Codebase list libffi-platypus-perl / 715d1d37-1152-43e9-8916-c78ecf8527cd/upstream
715d1d37-1152-43e9-8916-c78ecf8527cd/upstream

Tree @715d1d37-1152-43e9-8916-c78ecf8527cd/upstream (Download .tar.gz)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
NAME

    FFI::Platypus - Write Perl bindings to non-Perl libraries with FFI. No
    XS required.

VERSION

    version 1.56

SYNOPSIS

     use FFI::Platypus 1.00;
     
     # for all new code you should use api => 1
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(undef); # search libc
     
     # call dynamically
     $ffi->function( puts => ['string'] => 'int' )->call("hello world");
     
     # attach as a xsub and call (much faster)
     $ffi->attach( puts => ['string'] => 'int' );
     puts("hello world");

DESCRIPTION

    Platypus is a library for creating interfaces to machine code libraries
    written in languages like C, C++, Go, Fortran, Rust, Pascal.
    Essentially anything that gets compiled into machine code. This
    implementation uses libffi to accomplish this task. libffi is battle
    tested by a number of other scripting and virtual machine languages,
    such as Python and Ruby to serve a similar role. There are a number of
    reasons why you might want to write an extension with Platypus instead
    of XS:

    FFI / Platypus does not require messing with the guts of Perl

      XS is less of an API and more of the guts of perl splayed out to do
      whatever you want. That may at times be very powerful, but it can
      also be a frustrating exercise in hair pulling.

    FFI / Platypus is portable

      Lots of languages have FFI interfaces, and it is subjectively easier
      to port an extension written in FFI in Perl or another language to
      FFI in another language or Perl. One goal of the Platypus Project is
      to reduce common interface specifications to a common format like
      JSON that could be shared between different languages.

    FFI / Platypus could be a bridge to Raku

      One of those "other" languages could be Raku and Raku already has an
      FFI interface I am told.

    FFI / Platypus can be reimplemented

      In a bright future with multiple implementations of Perl 5, each
      interpreter will have its own implementation of Platypus, allowing
      extensions to be written once and used on multiple platforms, in much
      the same way that Ruby-FFI extensions can be use in Ruby, JRuby and
      Rubinius.

    FFI / Platypus is pure perl (sorta)

      One Platypus script or module works on any platform where the
      libraries it uses are available. That means you can deploy your
      Platypus script in a shared filesystem where they may be run on
      different platforms. It also means that Platypus modules do not need
      to be installed in the platform specific Perl library path.

    FFI / Platypus is not C or C++ centric

      XS is implemented primarily as a bunch of C macros, which requires at
      least some understanding of C, the C pre-processor, and some C++
      caveats (since on some platforms Perl is compiled and linked with a
      C++ compiler). Platypus on the other hand could be used to call other
      compiled languages, like Fortran, Go, Rust, Pascal, C++, or even
      assembly, allowing you to focus on your strengths.

    FFI / Platypus does not require a parser

      Inline isolates the extension developer from XS to some extent, but
      it also requires a parser. The various Inline language bindings are a
      great technical achievement, but I think writing a parser for every
      language that you want to interface with is a bit of an anti-pattern.

    This document consists of an API reference, a set of examples, some
    support and development (for contributors) information. If you are new
    to Platypus or FFI, you may want to skip down to the EXAMPLES to get a
    taste of what you can do with Platypus.

    Platypus has extensive documentation of types at FFI::Platypus::Type
    and its custom types API at FFI::Platypus::API.

    You are strongly encouraged to use API level 1 for all new code. There
    are a number of improvements and design fixes that you get for free.
    You should even consider updating existing modules to use API level 1
    where feasible. How do I do that you might ask? Simply pass in the API
    level to the platypus constructor.

     my $ffi = FFI::Platypus->new( api => 1 );

    The Platypus documentation has already been updated to assume API level
    1.

CONSTRUCTORS

 new

     my $ffi = FFI::Platypus->new( api => 1, %options);

    Create a new instance of FFI::Platypus.

    Any types defined with this instance will be valid for this instance
    only, so you do not need to worry about stepping on the toes of other
    CPAN FFI / Platypus Authors.

    Any functions found will be out of the list of libraries specified with
    the lib attribute.

  options

    api

      [version 0.91]

      Sets the API level. Legal values are

      0

	Original API level. See FFI::Platypus::TypeParser::Version0 for
	details on the differences.

      1

	Enable the next generation type parser which allows pass-by-value
	records and type decoration on basic types. Using API level 1 prior
	to Platypus version 1.00 will trigger a (noisy) warning.

	All new code should be written with this set to 1! The Platypus
	documentation assumes this api level is set.

      2

	Enable version 2 API, which is currently experimental. Using API
	level 2 prior to Platypus version 2.00 will trigger a (noisy)
	warning.

	API version 2 is identical to version 1, except:

	Pointer functions that return NULL will return undef instead of
	empty list

	  This fixes a long standing design bug in Platypus.

