Codebase list cppad / upstream/2014.04.08 multi_thread / multi_newton_work.cpp
upstream/2014.04.08

Tree @upstream/2014.04.08 (Download .tar.gz)

multi_newton_work.cpp @upstream/2014.04.08raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/* $Id: multi_newton_work.cpp 2506 2012-10-24 19:36:49Z bradbell $ */
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-12 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the 
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
/*
$begin multi_newton_work.cpp$$
$spell
	num
$$
$index multi_newton_work$$

$section Multi-threading Newton Method Utility Routines$$ 
$spell
	Cpp
	xlow
	xup
	itr
	df
	xout
	df
$$

$index multi_newton_setup$$
$index multi_newton_worker$$
$index multi_newton_combine$$
$index setup, multi_newton$$
$index worker, multi_newton$$
$index combine, multi_newton$$

$head Syntax$$
$icode%ok% = multi_newton_setup(
	%fun%, %num_sub%, %xlow%, %xup%, %epsilon%, %max_itr%, %num_threads%
)%$$
$codei%multi_newton_worker()
%$$
$icode%ok% = multi_newton_combine(%xout%)
%$$

$head Purpose$$
These routines aid in the computation of multiple zeros of a function
$latex f: [ a, b] \rightarrow {\bf R}$$.

$head multi_newton_setup$$
Calling this functions splits up the computation of the zeros
into different sub-intervals for each thread.

$subhead fun$$
The argument $icode fun$$ has prototype
$codei%
	void %fun% (double %x%, double& %f%, double& %df%)
%$$
This argument must evaluate the function $latex f(x)$$,
and its derivative $latex f^{(1)} (x)$$, 
using the syntax
$codei%
	%fun%(%x%, %f%, %df%)
%$$
where the arguments have the prototypes
$codei%
	double    %x% 
	double&   %f%
	double&   %df%
%$$.
The input values of $icode f$$ and $icode df$$ do not matter.
Upon return they are $latex f(x)$$ and $latex f^{(1)} (x)$$ respectively.

$subhead num_sub$$
The argument $icode num_sub$$ has prototype
$codei%
	size_t %num_sub%
%$$
It specifies the number of sub-intervals; i.e., $latex n$$ 
in to split the calculation into.

$head xlow$$
The argument $icode xlow$$ has prototype
$codei%
	double %xlow%
%$$
It specifies the lower limit for the entire search; i.e., $latex a$$.

$subhead xup$$
The argument $icode xup$$ has prototype
$codei%
	double %xup%
%$$
It specifies the upper limit for the entire search; i.e., $latex b$$.

$subhead epsilon$$
The argument $icode epsilon$$ has prototype
$codei%
	double %epsilon%
%$$
It specifies the convergence criteria for Newton's method in terms
of how small the function value $latex | f(x) | \leq \varepsilon$$.

$head max_itr$$
The argument $icode max_itr$$ has prototype
$codei%
	size_t %max_itr%
%$$
It specifies the maximum number of iterations of Newton's method to try
before giving up on convergence.

$subhead num_threads$$
This argument has prototype
$codei%
	size_t %num_threads%
%$$
It specifies the number of threads that are available for this test.
If it is zero, the test is run without multi-threading.

$head multi_newton_worker$$
Calling this function does the computation for one thread.
Following a call to $code multi_newton_setup$$,
this function should be called by each of the $icode num_threads$$ threads. 

$head multi_newton_combine$$
After the $icode num_threads$$ threads have completed their
calls to $code multi_newton_worker$$,
this function call will combine the results and return the final 
set of approximate zeros for $latex f(x)$$.

$subhead xout$$
The argument $icode xout$$ has the prototype
$codei%
	CppAD::vector<double>& %xout%
%$$
The input size and value of the elements of $icode xout$$ do not matter.
Upon return from $code multi_newton_combine$$,
the size of $icode xout$$ is less than or equal $latex n$$ and
$codei%
	| %f%( %xout%[%i%] ) | <= %epsilon%
%$$ 
for each valid index $icode i$$. 
In addition, the elements of $icode xout$$ are in ascending order and
$codei%
	%xout%[i+1] - %xout%[%i%] >=  0.5 * (%xup% - %xlow%) / %num_sub%
%$$


$head Source$$
$code
$verbatim%multi_thread/multi_newton_work.cpp%0%// BEGIN C++%// END C++%1%$$
$$


$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include "multi_newton_work.hpp"

# define USE_THREAD_ALLOC_FOR_WORK_ALL 1

namespace {
	using CppAD::thread_alloc;

	// This vector template class frees all memory when resized to zero.
	// In addition, its memory allocation works well during multi-threading.
	using CppAD::vector;

