially instantiated) and goal evars,
		       the rest has been defined and substituted already. *)
(* 	  let cstrs = cstrevars evars in *)
	    (* cstrs is small *)
	  let gevars = goalevars evars in
	    Evd.fold (fun ev evi acc -> 
			if Evd.mem gevars ev then Evd.add acc ev evi
			else acc) evars' Evd.empty
(* 	    Evd.fold (fun ev evi acc -> Evd.remove acc ev) cstrs evars' *)
	in
	let res =
	  match is_hyp with
	  | Some id ->
	      (match p with
	       | RewPrf (rel, p) ->
		   let term =
		     match abs with
		     | None -> p
		     | Some (t, ty) ->
			 mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |])
		   in
		     Some (evars, Some (mkApp (term, [| mkVar id |])), newt)
	       | RewCast c ->
		   Some (evars, None, newt))
		
	  | None ->
	      (match p with
	       | RewPrf (rel, p) ->
		   (match abs with
		    | None -> Some (evars, Some p, newt)
		    | Some (t, ty) ->
			let proof = mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |]) in
			  Some (evars, Some proof, newt))
	       | RewCast c -> Some (evars, None, newt))
	in Some res
    | Some None -> Some None
    | None -> None
		   
let rewrite_refine (evd,c) = 
  Tacmach.refine c

let cl_rewrite_clause_tac ?abs strat meta clause gl =
  let evartac evd = Refiner.tclEVARS evd in
  let treat res =
    match res with
    | None -> raise RewriteFailure
    | Some None ->
	tclFAIL 0 (str"setoid rewrite failed: no progress made")
    | Some (Some (undef, p, newt)) ->
	let tac = 
	  match clause, p with
	  | Some id, Some p ->
	      cut_replacing id newt (Tacmach.refine p)
	  | Some id, None -> 
	      change_in_hyp None newt (id, InHypTypeOnly)
	  | None, Some p ->
	      let name = next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
		tclTHENLAST
		  (Tacmach.internal_cut_no_check false name newt)
		  (tclTHEN (Tactics.revert [name]) (Tacmach.refine p))
	  | None, None -> change_in_concl None newt
	in tclTHEN (evartac undef) tac
  in
  let tac =
    try
      let concl, is_hyp =
	match clause with
	| Some id -> pf_get_hyp_typ gl id, Some id
	| None -> pf_concl gl, None
      in
      let sigma = project gl in
      let concl = Evarutil.nf_evar sigma concl in 
      let res = cl_rewrite_clause_aux ?abs strat (pf_env gl) [] sigma concl is_hyp in
	treat res
    with
    | Loc.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e)))
    | TypeClassError (env, (UnsatisfiableConstraints _ as e)) ->
	Refiner.tclFAIL_lazy 0
	  (lazy (str"setoid rewrite failed: unable to satisfy the rewriting constraints."
		 ++ fnl () ++ Himsg.explain_typeclass_error env e))
  in tac gl

open Goal
open Environ

let bind_gl_info f =
  bind concl (fun c -> bind env (fun v -> bind defs (fun ev -> f c v ev))) 

let fail l s =
  raise (Refiner.FailError (l, lazy s))

let new_refine c : Goal.subgoals Goal.sensitive =
  let refable = Goal.Refinable.make
    (fun handle -> Goal.Refinable.constr_of_open_constr handle true c) 
  in Goal.bind refable Goal.refine

let assert_replacing id newt tac = 
  let sens = bind_gl_info 
    (fun concl env sigma ->
       let nc' = 
	 Environ.fold_named_context
	   (fun _ (n, b, t as decl) nc' ->
	      if n = id then (n, b, newt) :: nc'
	      else decl :: nc')
	   env ~init:[]
       in
       let reft = Refinable.make 
	 (fun h -> 
	    Goal.bind (Refinable.mkEvar h
			 (Environ.reset_with_named_context (val_of_named_context nc') env) concl)
	      (fun ev -> 
		 Goal.bind (Refinable.mkEvar h env newt)
		   (fun ev' ->
		      let inst = 
			fold_named_context
			  (fun _ (n, b, t) inst ->
			     if n = id then ev' :: inst
			     else if b = None then mkVar n :: inst else inst)
			  env ~init:[]
		      in
		      let (e, args) = destEvar ev in
			Goal.return (mkEvar (e, Array.of_list inst)))))
       in Goal.bind reft Goal.refine)
  in Proofview.tclTHEN (Proofview.tclSENSITIVE sens) 
       (Proofview.tclFOCUS 2 2 tac)