	Array references may be passed to pointer argument types

	  This replicates the behavior of array argument types with no
	  size. So the types sint8* and sint8[] behave identically when an
	  array reference is passed in. They differ in that, as before, you
	  can pass a scalar reference into type sint8*.

    lib

      Either a pathname (string) or a list of pathnames (array ref of
      strings) to pre-populate the lib attribute. Use [undef] to search the
      current process for symbols.

      0.48

      undef (without the array reference) can be used to search the current
      process for symbols.

    ignore_not_found

      [version 0.15]

      Set the ignore_not_found attribute.

    lang

      [version 0.18]

      Set the lang attribute.

ATTRIBUTES

 lib

     $ffi->lib($path1, $path2, ...);
     my @paths = $ffi->lib;

    The list of libraries to search for symbols in.

    The most portable and reliable way to find dynamic libraries is by
    using FFI::CheckLib, like this:

     use FFI::CheckLib 0.06;
     $ffi->lib(find_lib_or_die lib => 'archive');
       # finds libarchive.so on Linux
       #       libarchive.bundle on OS X
       #       libarchive.dll (or archive.dll) on Windows
       #       cygarchive-13.dll on Cygwin
       #       ...
       # and will die if it isn't found

    FFI::CheckLib has a number of options, such as checking for specific
    symbols, etc. You should consult the documentation for that module.

    As a special case, if you add undef as a "library" to be searched,
    Platypus will also search the current process for symbols. This is
    mostly useful for finding functions in the standard C library, without
    having to know the name of the standard c library for your platform (as
    it turns out it is different just about everywhere!).

    You may also use the "find_lib" method as a shortcut:

     $ffi->find_lib( lib => 'archive' );

 ignore_not_found

    [version 0.15]

     $ffi->ignore_not_found(1);
     my $ignore_not_found = $ffi->ignore_not_found;

    Normally the attach and function methods will throw an exception if it
    cannot find the name of the function you provide it. This will change
    the behavior such that function will return undef when the function is
    not found and attach will ignore functions that are not found. This is
    useful when you are writing bindings to a library and have many
    optional functions and you do not wish to wrap every call to function
    or attach in an eval.

 lang

    [version 0.18]

     $ffi->lang($language);

    Specifies the foreign language that you will be interfacing with. The
    default is C. The foreign language specified with this attribute
    changes the default native types (for example, if you specify Rust, you
    will get i32 as an alias for sint32 instead of int as you do with C).

    If the foreign language plugin supports it, this will also enable
    Platypus to find symbols using the demangled names (for example, if you
    specify CPP for C++ you can use method names like Foo::get_bar() with
    "attach" or "function".

 api

    [version 1.11]

     my $level = $ffi->api;

    Returns the API level of the Platypus instance.

METHODS

 type

     $ffi->type($typename);
     $ffi->type($typename => $alias);

    Define a type. The first argument is the native or C name of the type.
    The second argument (optional) is an alias name that you can use to
    refer to this new type. See FFI::Platypus::Type for legal type
    definitions.

    Examples:

     $ffi->type('sint32');            # only checks to see that sint32 is a valid type
     $ffi->type('sint32' => 'myint'); # creates an alias myint for sint32
     $ffi->type('bogus');             # dies with appropriate diagnostic

 custom_type

     $ffi->custom_type($alias => {
       native_type         => $native_type,
       native_to_perl      => $coderef,
       perl_to_native      => $coderef,
       perl_to_native_post => $coderef,
     });

    Define a custom type. See FFI::Platypus::Type#Custom-Types for details.

 load_custom_type

     $ffi->load_custom_type($name => $alias, @type_args);

    Load the custom type defined in the module $name, and make an alias
    $alias. If the custom type requires any arguments, they may be passed
    in as @type_args. See FFI::Platypus::Type#Custom-Types for details.

    If $name contains :: then it will be assumed to be a fully qualified
    package name. If not, then FFI::Platypus::Type:: will be prepended to
    it.

 types

     my @types = $ffi->types;
     my @types = FFI::Platypus->types;

    Returns the list of types that FFI knows about. This will include the
    native libffi types (example: sint32, opaque and double) and the normal
    C types (example: unsigned int, uint32_t), any types that you have
    defined using the type method, and custom types.

    The list of types that Platypus knows about varies somewhat from
    platform to platform, FFI::Platypus::Type includes a list of the core
    types that you can always count on having access to.

    It can also be called as a class method, in which case, no user defined
    or custom types will be included in the list.

 type_meta

     my $meta = $ffi->type_meta($type_name);
     my $meta = FFI::Platypus->type_meta($type_name);

    Returns a hash reference with the meta information for the given type.

    It can also be called as a class method, in which case, you won't be
    able to get meta data on user defined types.

    The format of the meta data is implementation dependent and subject to
    change. It may be useful for display or debugging.