	// number of threads in previous call to multi_newton_setup
	size_t num_threads_ = 0;
	// convergence criteria in previous call to multi_newton_setup
	double epsilon_ = 0.;
	// maximum number of iterations in previous call to multi_newton_setup
	size_t max_itr_ = 0;
	// length for all sub-intervals
	double sub_length_ = 0.;
	// function we are finding zeros of in previous call to multi_newton_setup
	void (*fun_)(double x, double& f, double& df) = 0;

	// structure with information for one thread
	typedef struct {
		// number of sub intervals (worker input)
		size_t num_sub;
		// beginning of interval (worker input)
		double xlow;
		// end of interval (worker input)
		double xup; 
		// vector of zero candidates (worker output)
		// after call to multi_newton_setup:   x.size() == 0
		// after call to multi_newton_work:    x.size() is number of zeros
		// after call to multi_newton_combine: x.size() == 0
		vector<double> x;  
		// false if an error occurs, true otherwise (worker output)
		bool   ok;
	} work_one_t;
	// vector with information for all threads
	// after call to multi_newton_setup:   work_all.size() == num_threads
	// after call to multi_newton_combine: work_all.size() == 0
	// (use pointers instead of values to avoid false sharing)
	vector<work_one_t*> work_all_;
}
// -----------------------------------------------------------------------
// do the work for one thread
void multi_newton_worker(void)
{	using CppAD::vector;

	// Split [xlow, xup] into num_sub intervales and
	// look for one zero in each sub-interval.
	size_t thread_num    = thread_alloc::thread_num();
	size_t num_threads   = std::max(num_threads_, size_t(1));
	bool   ok            = thread_num < num_threads;
	size_t num_sub       = work_all_[thread_num]->num_sub;
	double xlow          = work_all_[thread_num]->xlow;
	double xup           = work_all_[thread_num]->xup;
	vector<double>& x    = work_all_[thread_num]->x;

	// check arguments
	ok &= max_itr_ > 0;
	ok &= num_sub > 0;
	ok &= xlow < xup;
	ok &= x.size() == 0;

	// check for special case where there is nothing for this thread to do
	if( num_sub == 0 )
	{	work_all_[thread_num]->ok = ok;
		return;
	}

	// check for a zero on each sub-interval
	size_t i;
	double xlast = xlow - 2 * sub_length_; // over sub_length_ away from x_low
	double flast = 2 * epsilon_;           // any value > epsilon_ would do
	for(i = 0; i < num_sub; i++)
	{
		// note that when i == 0, xlow_i == xlow (exactly)
		double xlow_i = xlow + i * sub_length_;

		// note that when i == num_sub - 1, xup_i = xup (exactly)
		double xup_i  = xup  - (num_sub - i - 1) * sub_length_;

		// initial point for Newton iterations
		double xcur = (xup_i + xlow_i) / 2.;

		// Newton iterations
		bool more_itr = true;
		size_t itr    = 0;
		double fcur, dfcur;
		while( more_itr )
		{	fun_(xcur, fcur, dfcur);

			// check end of iterations
			if( fabs(fcur) <= epsilon_ )
				more_itr = false;
			if( (xcur == xlow_i ) & (fcur * dfcur > 0.) )
				more_itr = false; 
			if( (xcur == xup_i)   & (fcur * dfcur < 0.) )
				more_itr = false; 

			// next Newton iterate
			if( more_itr )
			{	xcur = xcur - fcur / dfcur;
				// keep in bounds
				xcur = std::max(xcur, xlow_i);
				xcur = std::min(xcur, xup_i);

				more_itr = ++itr < max_itr_;
			}
		}
		if( fabs( fcur ) <= epsilon_ )
		{	// check for case where xcur is lower bound for this 
			// sub-interval and upper bound for previous sub-interval
			if( fabs(xcur - xlast) >= sub_length_ )
			{	x.push_back( xcur );
				xlast = xcur;
				flast = fcur;
			} 
			else if( fabs(fcur) < fabs(flast) )
			{	x[ x.size() - 1] = xcur;
				xlast            = xcur;
				flast            = fcur;
			}
		}
	}
	work_all_[thread_num]->ok = ok;
}
// -----------------------------------------------------------------------
// setup the work up for multiple threads
bool multi_newton_setup(
	void (fun)(double x, double& f, double& df) ,
	size_t num_sub                              , 
	double xlow                                 ,
	double xup                                  ,
	double epsilon                              ,
	size_t max_itr                              ,
	size_t num_threads                          )
{
	num_threads_ = num_threads;
	num_threads  = std::max(num_threads_, size_t(1));
	bool ok      = num_threads == thread_alloc::num_threads();