let cl_rewrite_clause_newtac ?abs strat clause =
  let treat (res, is_hyp) = 
    match res with
    | None -> raise RewriteFailure
    | Some None ->
	fail 0 (str"setoid rewrite failed: no progress made")
    | Some (Some res) ->
	match is_hyp, res with
	| Some id, (undef, Some p, newt) ->
	    assert_replacing id newt (Proofview.tclSENSITIVE (new_refine (undef, p)))
	| Some id, (undef, None, newt) -> 
	    Proofview.tclSENSITIVE (Goal.convert_hyp false (id, None, newt))
	| None, (undef, Some p, newt) ->
	    let refable = Goal.Refinable.make
	      (fun handle -> 
		 Goal.bind env
		   (fun env -> Goal.bind (Refinable.mkEvar handle env newt)
		      (fun ev ->
			 Goal.Refinable.constr_of_open_constr handle true 
			   (undef, mkApp (p, [| ev |])))))
	    in
	      Proofview.tclSENSITIVE (Goal.bind refable Goal.refine)
	| None, (undef, None, newt) ->
	    Proofview.tclSENSITIVE (Goal.convert_concl false newt)
  in
  let info =
    bind_gl_info
      (fun concl env sigma ->
	 let ty, is_hyp =
	   match clause with
	   | Some id -> Environ.named_type id env, Some id
	   | None -> concl, None
	 in
	 let res = 
	   try cl_rewrite_clause_aux ?abs strat env [] sigma ty is_hyp 
	   with
	   | Loc.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e)))
	   | TypeClassError (env, (UnsatisfiableConstraints _ as e)) ->
	       fail 0 (str"setoid rewrite failed: unable to satisfy the rewriting constraints."
		       ++ fnl () ++ Himsg.explain_typeclass_error env e)
	 in return (res, is_hyp))
  in Proofview.tclGOALBINDU info (fun i -> treat i)
  
let cl_rewrite_clause_new_strat ?abs strat clause =
  init_setoid ();
    try cl_rewrite_clause_newtac ?abs strat clause
    with RewriteFailure ->
      fail 0 (str"setoid rewrite failed: strategy failed")

let cl_rewrite_clause_newtac' l left2right occs clause =
  Proof_global.run_tactic 
    (Proofview.tclFOCUS 1 1 
       (cl_rewrite_clause_new_strat (rewrite_with rewrite_unif_flags l left2right occs) clause))

let cl_rewrite_clause_strat strat clause gl =
    init_setoid ();
    let meta = Evarutil.new_meta() in
(*     let gl = { gl with sigma = Typeclasses.mark_unresolvables gl.sigma } in *)
     try cl_rewrite_clause_tac strat (mkMeta meta) clause gl
      with RewriteFailure ->
        tclFAIL 0 (str"setoid rewrite failed: strategy failed") gl

let cl_rewrite_clause l left2right occs clause gl =
  cl_rewrite_clause_strat (rewrite_with (general_rewrite_unif_flags ()) l left2right occs) clause gl

open Pp
open Pcoq
open Names
open Tacexpr
open Tacinterp
open Termops
open Genarg
open Extraargs

let occurrences_of = function
  | n::_ as nl when n < 0 -> (false,List.map abs nl)
  | nl ->
      if List.exists (fun n -> n < 0) nl then
	error "Illegal negative occurrence number.";
      (true,nl)

let apply_constr_expr c l2r occs = fun env avoid t ty cstr evars ->
  let evd, c = Constrintern.interp_open_constr (goalevars evars) env c in
    apply_lemma (general_rewrite_unif_flags ()) (evd, (c, NoBindings)) 
      l2r occs env avoid t ty cstr (evd, cstrevars evars)

let interp_constr_list env sigma =
  List.map (fun c -> 
	      let evd, c = Constrintern.interp_open_constr sigma env c in
		(evd, (c, NoBindings)), true)

open Pcoq

type constr_expr_with_bindings = constr_expr with_bindings
type glob_constr_with_bindings = glob_constr_and_expr with_bindings
type glob_constr_with_bindings_sign = interp_sign * glob_constr_and_expr with_bindings

let pr_glob_constr_with_bindings_sign _ _ _ (ge : glob_constr_with_bindings_sign) = Printer.pr_glob_constr (fst (fst (snd ge)))
let pr_glob_constr_with_bindings _ _ _ (ge : glob_constr_with_bindings) = Printer.pr_glob_constr (fst (fst ge))
let pr_constr_expr_with_bindings prc _ _ (ge : constr_expr_with_bindings) = prc (fst ge)
let interp_glob_constr_with_bindings ist gl c = Tacmach.project gl , (ist, c)
let glob_glob_constr_with_bindings ist l = Tacinterp.intern_constr_with_bindings ist l
let subst_glob_constr_with_bindings s c = subst_glob_with_bindings s c