    Examples:

     my $meta = $ffi->type_meta('int');        # standard int type
     my $meta = $ffi->type_meta('int[64]');    # array of 64 ints
     $ffi->type('int[128]' => 'myintarray');
     my $meta = $ffi->type_meta('myintarray'); # array of 128 ints

 mangler

     $ffi->mangler(\&mangler);

    Specify a customer mangler to be used for symbol lookup. This is
    usually useful when you are writing bindings for a library where all of
    the functions have the same prefix. Example:

     $ffi->mangler(sub {
       my($symbol) = @_;
       return "foo_$symbol";
     });
     
     $ffi->function( get_bar => [] => 'int' );  # attaches foo_get_bar
     
     my $f = $ffi->function( set_baz => ['int'] => 'void' );
     $f->call(22); # calls foo_set_baz

 function

     my $function = $ffi->function($name => \@argument_types => $return_type);
     my $function = $ffi->function($address => \@argument_types => $return_type);
     my $function = $ffi->function($name => \@argument_types => $return_type, \&wrapper);
     my $function = $ffi->function($address => \@argument_types => $return_type, \&wrapper);

    Returns an object that is similar to a code reference in that it can be
    called like one.

    Caveat: many situations require a real code reference, so at the price
    of a performance penalty you can get one like this:

     my $function = $ffi->function(...);
     my $coderef = sub { $function->(@_) };

    It may be better, and faster to create a real Perl function using the
    attach method.

    In addition to looking up a function by name you can provide the
    address of the symbol yourself:

     my $address = $ffi->find_symbol('my_function');
     my $function = $ffi->function($address => ...);

    Under the covers, function uses find_symbol when you provide it with a
    name, but it is useful to keep this in mind as there are alternative
    ways of obtaining a functions address. Example: a C function could
    return the address of another C function that you might want to call,
    or modules such as FFI::TinyCC produce machine code at runtime that you
    can call from Platypus.

    [version 0.76]

    If the last argument is a code reference, then it will be used as a
    wrapper around the function when called. The first argument to the
    wrapper will be the inner function, or if it is later attached an xsub.
    This can be used if you need to verify/modify input/output data.

    Examples:

     my $function = $ffi->function('my_function_name', ['int', 'string'] => 'string');
     my $return_string = $function->(1, "hi there");

    [version 0.91]

     my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => $return_type);
     my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => $return_type, \&wrapper);
     my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types);
     my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => \&wrapper);

    Version 0.91 and later allows you to creat functions for c variadic
    functions (such as printf, scanf, etc) which can take a variable number
    of arguments. The first set of arguments are the fixed set, the second
    set are the variable arguments to bind with. The variable argument
    types must be specified in order to create a function object, so if you
    need to call variadic function with different set of arguments then you
    will need to create a new function object each time:

     # int printf(const char *fmt, ...);
     $ffi->function( printf => ['string'] => ['int'] => 'int' )
         ->call("print integer %d\n", 42);
     $ffi->function( printf => ['string'] => ['string'] => 'int' )
         ->call("print string %s\n", 'platypus');

    Some older versions of libffi and possibly some platforms may not
    support variadic functions. If you try to create a one, then an
    exception will be thrown.

    [version 1.26]

    If the return type is omitted then void will be the assumed return
    type.

 attach

     $ffi->attach($name => \@argument_types => $return_type);
     $ffi->attach([$c_name => $perl_name] => \@argument_types => $return_type);
     $ffi->attach([$address => $perl_name] => \@argument_types => $return_type);
     $ffi->attach($name => \@argument_types => $return_type, \&wrapper);
     $ffi->attach([$c_name => $perl_name] => \@argument_types => $return_type, \&wrapper);
     $ffi->attach([$address => $perl_name] => \@argument_types => $return_type, \&wrapper);

    Find and attach a C function as a real live Perl xsub. The advantage of
    attaching a function over using the function method is that it is much
    much much faster since no object resolution needs to be done. The
    disadvantage is that it locks the function and the FFI::Platypus
    instance into memory permanently, since there is no way to deallocate
    an xsub.

    If just one $name is given, then the function will be attached in Perl
    with the same name as it has in C. The second form allows you to give
    the Perl function a different name. You can also provide an address
    (the third form), just like with the function method.

    Examples:

     $ffi->attach('my_function_name', ['int', 'string'] => 'string');
     $ffi->attach(['my_c_function_name' => 'my_perl_function_name'], ['int', 'string'] => 'string');
     my $string1 = my_function_name($int);
     my $string2 = my_perl_function_name($int);

    [version 0.20]

    If the last argument is a code reference, then it will be used as a
    wrapper around the attached xsub. The first argument to the wrapper
    will be the inner xsub. This can be used if you need to verify/modify
    input/output data.

    Examples:

     $ffi->attach('my_function', ['int', 'string'] => 'string', sub {
       my($my_function_xsub, $integer, $string) = @_;
       $integer++;
       $string .= " and another thing";
       my $return_string = $my_function_xsub->($integer, $string);
       $return_string =~ s/Belgium//; # HHGG remove profanity
       $return_string;
     });

    [version 0.91]

     $ffi->attach($name => \@fixed_argument_types => \@var_argument_types, $return_type);
     $ffi->attach($name => \@fixed_argument_types => \@var_argument_types, $return_type, \&wrapper);

    As of version 0.91 you can attach a variadic functions, if it is
    supported by the platform / libffi that you are using. For details see
    the function documentation. If not supported by the implementation then
    an exception will be thrown.

 closure

     my $closure = $ffi->closure($coderef);
     my $closure = FFI::Platypus->closure($coderef);