	// inputs that are same for all threads
	epsilon_ = epsilon;
	max_itr_ = max_itr;
	fun_     = fun;

	// resize the work vector to accomidate the number of threads
	ok &= work_all_.size() == 0;
	work_all_.resize(num_threads);

	// length of each sub interval
	sub_length_ = (xup - xlow) / double(num_sub);

	// determine values that are specific to each thread
	size_t num_min   = num_sub / num_threads; // minimum num_sub 
	size_t num_more  = num_sub % num_threads; // number that have one more
	size_t sum_num   = 0;  // sum with respect to thread of num_sub
	size_t thread_num, num_sub_thread;
	for(thread_num = 0; thread_num < num_threads; thread_num++)
	{
# if  USE_THREAD_ALLOC_FOR_WORK_ALL
		// allocate separate memory for this thread to avoid false sharing
		size_t min_bytes(sizeof(work_one_t)), cap_bytes;
		void* v_ptr = thread_alloc::get_memory(min_bytes, cap_bytes);
		work_all_[thread_num] = static_cast<work_one_t*>(v_ptr);

		// thread_alloc is a raw memory allocator; i.e., it does not call
		// the constructor for the objects it creates. The CppAD::vector
		// class requires it's constructor to be called so we do it here
		new(& (work_all_[thread_num]->x) ) vector<double>();
# else
		work_all_[thread_num] = new work_one_t;
# endif

		// number of sub-intervalse for this thread
		if( thread_num < num_more  )
			num_sub_thread = num_min + 1;
		else	num_sub_thread = num_min;

		// when thread_num == 0, xlow_thread == xlow
		double xlow_thread = xlow + sum_num * sub_length_;

		// when thread_num == num_threads - 1, xup_thread = xup 
		double xup_thread = xlow + (sum_num + num_sub_thread) * sub_length_;
		if( thread_num == num_threads - 1 )
			xup_thread = xup;

		// update sum_num for next time through loop
		sum_num += num_sub_thread;

		// input information specific to this thread
		work_all_[thread_num]->num_sub = num_sub_thread;
		work_all_[thread_num]->xlow    = xlow_thread;
		work_all_[thread_num]->xup     = xup_thread;
		ok &= work_all_[thread_num]->x.size() == 0;

		// in case this thread does not get called
		work_all_[thread_num]->ok = false;
	}
	ok &= sum_num == num_sub;
	return ok;
}
// -----------------------------------------------------------------------
// get the result of the work 
bool multi_newton_combine(CppAD::vector<double>& xout)
{	// number of threads in the calculation
	size_t num_threads  = std::max(num_threads_, size_t(1));

	// remove duplicates and points that are not solutions
	xout.resize(0);
	bool   ok = true;
	size_t thread_num;

	// initialize as more that sub_lenght_ / 2 from any possible solution 
	double xlast = - sub_length_; 
	for(thread_num = 0; thread_num < num_threads; thread_num++)
	{	vector<double>& x = work_all_[thread_num]->x;

		size_t i;
		for(i = 0; i < x.size(); i++)
		{	// check for case where this point is lower limit for this
			// thread and upper limit for previous thread
			if( fabs(x[i] - xlast) >= sub_length_ )  
			{	xout.push_back( x[i] );
				xlast = x[i];
			}
			else
			{	double fcur, flast, df;
				fun_(x[i],   fcur, df);
				fun_(xlast, flast, df);
				if( fabs(fcur) < fabs(flast) )
				{	xout[ xout.size() - 1] = x[i];
					xlast                  = x[i];
				}
			}
		}
		ok &= work_all_[thread_num]->ok;
	}

	// go down so free memory for other threads before memory for master
	thread_num = num_threads;
	while(thread_num--)
	{
# if USE_THREAD_ALLOC_FOR_WORK_ALL
		// call the destructor for CppAD::vector destructor
		work_all_[thread_num]->x.~vector<double>();
		// delete the raw memory allocation 
		void* v_ptr = static_cast<void*>( work_all_[thread_num] );
		thread_alloc::return_memory( v_ptr );
# else
		delete work_all_[thread_num];
# endif
		// Note that xout corresponds to memroy that is inuse by master
		// (so we can only chech have freed all their memory). 
		if( thread_num > 0 )
		{	// check that there is no longer any memory inuse by this thread
			ok &= thread_alloc::inuse(thread_num) == 0;
			// return all memory being held for future use by this thread
			thread_alloc::free_available(thread_num);
		}
	}
	// now we are done with the work_all_ vector so free its memory
	// (becasue it is a static variable)
	work_all_.clear();

	return ok;
}
// END C++