ARGUMENT EXTEND glob_constr_with_bindings 
    PRINTED BY pr_glob_constr_with_bindings_sign

    INTERPRETED BY interp_glob_constr_with_bindings
    GLOBALIZED BY glob_glob_constr_with_bindings
    SUBSTITUTED BY subst_glob_constr_with_bindings

    RAW_TYPED AS constr_expr_with_bindings
    RAW_PRINTED BY pr_constr_expr_with_bindings

    GLOB_TYPED AS glob_constr_with_bindings
    GLOB_PRINTED BY pr_glob_constr_with_bindings
   
   [ constr_with_bindings(bl) ] -> [ bl ]
END

let _ =
  (Genarg.create_arg None "strategy" :
      ((strategy, Genarg.tlevel) Genarg.abstract_argument_type *
	  (strategy, Genarg.glevel) Genarg.abstract_argument_type *
	  (strategy, Genarg.rlevel) Genarg.abstract_argument_type))



let pr_strategy _ _ _ (s : strategy) = Pp.str "<strategy>"

let interp_strategy ist gl c = project gl , c
let glob_strategy ist l = l
let subst_strategy evm l = l


ARGUMENT EXTEND rewstrategy TYPED AS strategy
    PRINTED BY pr_strategy
    INTERPRETED BY interp_strategy
    GLOBALIZED BY glob_strategy
    SUBSTITUTED BY subst_strategy

    [ constr(c) ] -> [ apply_constr_expr c true all_occurrences ]
  | [ "<-" constr(c) ] -> [ apply_constr_expr c false all_occurrences ]
  | [ "subterms" rewstrategy(h) ] -> [ all_subterms h ]
  | [ "subterm" rewstrategy(h) ] -> [ one_subterm h ]
  | [ "innermost" rewstrategy(h) ] -> [ Strategies.innermost h ]
  | [ "outermost" rewstrategy(h) ] -> [ Strategies.outermost h ]
  | [ "bottomup" rewstrategy(h) ] -> [ Strategies.bu h ]
  | [ "topdown" rewstrategy(h) ] -> [ Strategies.td h ]
  | [ "id" ] -> [ Strategies.id ]
  | [ "refl" ] -> [ Strategies.refl ]
  | [ "progress" rewstrategy(h) ] -> [ Strategies.progress h ]
  | [ "fail" ] -> [ Strategies.fail ]
  | [ "try" rewstrategy(h) ] -> [ Strategies.try_ h ]
  | [ "any" rewstrategy(h) ] -> [ Strategies.any h ]
  | [ "repeat" rewstrategy(h) ] -> [ Strategies.repeat h ]
  | [ rewstrategy(h) ";" rewstrategy(h') ] -> [ Strategies.seq h h' ]
  | [ "(" rewstrategy(h) ")" ] -> [ h ]
  | [ "choice" rewstrategy(h) rewstrategy(h') ] -> [ Strategies.choice h h' ]
  | [ "old_hints" preident(h) ] -> [ Strategies.old_hints h ]
  | [ "hints" preident(h) ] -> [ Strategies.hints h ]
  | [ "terms" constr_list(h) ] -> [ fun env avoid t ty cstr evars ->
      Strategies.lemmas rewrite_unif_flags (interp_constr_list env (goalevars evars) h) env avoid t ty cstr evars ]
  | [ "eval" red_expr(r) ] -> [ fun env avoid t ty cstr evars ->
      let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in
      Strategies.reduce r_interp env avoid t ty cstr (sigma,cstrevars evars) ]
  | [ "fold" constr(c) ] -> [ Strategies.fold c ]
END

TACTIC EXTEND rewrite_strat
| [ "rewrite_strat" rewstrategy(s) "in" hyp(id) ] -> [ cl_rewrite_clause_strat s (Some id) ]
| [ "rewrite_strat" rewstrategy(s) ] -> [ cl_rewrite_clause_strat s None ]
END

let clsubstitute o c =
  let is_tac id = match fst (fst (snd c)) with GVar (_, id') when id' = id -> true | _ -> false in
    Tacticals.onAllHypsAndConcl
      (fun cl ->
	match cl with
	  | Some id when is_tac id -> tclIDTAC
	  | _ -> cl_rewrite_clause c o all_occurrences cl)

open Extraargs

TACTIC EXTEND substitute
| [ "substitute" orient(o) glob_constr_with_bindings(c) ] -> [ clsubstitute o c ]
END


(* Compatibility with old Setoids *)