    Prepares a code reference so that it can be used as a FFI closure (a
    Perl subroutine that can be called from C code). For details on
    closures, see FFI::Platypus::Type#Closures and FFI::Platypus::Closure.

 cast

     my $converted_value = $ffi->cast($original_type, $converted_type, $original_value);

    The cast function converts an existing $original_value of type
    $original_type into one of type $converted_type. Not all types are
    supported, so care must be taken. For example, to get the address of a
    string, you can do this:

     my $address = $ffi->cast('string' => 'opaque', $string_value);

    Something that won't work is trying to cast an array to anything:

     my $address = $ffi->cast('int[10]' => 'opaque', \@list);  # WRONG

 attach_cast

     $ffi->attach_cast("cast_name", $original_type, $converted_type);
     $ffi->attach_cast("cast_name", $original_type, $converted_type, \&wrapper);
     my $converted_value = cast_name($original_value);

    This function attaches a cast as a permanent xsub. This will make it
    faster and may be useful if you are calling a particular cast a lot.

    [version 1.26]

    A wrapper may be added as the last argument to attach_cast and works
    just like the wrapper for attach and function methods.

 sizeof

     my $size = $ffi->sizeof($type);
     my $size = FFI::Platypus->sizeof($type);

    Returns the total size of the given type in bytes. For example to get
    the size of an integer:

     my $intsize = $ffi->sizeof('int');   # usually 4
     my $longsize = $ffi->sizeof('long'); # usually 4 or 8 depending on platform

    You can also get the size of arrays

     my $intarraysize = $ffi->sizeof('int[64]');  # usually 4*64
     my $intarraysize = $ffi->sizeof('long[64]'); # usually 4*64 or 8*64
                                                  # depending on platform

    Keep in mind that "pointer" types will always be the pointer / word
    size for the platform that you are using. This includes strings, opaque
    and pointers to other types.

    This function is not very fast, so you might want to save this value as
    a constant, particularly if you need the size in a loop with many
    iterations.

 alignof

    [version 0.21]

     my $align = $ffi->alignof($type);

    Returns the alignment of the given type in bytes.

 kindof

    [version 1.24]

     my $kind = $ffi->kindof($type);

    Returns the kind of a type. This is a string with a value of one of

    void

    scalar

    string

    closure

    record

    record-value

    pointer

    array

    object

 countof

    [version 1.24]

     my $count = $ffi->countof($type);

    For array types returns the number of elements in the array (returns 0
    for variable length array). For the void type returns 0. Returns 1 for
    all other types.

 def

    [version 1.24]

     $ffi->def($package, $type, $value);
     my $value = $ff->def($package, $type);

    This method allows you to store data for types. If the $package is not
    provided, then the caller's package will be used. $type must be a legal
    Platypus type for the FFI::Platypus instance.

 unitof

    [version 1.24]

     my $unittype = $ffi->unitof($type);

    For array and pointer types, returns the basic type without the array
    or pointer part. In other words, for sin16[] or sint16* it will return
    sint16.

 find_lib

    [version 0.20]

     $ffi->find_lib( lib => $libname );

    This is just a shortcut for calling FFI::CheckLib#find_lib and updating
    the "lib" attribute appropriately. Care should be taken though, as this
    method simply passes its arguments to FFI::CheckLib#find_lib, so if
    your module or script is depending on a specific feature in
    FFI::CheckLib then make sure that you update your prerequisites
    appropriately.

 find_symbol

     my $address = $ffi->find_symbol($name);

    Return the address of the given symbol (usually function).

 bundle

    [version 0.96 api = 1+]

     $ffi->bundle($package, \@args);
     $ffi->bundle(\@args);
     $ffi->bundle($package);
     $ffi->bundle;

    This is an interface for bundling compiled code with your distribution
    intended to eventually replace the package method documented above. See
    FFI::Platypus::Bundle for details on how this works.

 package

    [version 0.15 api = 0]

     $ffi->package($package, $file); # usually __PACKAGE__ and __FILE__ can be used
     $ffi->package;                  # autodetect

    Note: This method is officially discouraged in favor of bundle
    described above.

    If you use FFI::Build (or the older deprecated Module::Build::FFI to
    bundle C code with your distribution, you can use this method to tell
    the FFI::Platypus instance to look for symbols that came with the
    dynamic library that was built when your distribution was installed.

 abis

     my $href = $ffi->abis;
     my $href = FFI::Platypus->abis;

    Get the legal ABIs supported by your platform and underlying
    implementation. What is supported can vary a lot by CPU and by
    platform, or even between 32 and 64 bit on the same CPU and platform.
    They keys are the "ABI" names, also known as "calling conventions". The
    values are integers used internally by the implementation to represent
    those ABIs.

 abi

     $ffi->abi($name);

    Set the ABI or calling convention for use in subsequent calls to
    "function" or "attach". May be either a string name or integer value
    from the "abis" method above.

EXAMPLES

    Here are some examples. These examples are provided in full with the
    Platypus distribution in the "examples" directory. There are also some
    more examples in FFI::Platypus::Type that are related to types.