TACTIC EXTEND setoid_rewrite
   [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) ]
   -> [ cl_rewrite_clause c o all_occurrences None ]
 | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "in" hyp(id) ] ->
      [ cl_rewrite_clause c o all_occurrences (Some id)]
 | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) ] ->
      [ cl_rewrite_clause c o (occurrences_of occ) None]
 | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) "in" hyp(id)] ->
      [ cl_rewrite_clause c o (occurrences_of occ) (Some id)]
 | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "in" hyp(id) "at" occurrences(occ)] ->
      [ cl_rewrite_clause c o (occurrences_of occ) (Some id)]
END

let cl_rewrite_clause_newtac_tac c o occ cl gl =
  cl_rewrite_clause_newtac' c o occ cl;
  tclIDTAC gl
  
TACTIC EXTEND GenRew
| [ "rew" orient(o) glob_constr_with_bindings(c) "in" hyp(id) "at" occurrences(occ) ] ->
    [ cl_rewrite_clause_newtac_tac c o (occurrences_of occ) (Some id) ]
| [ "rew" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) "in" hyp(id) ] ->
    [ cl_rewrite_clause_newtac_tac c o (occurrences_of occ) (Some id) ]
| [ "rew" orient(o) glob_constr_with_bindings(c) "in" hyp(id) ] ->
    [ cl_rewrite_clause_newtac_tac c o all_occurrences (Some id) ]
| [ "rew" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) ] ->
    [ cl_rewrite_clause_newtac_tac c o (occurrences_of occ) None ]
| [ "rew" orient(o) glob_constr_with_bindings(c) ] ->
    [ cl_rewrite_clause_newtac_tac c o all_occurrences None ]
END

let mkappc s l = CAppExpl (dummy_loc,(None,(Libnames.Ident (dummy_loc,id_of_string s))),l)

let declare_an_instance n s args =
  ((dummy_loc,Name n), Explicit,
  CAppExpl (dummy_loc, (None, Qualid (dummy_loc, qualid_of_string s)),
	   args))

let declare_instance a aeq n s = declare_an_instance n s [a;aeq]

let anew_instance global binders instance fields =
  new_instance binders instance (Some (CRecord (dummy_loc,None,fields)))
    ~global:(not (Vernacexpr.use_section_locality ())) ~generalize:false None

let declare_instance_refl global binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
  in anew_instance global binders instance
       [(Ident (dummy_loc,id_of_string "reflexivity"),lemma)]

let declare_instance_sym global binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
  in anew_instance global binders instance
       [(Ident (dummy_loc,id_of_string "symmetry"),lemma)]

let declare_instance_trans global binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
  in anew_instance global binders instance
       [(Ident (dummy_loc,id_of_string "transitivity"),lemma)]

let declare_relation ?(binders=[]) a aeq n refl symm trans =
  init_setoid ();
  let global = not (Vernacexpr.use_section_locality ()) in
  let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation"
  in ignore(anew_instance global binders instance []);
  match (refl,symm,trans) with
      (None, None, None) -> ()
    | (Some lemma1, None, None) ->
	ignore (declare_instance_refl global binders a aeq n lemma1)
    | (None, Some lemma2, None) ->
	ignore (declare_instance_sym global binders a aeq n lemma2)
    | (None, None, Some lemma3) ->
	ignore (declare_instance_trans global binders a aeq n lemma3)
    | (Some lemma1, Some lemma2, None) ->
	ignore (declare_instance_refl global binders a aeq n lemma1);
	ignore (declare_instance_sym global binders a aeq n lemma2)
    | (Some lemma1, None, Some lemma3) ->
	let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in
	let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
	let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder"
	in ignore(
	    anew_instance global binders instance
	      [(Ident (dummy_loc,id_of_string "PreOrder_Reflexive"), lemma1);
	       (Ident (dummy_loc,id_of_string "PreOrder_Transitive"),lemma3)])
    | (None, Some lemma2, Some lemma3) ->
	let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in
	let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
	let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER"
	in ignore(
	    anew_instance global binders instance
	      [(Ident (dummy_loc,id_of_string "PER_Symmetric"), lemma2);
	       (Ident (dummy_loc,id_of_string "PER_Transitive"),lemma3)])
     | (Some lemma1, Some lemma2, Some lemma3) ->
	let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in
	let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in
	let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
	let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
	in ignore(
	  anew_instance global binders instance
	    [(Ident (dummy_loc,id_of_string "Equivalence_Reflexive"), lemma1);
	     (Ident (dummy_loc,id_of_string "Equivalence_Symmetric"), lemma2);
	     (Ident (dummy_loc,id_of_string "Equivalence_Transitive"), lemma3)])

type 'a binders_argtype = (local_binder list, 'a) Genarg.abstract_argument_type

let _, _, rawwit_binders =
 (Genarg.create_arg None "binders" :
    Genarg.tlevel binders_argtype *
    Genarg.glevel binders_argtype *
    Genarg.rlevel binders_argtype)

open Pcoq.Constr

VERNAC COMMAND EXTEND AddRelation
  | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
	"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) (Some lemma2) None ]

  | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
	"as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) None None ]
  | [ "Add" "Relation" constr(a) constr(aeq)  "as" ident(n) ] ->
      [ declare_relation a aeq n None None None ]
END