 Integer conversions

     use FFI::Platypus 1.00;
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(undef);
     
     $ffi->attach(puts => ['string'] => 'int');
     $ffi->attach(atoi => ['string'] => 'int');
     
     puts(atoi('56'));

    Discussion: puts and atoi should be part of the standard C library on
    all platforms. puts prints a string to standard output, and atoi
    converts a string to integer. Specifying undef as a library tells
    Platypus to search the current process for symbols, which includes the
    standard c library.

 libnotify

     use FFI::CheckLib;
     use FFI::Platypus 1.00;
     
     # NOTE: I ported this from anoter Perl FFI library and it seems to work most
     # of the time, but also seems to SIGSEGV sometimes.  I saw the same behavior
     # in the old version, and am not really familiar with the libnotify API to
     # say what is the cause.  Patches welcome to fix it.
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(find_lib_or_exit lib => 'notify');
     
     $ffi->attach(notify_init   => ['string'] => 'void');
     $ffi->attach(notify_uninit => []       => 'void');
     $ffi->attach([notify_notification_new    => 'notify_new']    => ['string', 'string', 'string']           => 'opaque');
     $ffi->attach([notify_notification_update => 'notify_update'] => ['opaque', 'string', 'string', 'string'] => 'void');
     $ffi->attach([notify_notification_show   => 'notify_show']   => ['opaque', 'opaque']                     => 'void');
     
     notify_init('FFI::Platypus');
     my $n = notify_new('','','');
     notify_update($n, 'FFI::Platypus', 'It works!!!', 'media-playback-start');
     notify_show($n, undef);
     notify_uninit();

    Discussion: libnotify is a desktop GUI notification library for the
    GNOME Desktop environment. This script sends a notification event that
    should show up as a balloon, for me it did so in the upper right hand
    corner of my screen.

    The most portable way to find the correct name and location of a
    dynamic library is via the FFI::CheckLib#find_lib family of functions.
    If you are putting together a CPAN distribution, you should also
    consider using FFI::CheckLib#check_lib_or_exit function in your
    Build.PL or Makefile.PL file (If you are using Dist::Zilla, check out
    the Dist::Zilla::Plugin::FFI::CheckLib plugin). This will provide a
    user friendly diagnostic letting the user know that the required
    library is missing, and reduce the number of bogus CPAN testers results
    that you will get.

    Also in this example, we rename some of the functions when they are
    placed into Perl space to save typing:

     $ffi->attach( [notify_notification_new => 'notify_new']
       => ['string','string','string']
       => 'opaque'
     );

    When you specify a list reference as the "name" of the function the
    first element is the symbol name as understood by the dynamic library.
    The second element is the name as it will be placed in Perl space.

    Later, when we call notify_new:

     my $n = notify_new('','','');

    We are really calling the C function notify_notification_new.

 Allocating and freeing memory

     use FFI::Platypus 1.00;
     use FFI::Platypus::Memory qw( malloc free memcpy );
     
     my $ffi = FFI::Platypus->new( api => 1 );
     my $buffer = malloc 12;
     
     memcpy $buffer, $ffi->cast('string' => 'opaque', "hello there"), length "hello there\0";
     
     print $ffi->cast('opaque' => 'string', $buffer), "\n";
     
     free $buffer;

    Discussion: malloc and free are standard memory allocation functions
    available from the standard c library and. Interfaces to these and
    other memory related functions are provided by the
    FFI::Platypus::Memory module.

 structured data records

     use FFI::Platypus 1.00;
     use FFI::C;
     
     my $ffi = FFI::Platypus->new(
       api => 1,
       lib => [undef],
     );
     FFI::C->ffi($ffi);
     
     package Unix::TimeStruct {
     
       FFI::C->struct(tm => [
         tm_sec    => 'int',
         tm_min    => 'int',
         tm_hour   => 'int',
         tm_mday   => 'int',
         tm_mon    => 'int',
         tm_year   => 'int',
         tm_wday   => 'int',
         tm_yday   => 'int',
         tm_isdst  => 'int',
         tm_gmtoff => 'long',
         _tm_zone  => 'opaque',
       ]);
     
       # For now 'string' is unsupported by FFI::C, but we
       # can cast the time zone from an opaque pointer to
       # string.
       sub tm_zone {
         my $self = shift;
         $ffi->cast('opaque', 'string', $self->_tm_zone);
       }
     
       # attach the C localtime function
       $ffi->attach( localtime => ['time_t*'] => 'tm', sub {
         my($inner, $class, $time) = @_;
         $time = time unless defined $time;
         $inner->(\$time);
       });
     }
     
     # now we can actually use our Unix::TimeStruct class
     my $time = Unix::TimeStruct->localtime;
     printf "time is %d:%d:%d %s\n",
       $time->tm_hour,
       $time->tm_min,
       $time->tm_sec,
       $time->tm_zone;

    Discussion: C and other machine code languages frequently provide
    interfaces that include structured data records (known as "structs" in
    C). They sometimes provide an API in which you are expected to
    manipulate these records before and/or after passing them along to C
    functions. For C pointers to structs, unions and arrays of structs and
    unions, the easiest interface to use is via FFI::C. If you are working
    with structs that must be passed as values (not pointers), then you
    want to use the FFI::Platypus::Record class instead. We will discuss
    this class later.

    The C localtime function takes a pointer to a C struct. We simply
    define the members of the struct using the FFI::C struct method.
    Because we used the ffi method to tell FFI::C to use our local instance
    of FFI::Platypus it registers the tm type for us, and we can just start
    using it as a return type!

 structured data records by-value

 libuuid

     use FFI::CheckLib;
     use FFI::Platypus 1.00;
     use FFI::Platypus::Memory qw( malloc free );
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(find_lib_or_exit lib => 'uuid');
     $ffi->type('string(37)*' => 'uuid_string');
     $ffi->type('record(16)*' => 'uuid_t');
     
     $ffi->attach(uuid_generate => ['uuid_t'] => 'void');
     $ffi->attach(uuid_unparse  => ['uuid_t','uuid_string'] => 'void');
     
     my $uuid = "\0" x $ffi->sizeof('uuid_t');
     uuid_generate($uuid);
     
     my $string = "\0" x $ffi->sizeof('uuid_string');
     uuid_unparse($uuid, $string);
     
     print "$string\n";

    Discussion: libuuid is a library used to generate unique identifiers
    (UUID) for objects that may be accessible beyond the local system. The
    library is or was part of the Linux e2fsprogs package.

    Knowing the size of objects is sometimes important. In this example, we
    use the sizeof function to get the size of 16 characters (in this case
    it is simply 16 bytes). We also know that the strings "deparsed" by
    uuid_unparse are exactly 37 bytes.

 puts and getpid

     use FFI::Platypus 1.00;
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(undef);
     
     $ffi->attach(puts => ['string'] => 'int');
     $ffi->attach(getpid => [] => 'int');
     
     puts(getpid());

    Discussion: puts is part of standard C library on all platforms. getpid
    is available on Unix type platforms.

 Math library

     use FFI::Platypus 1.00;
     use FFI::CheckLib;
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(undef);
     $ffi->attach(puts => ['string'] => 'int');
     $ffi->attach(fdim => ['double','double'] => 'double');
     
     puts(fdim(7.0, 2.0));
     
     $ffi->attach(cos => ['double'] => 'double');
     
     puts(cos(2.0));
     
     $ffi->attach(fmax => ['double', 'double'] => 'double');
     
     puts(fmax(2.0,3.0));

    Discussion: On UNIX the standard c library math functions are
    frequently provided in a separate library libm, so you could search for
    those symbols in "libm.so", but that won't work on non-UNIX platforms
    like Microsoft Windows. Fortunately Perl uses the math library so these
    symbols are already in the current process so you can use undef as the
    library to find them.

 Strings

     use FFI::Platypus 1.00;
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(undef);
     $ffi->attach(puts => ['string'] => 'int');
     $ffi->attach(strlen => ['string'] => 'int');
     
     puts(strlen('somestring'));
     
     $ffi->attach(strstr => ['string','string'] => 'string');
     
     puts(strstr('somestring', 'string'));
     
     #attach puts => [string] => int;
     
     puts(puts("lol"));
     
     $ffi->attach(strerror => ['int'] => 'string');
     
     puts(strerror(2));

    Discussion: ASCII and UTF-8 Strings are not a native type to libffi but
    the are handled seamlessly by Platypus. If you need to talk to an API
    that uses so called "wide" strings (APIs which use const wchar_t* or
    wchar_t*), then you will want to use the wide string type plugin
    FFI::Platypus::Type::WideString. APIs which use other arbitrary
    encodings can be accessed by converting your Perl strings manually with
    the Encode module.

 Attach function from pointer

     use FFI::TinyCC;
     use FFI::Platypus 1.00;
     
     my $ffi = FFI::Platypus->new( api => 1 );
     my $tcc = FFI::TinyCC->new;
     
     $tcc->compile_string(q{
       int
       add(int a, int b)
       {
         return a+b;
       }
     });
     
     my $address = $tcc->get_symbol('add');
     
     $ffi->attach( [ $address => 'add' ] => ['int','int'] => 'int' );
     
     print add(1,2), "\n";

    Discussion: Sometimes you will have a pointer to a function from a
    source other than Platypus that you want to call. You can use that
    address instead of a function name for either of the function or attach
    methods. In this example we use FFI::TinyCC to compile a short piece of
    C code and to give us the address of one of its functions, which we
    then use to create a perl xsub to call it.

    FFI::TinyCC embeds the Tiny C Compiler (tcc) to provide a just-in-time
    (JIT) compilation service for FFI.

 libzmq

     use constant ZMQ_IO_THREADS  => 1;
     use constant ZMQ_MAX_SOCKETS => 2;
     use constant ZMQ_REQ => 3;
     use constant ZMQ_REP => 4;
     use FFI::CheckLib qw( find_lib_or_exit );
     use FFI::Platypus 1.00;
     use FFI::Platypus::Memory qw( malloc );
     use FFI::Platypus::Buffer qw( scalar_to_buffer buffer_to_scalar );
     
     my $endpoint = "ipc://zmq-ffi-$$";
     my $ffi = FFI::Platypus->new( api => 1 );
     
     $ffi->lib(undef); # for puts
     $ffi->attach(puts => ['string'] => 'int');
     