VERNAC COMMAND EXTEND AddRelation2
    [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2)
      "as" ident(n) ] ->
      [ declare_relation a aeq n None (Some lemma2) None ]
  | [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)  "as" ident(n) ] ->
      [ declare_relation a aeq n None (Some lemma2) (Some lemma3) ]
END

VERNAC COMMAND EXTEND AddRelation3
    [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
      "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) None (Some lemma3) ]
  | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
      "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)
      "as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ]
  | [ "Add" "Relation" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
	"as" ident(n) ] ->
      [ declare_relation a aeq n None None (Some lemma3) ]
END

VERNAC COMMAND EXTEND AddParametricRelation
  | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq)
	"reflexivity" "proved" "by" constr(lemma1)
	"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) None ]
  | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq)
	"reflexivity" "proved" "by" constr(lemma1)
	"as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n (Some lemma1) None None ]
  | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq)  "as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n None None None ]
END

VERNAC COMMAND EXTEND AddParametricRelation2
    [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2)
      "as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n None (Some lemma2) None ]
  | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)  "as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n None (Some lemma2) (Some lemma3) ]
END

VERNAC COMMAND EXTEND AddParametricRelation3
    [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
      "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n (Some lemma1) None (Some lemma3) ]
  | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
      "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)
      "as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ]
  | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
	"as" ident(n) ] ->
      [ declare_relation ~binders:b a aeq n None None (Some lemma3) ]
END

let cHole = CHole (dummy_loc, None)

open Entries
open Libnames

let proper_projection r ty =
  let ctx, inst = decompose_prod_assum ty in
  let mor, args = destApp inst in
  let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
  let app = mkApp (Lazy.force proper_proj,
		  Array.append args [| instarg |]) in
    it_mkLambda_or_LetIn app ctx

let declare_projection n instance_id r =
  let ty = Global.type_of_global r in
  let c = constr_of_global r in
  let term = proper_projection c ty in
  let typ = Typing.type_of (Global.env ()) Evd.empty term in
  let ctx, typ = decompose_prod_assum typ in
  let typ =
    let n =
      let rec aux t =
	match kind_of_term t with
	    App (f, [| a ; a' ; rel; rel' |]) when eq_constr f (Lazy.force respectful) ->
	      succ (aux rel')
	  | _ -> 0
      in
      let init =
	match kind_of_term typ with
	    App (f, args) when eq_constr f (Lazy.force respectful) ->
	      mkApp (f, fst (array_chop (Array.length args - 2) args))
	  | _ -> typ
      in aux init
    in
    let ctx,ccl = Reductionops.splay_prod_n (Global.env()) Evd.empty (3 * n) typ
    in it_mkProd_or_LetIn ccl ctx
  in
  let typ = it_mkProd_or_LetIn typ ctx in
  let cst =
    { const_entry_body = term;
      const_entry_secctx = None;
      const_entry_type = Some typ;
      const_entry_opaque = false }
  in
    ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition))

let build_morphism_signature m =
  let env = Global.env () in
  let m = Constrintern.interp_constr Evd.empty env m in
  let t = Typing.type_of env Evd.empty m in
  let isevars = ref (Evd.empty, Evd.empty) in
  let cstrs =
    let rec aux t =
      match kind_of_term t with
	| Prod (na, a, b) ->
	    None :: aux b
	| _ -> []
    in aux t
  in
  let evars, t', sig_, cstrs = build_signature !isevars env t cstrs None in
  let _ = isevars := evars in
  let _ = List.iter
    (fun (ty, rel) ->
      Option.iter (fun rel ->
	let default = mkApp (Lazy.force default_relation, [| ty; rel |]) in
	let evars,c = new_cstr_evar !isevars env default in
	  isevars := evars)
	rel)
    cstrs
  in
  let morph =
    mkApp (Lazy.force proper_type, [| t; sig_; m |])
  in
  let evd = solve_constraints env !isevars in
  let m = Evarutil.nf_evar evd morph in
    Evarutil.check_evars env Evd.empty evd m; m