     $ffi->lib(find_lib_or_exit lib => 'zmq');
     $ffi->attach(zmq_version => ['int*', 'int*', 'int*'] => 'void');
     
     my($major,$minor,$patch);
     zmq_version(\$major, \$minor, \$patch);
     puts("libzmq version $major.$minor.$patch");
     die "this script only works with libzmq 3 or better" unless $major >= 3;
     
     $ffi->type('opaque'       => 'zmq_context');
     $ffi->type('opaque'       => 'zmq_socket');
     $ffi->type('opaque'       => 'zmq_msg_t');
     $ffi->attach(zmq_ctx_new  => [] => 'zmq_context');
     $ffi->attach(zmq_ctx_set  => ['zmq_context', 'int', 'int'] => 'int');
     $ffi->attach(zmq_socket   => ['zmq_context', 'int'] => 'zmq_socket');
     $ffi->attach(zmq_connect  => ['opaque', 'string'] => 'int');
     $ffi->attach(zmq_bind     => ['zmq_socket', 'string'] => 'int');
     $ffi->attach(zmq_send     => ['zmq_socket', 'opaque', 'size_t', 'int'] => 'int');
     $ffi->attach(zmq_msg_init => ['zmq_msg_t'] => 'int');
     $ffi->attach(zmq_msg_recv => ['zmq_msg_t', 'zmq_socket', 'int'] => 'int');
     $ffi->attach(zmq_msg_data => ['zmq_msg_t'] => 'opaque');
     $ffi->attach(zmq_errno    => [] => 'int');
     $ffi->attach(zmq_strerror => ['int'] => 'string');
     
     my $context = zmq_ctx_new();
     zmq_ctx_set($context, ZMQ_IO_THREADS, 1);
     
     my $socket1 = zmq_socket($context, ZMQ_REQ);
     zmq_connect($socket1, $endpoint);
     
     my $socket2 = zmq_socket($context, ZMQ_REP);
     zmq_bind($socket2, $endpoint);
     
     do { # send
       our $sent_message = "hello there";
       my($pointer, $size) = scalar_to_buffer $sent_message;
       my $r = zmq_send($socket1, $pointer, $size, 0);
       die zmq_strerror(zmq_errno()) if $r == -1;
     };
     
     do { # recv
       my $msg_ptr  = malloc 100;
       zmq_msg_init($msg_ptr);
       my $size     = zmq_msg_recv($msg_ptr, $socket2, 0);
       die zmq_strerror(zmq_errno()) if $size == -1;
       my $data_ptr = zmq_msg_data($msg_ptr);
       my $recv_message = buffer_to_scalar $data_ptr, $size;
       print "recv_message = $recv_message\n";
     };

    Discussion: ØMQ is a high-performance asynchronous messaging library.
    There are a few things to note here.

    Firstly, sometimes there may be multiple versions of a library in the
    wild and you may need to verify that the library on a system meets your
    needs (alternatively you could support multiple versions and configure
    your bindings dynamically). Here we use zmq_version to ask libzmq which
    version it is.

    zmq_version returns the version number via three integer pointer
    arguments, so we use the pointer to integer type: int *. In order to
    pass pointer types, we pass a reference. In this case it is a reference
    to an undefined value, because zmq_version will write into the pointers
    the output values, but you can also pass in references to integers,
    floating point values and opaque pointer types. When the function
    returns the $major variable (and the others) has been updated and we
    can use it to verify that it supports the API that we require.

    Notice that we define three aliases for the opaque type: zmq_context,
    zmq_socket and zmq_msg_t. While this isn't strictly necessary, since
    Platypus and C treat all three of these types the same, it is useful
    form of documentation that helps describe the functionality of the
    interface.

    Finally we attach the necessary functions, send and receive a message.
    If you are interested, there is a fully fleshed out ØMQ Perl interface
    implemented using FFI called ZMQ::FFI.

 libarchive

     use FFI::Platypus 1.00;
     use FFI::CheckLib qw( find_lib_or_exit );
     
     # This example uses FreeBSD's libarchive to list the contents of any
     # archive format that it suppors.  We've also filled out a part of
     # the ArchiveWrite class that could be used for writing archive formats
     # supported by libarchive
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(find_lib_or_exit lib => 'archive');
     $ffi->type('object(Archive)'      => 'archive_t');
     $ffi->type('object(ArchiveRead)'  => 'archive_read_t');
     $ffi->type('object(ArchiveWrite)' => 'archive_write_t');
     $ffi->type('object(ArchiveEntry)' => 'archive_entry_t');
     
     package Archive;
     
     # base class is "abstract" having no constructor or destructor
     
     $ffi->mangler(sub {
       my($name) = @_;
       "archive_$name";
     });
     $ffi->attach( error_string => ['archive_t'] => 'string' );
     
     package ArchiveRead;
     
     our @ISA = qw( Archive );
     
     $ffi->mangler(sub {
       my($name) = @_;
       "archive_read_$name";
     });
     