let default_morphism sign m =
  let env = Global.env () in
  let t = Typing.type_of env Evd.empty m in
  let evars, _, sign, cstrs =
    build_signature (Evd.empty,Evd.empty) env t (fst sign) (snd sign)
  in
  let morph =
    mkApp (Lazy.force proper_type, [| t; sign; m |])
  in
  let evars, mor = resolve_one_typeclass env (merge_evars evars) morph in
    mor, proper_projection mor morph

let add_setoid global binders a aeq t n =
  init_setoid ();
  let _lemma_refl = declare_instance_refl global binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
  let _lemma_sym = declare_instance_sym global binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
  let _lemma_trans = declare_instance_trans global binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
  let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
  in ignore(
    anew_instance global binders instance
      [(Ident (dummy_loc,id_of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
       (Ident (dummy_loc,id_of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
       (Ident (dummy_loc,id_of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])])

let add_morphism_infer glob m n =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let instance = build_morphism_signature m in
    if Lib.is_modtype () then
      let cst = Declare.declare_constant ~internal:Declare.KernelSilent instance_id
				(Entries.ParameterEntry (None,instance,None), Decl_kinds.IsAssumption Decl_kinds.Logical)
      in
	add_instance (Typeclasses.new_instance (Lazy.force proper_class) None glob (ConstRef cst));
	declare_projection n instance_id (ConstRef cst)
    else
      let kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Instance in
	Flags.silently
	  (fun () ->
	    Lemmas.start_proof instance_id kind instance
	      (fun _ -> function
		Libnames.ConstRef cst ->
		  add_instance (Typeclasses.new_instance (Lazy.force proper_class) None
				   glob (ConstRef cst));
		  declare_projection n instance_id (ConstRef cst)
		| _ -> assert false);
	    Pfedit.by (Tacinterp.interp <:tactic< Coq.Classes.SetoidTactics.add_morphism_tactic>>)) ();
	Flags.if_verbose (fun x -> msg (Printer.pr_open_subgoals x)) ()

let add_morphism glob binders m s n =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let instance =
    ((dummy_loc,Name instance_id), Explicit,
    CAppExpl (dummy_loc,
	     (None, Qualid (dummy_loc, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper")),
	     [cHole; s; m]))
  in
  let tac = Tacinterp.interp <:tactic<add_morphism_tactic>> in
    ignore(new_instance ~global:glob binders instance (Some (CRecord (dummy_loc,None,[])))
	      ~generalize:false ~tac ~hook:(declare_projection n instance_id) None)

VERNAC COMMAND EXTEND AddSetoid1
   [ "Add" "Setoid" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
     [ add_setoid (not (Vernacexpr.use_section_locality ())) [] a aeq t n ]
  | [ "Add" "Parametric" "Setoid" binders(binders) ":" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
     [	add_setoid (not (Vernacexpr.use_section_locality ())) binders a aeq t n ]
  | [ "Add" "Morphism" constr(m) ":" ident(n) ] ->
      [ add_morphism_infer (not (Vernacexpr.use_section_locality ())) m n ]
  | [ "Add" "Morphism" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] ->
      [ add_morphism (not (Vernacexpr.use_section_locality ())) [] m s n ]
  | [ "Add" "Parametric" "Morphism" binders(binders) ":" constr(m)
	"with" "signature" lconstr(s) "as" ident(n) ] ->
      [ add_morphism (not (Vernacexpr.use_section_locality ())) binders m s n ]
END

(** Bind to "rewrite" too *)

(** Taken from original setoid_replace, to emulate the old rewrite semantics where
    lemmas are first instantiated and then rewrite proceeds. *)

let check_evar_map_of_evars_defs evd =
 let metas = Evd.meta_list evd in
 let check_freemetas_is_empty rebus =
  Evd.Metaset.iter
   (fun m ->
     if Evd.meta_defined evd m then () else
      raise
	(Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m])))
 in
  List.iter
   (fun (_,binding) ->
     match binding with
        Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
         check_freemetas_is_empty rebus freemetas
      | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
                 {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
         check_freemetas_is_empty rebus1 freemetas1 ;
         check_freemetas_is_empty rebus2 freemetas2
   ) metas

let unification_rewrite flags l2r c1 c2 cl car rel but gl =
  let env = pf_env gl in
  let (evd',c') =
    try
      (* ~flags:(false,true) to allow to mark occurrences that must not be
         rewritten simply by replacing them with let-defined definitions
         in the context *)
      Unification.w_unify_to_subterm ~flags:rewrite_unif_flags env cl.evd ((if l2r then c1 else c2),but)
    with
	Pretype_errors.PretypeError _ ->
	  (* ~flags:(true,true) to make Ring work (since it really
             exploits conversion) *)
	  Unification.w_unify_to_subterm ~flags:flags
	    env cl.evd ((if l2r then c1 else c2),but)
  in
  let evd' = Typeclasses.resolve_typeclasses ~fail:false env evd' in
  let cl' = {cl with evd = evd'} in
  let cl' = Clenvtac.clenv_pose_dependent_evars true cl' in
  let nf c = Evarutil.nf_evar cl'.evd (Clenv.clenv_nf_meta cl' c) in
  let c1 = if l2r then nf c' else nf c1
  and c2 = if l2r then nf c2 else nf c'
  and car = nf car and rel = nf rel in
  check_evar_map_of_evars_defs cl'.evd;
  let prf = nf (Clenv.clenv_value cl') and prfty = nf (Clenv.clenv_type cl') in
  let cl' = { cl' with templval = mk_freelisted prf ; templtyp = mk_freelisted prfty } in
    {cl=cl'; prf=(mkRel 1); car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=None; abs=Some (prf, prfty);
     flags = flags}

let get_hyp gl evars (c,l) clause l2r =
  let flags = rewrite2_unif_flags in
  let hi = decompose_applied_relation (pf_env gl) evars flags None (c,l) l2r in
  let but = match clause with
    | Some id -> pf_get_hyp_typ gl id 
    | None -> Evarutil.nf_evar evars (pf_concl gl)
  in
    { unification_rewrite flags hi.l2r hi.c1 hi.c2 hi.cl hi.car hi.rel but gl with
	flags = rewrite_unif_flags }

let general_rewrite_flags = { under_lambdas = false; on_morphisms = true }

let apply_lemma gl (c,l) cl l2r occs =
  let sigma = project gl in
  let hypinfo = ref (get_hyp gl sigma (c,l) cl l2r) in
  let app = apply_rule hypinfo occs in
  let rec aux () =
    Strategies.choice app (subterm true general_rewrite_flags (fun env -> aux () env))
  in !hypinfo, aux ()

let general_s_rewrite cl l2r occs (c,l) ~new_goals gl =
  let meta = Evarutil.new_meta() in
  let hypinfo, strat = apply_lemma gl (c,l) cl l2r occs in
    try
      tclWEAK_PROGRESS 
	(tclTHEN
           (Refiner.tclEVARS hypinfo.cl.evd)
	   (cl_rewrite_clause_tac ~abs:hypinfo.abs strat (mkMeta meta) cl)) gl
    with RewriteFailure ->
      let {l2r=l2r; c1=x; c2=y} = hypinfo in
	raise (Pretype_errors.PretypeError
		  (pf_env gl,project gl,
		  Pretype_errors.NoOccurrenceFound ((if l2r then x else y), cl)))

let general_s_rewrite_clause x =
  init_setoid ();
  match x with
    | None -> general_s_rewrite None
    | Some id -> general_s_rewrite (Some id)

let _ = Equality.register_general_rewrite_clause general_s_rewrite_clause

(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)

let not_declared env ty rel =
  tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared " ++
		str ty ++ str" relation. Maybe you need to require the Setoid library")

let setoid_proof gl ty fn fallback =
  let env = pf_env gl in
    try
      let rel, args = decompose_app_rel env (project gl) (pf_concl gl) in
      let evm = project gl in
      let car = pi3 (List.hd (fst (Reduction.dest_prod env (Typing.type_of env evm rel)))) in
	fn env evm car rel gl
    with e ->
      try fallback gl
      with Hipattern.NoEquationFound ->
	  match e with
	  | Not_found ->
	      let rel, args = decompose_app_rel env (project gl) (pf_concl gl) in
		not_declared env ty rel gl
	  | _ -> raise e

let setoid_reflexivity gl =
  setoid_proof gl "reflexive"
    (fun env evm car rel -> apply (get_reflexive_proof env evm car rel))
    (reflexivity_red true)

let setoid_symmetry gl =
  setoid_proof gl "symmetric"
    (fun env evm car rel -> apply (get_symmetric_proof env evm car rel))
    (symmetry_red true)

let setoid_transitivity c gl =
  setoid_proof gl "transitive"
    (fun env evm car rel ->
      let proof = get_transitive_proof env evm car rel in
      match c with
      | None -> eapply proof
      | Some c -> apply_with_bindings (proof,Glob_term.ImplicitBindings [ c ]))
    (transitivity_red true c)

let setoid_symmetry_in id gl =
  let ctype = pf_type_of gl (mkVar id) in
  let binders,concl = decompose_prod_assum ctype in
  let (equiv, args) = decompose_app concl in
  let rec split_last_two = function
    | [c1;c2] -> [],(c1, c2)
    | x::y::z -> let l,res = split_last_two (y::z) in x::l, res
    | _ -> error "The term provided is not an equivalence."
  in
  let others,(c1,c2) = split_last_two args in
  let he,c1,c2 =  mkApp (equiv, Array.of_list others),c1,c2 in
  let new_hyp' =  mkApp (he, [| c2 ; c1 |]) in
  let new_hyp = it_mkProd_or_LetIn new_hyp'  binders in
    tclTHENS (Tactics.cut new_hyp)
      [ intro_replacing id;
	tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ] ]
      gl

let _ = Tactics.register_setoid_reflexivity setoid_reflexivity
let _ = Tactics.register_setoid_symmetry setoid_symmetry
let _ = Tactics.register_setoid_symmetry_in setoid_symmetry_in
let _ = Tactics.register_setoid_transitivity setoid_transitivity

TACTIC EXTEND setoid_symmetry
   [ "setoid_symmetry" ] -> [ setoid_symmetry ]
 | [ "setoid_symmetry" "in" hyp(n) ] -> [ setoid_symmetry_in n ]
END

TACTIC EXTEND setoid_reflexivity
[ "setoid_reflexivity" ] -> [ setoid_reflexivity ]
END

TACTIC EXTEND setoid_transitivity
  [ "setoid_transitivity" constr(t) ] -> [ setoid_transitivity (Some t) ]
| [ "setoid_etransitivity" ] -> [ setoid_transitivity None ]
END

let implify id gl =
  let (_, b, ctype) = pf_get_hyp gl id in
  let binders,concl = decompose_prod_assum ctype in
  let ctype' =
    match binders with
    | (_, None, ty as hd) :: tl when noccurn 1 concl ->
	let env = Environ.push_rel_context tl (pf_env gl) in
	let sigma = project gl in
	let tyhd = Typing.type_of env sigma ty
	and tyconcl = Typing.type_of (Environ.push_rel hd env) sigma concl in
	let app = mkApp (arrow_morphism tyhd (subst1 mkProp tyconcl), [| ty; (subst1 mkProp concl) |]) in
	  it_mkProd_or_LetIn app tl
    | _ -> ctype
  in convert_hyp_no_check (id, b, ctype') gl

TACTIC EXTEND implify
[ "implify" hyp(n) ] -> [ implify n ]
END

let rec fold_matches env sigma c =
  map_constr_with_full_binders Environ.push_rel 
    (fun env c ->
      match kind_of_term c with
      | Case _ ->
          let cst, env, c' = fold_match ~force:true env sigma c in
	    fold_matches env sigma c'
      | _ -> fold_matches env sigma c)
    env c

TACTIC EXTEND fold_match
[ "fold_match" constr(c) ] -> [ fun gl -> 
  let _, _, c' = fold_match ~force:true (pf_env gl) (project gl) c in
    change (Some (snd (pattern_of_constr (project gl) c))) c' onConcl gl ]
END

TACTIC EXTEND fold_matches
| [ "fold_matches" constr(c) ] -> [ fun gl -> 
  let c' = fold_matches (pf_env gl) (project gl) c in
    change (Some (snd (pattern_of_constr (project gl) c))) c' onConcl gl ]
END

TACTIC EXTEND myapply
| [ "myapply" global(id) constr_list(l) ] -> [ 
    fun gl -> 
      let gr = id in
      let _, impls = List.hd (Impargs.implicits_of_global gr) in
      let ty = Global.type_of_global gr in
      let env = pf_env gl in
      let evars = ref (project gl) in
      let app =
	let rec aux ty impls args args' =
	  match impls, kind_of_term ty with
	  | Some (_, _, (_, _)) :: impls, Prod (n, t, t') ->
	      let arg = Evarutil.e_new_evar evars env t in
		aux (subst1 arg t') impls args (arg :: args')
	  | None :: impls, Prod (n, t, t') ->
	      (match args with
	       | [] ->
		   if dependent (mkRel 1) t' then
		     let arg = Evarutil.e_new_evar evars env t in
		       aux (subst1 arg t') impls args (arg :: args')
		   else
		     let arg = Evarutil.mk_new_meta () in
		       evars := meta_declare (destMeta arg) t !evars;
		       aux (subst1 arg t') impls args (arg :: args')
	       | arg :: args -> 
		   aux (subst1 arg t') impls args (arg :: args'))
	  | _, _ -> mkApp (constr_of_global gr, Array.of_list (List.rev args'))
	in aux ty impls l []
      in
	tclTHEN (Refiner.tclEVARS !evars) (apply app) gl ]
END