     $ffi->attach( new                   => ['string']                        => 'archive_read_t' );
     $ffi->attach( [ free => 'DESTROY' ] => ['archive_t']                     => 'void' );
     $ffi->attach( support_filter_all    => ['archive_t']                     => 'int' );
     $ffi->attach( support_format_all    => ['archive_t']                     => 'int' );
     $ffi->attach( open_filename         => ['archive_t','string','size_t']   => 'int' );
     $ffi->attach( next_header2          => ['archive_t', 'archive_entry_t' ] => 'int' );
     $ffi->attach( data_skip             => ['archive_t']                     => 'int' );
     # ... define additional read methods
     
     package ArchiveWrite;
     
     our @ISA = qw( Archive );
     
     $ffi->mangler(sub {
       my($name) = @_;
       "archive_write_$name";
     });
     
     $ffi->attach( new                   => ['string'] => 'archive_write_t' );
     $ffi->attach( [ free => 'DESTROY' ] => ['archive_write_t'] => 'void' );
     # ... define additional write methods
     
     package ArchiveEntry;
     
     $ffi->mangler(sub {
       my($name) = @_;
       "archive_entry_$name";
     });
     
     $ffi->attach( new => ['string']     => 'archive_entry_t' );
     $ffi->attach( [ free => 'DESTROY' ] => ['archive_entry_t'] => 'void' );
     $ffi->attach( pathname              => ['archive_entry_t'] => 'string' );
     # ... define additional entry methods
     
     package main;
     
     use constant ARCHIVE_OK => 0;
     
     # this is a Perl version of the C code here:
     # https://github.com/libarchive/libarchive/wiki/Examples#List_contents_of_Archive_stored_in_File
     
     my $archive_filename = shift @ARGV;
     unless(defined $archive_filename)
     {
       print "usage: $0 archive.tar\n";
       exit;
     }
     
     my $archive = ArchiveRead->new;
     $archive->support_filter_all;
     $archive->support_format_all;
     
     my $r = $archive->open_filename($archive_filename, 1024);
     die "error opening $archive_filename: ", $archive->error_string
       unless $r == ARCHIVE_OK;
     
     my $entry = ArchiveEntry->new;
     
     while($archive->next_header2($entry) == ARCHIVE_OK)
     {
       print $entry->pathname, "\n";
       $archive->data_skip;
     }

    Discussion: libarchive is the implementation of tar for FreeBSD
    provided as a library and available on a number of platforms.

    One interesting thing about libarchive is that it provides a kind of
    object oriented interface via opaque pointers. This example creates an
    abstract class Archive, and concrete classes ArchiveWrite, ArchiveRead
    and ArchiveEntry. The concrete classes can even be inherited from and
    extended just like any Perl classes because of the way the custom types
    are implemented. We use Platypus's object type for this implementation,
    which is a wrapper around an opaque (can also be an integer) type that
    is blessed into a particular class.

    Another advanced feature of this example is that we define a mangler to
    modify the symbol resolution for each class. This means we can do this
    when we define a method for Archive:

     $ffi->attach( support_filter_all => ['archive_t'] => 'int' );

    Rather than this:

     $ffi->attach(
       [ archive_read_support_filter_all => 'support_read_filter_all' ] =>
       ['archive_t'] => 'int' );
     );

 unix open

     use FFI::Platypus 1.00;
     
     {
       package FD;
     
       use constant O_RDONLY => 0;
       use constant O_WRONLY => 1;
       use constant O_RDWR   => 2;
     
       use constant IN  => bless \do { my $in=0  }, __PACKAGE__;
       use constant OUT => bless \do { my $out=1 }, __PACKAGE__;
       use constant ERR => bless \do { my $err=2 }, __PACKAGE__;
     
       my $ffi = FFI::Platypus->new( api => 1, lib => [undef]);
     
       $ffi->type('object(FD,int)' => 'fd');
     
       $ffi->attach( [ 'open' => 'new' ] => [ 'string', 'int', 'mode_t' ] => 'fd' => sub {
         my($xsub, $class, $fn, @rest) = @_;
         my $fd = $xsub->($fn, @rest);
         die "error opening $fn $!" if $$fd == -1;
         $fd;
       });
     
       $ffi->attach( write => ['fd', 'string', 'size_t' ] => 'ssize_t' );
       $ffi->attach( read  => ['fd', 'string', 'size_t' ] => 'ssize_t' );
       $ffi->attach( close => ['fd'] => 'int' );
     }
     
     my $fd = FD->new("$0", FD::O_RDONLY);
     
     my $buffer = "\0" x 10;
     
     while(my $br = $fd->read($buffer, 10))
     {
       FD::OUT->write($buffer, $br);
     }
     
     $fd->close;

    Discussion: The Unix file system calls use an integer handle for each
    open file. We can use the same object type that we used for libarchive
    above, except we let platypus know that the underlying type is int
    instead of opaque (the latter being the default for the object type).
    Mainly just for demonstration since Perl has much better IO libraries,
    but now we have an OO interface to the Unix IO functions.

 bzip2

     use FFI::Platypus 1.00;
     use FFI::CheckLib qw( find_lib_or_die );
     use FFI::Platypus::Buffer qw( scalar_to_buffer buffer_to_scalar );
     use FFI::Platypus::Memory qw( malloc free );
     
     my $ffi = FFI::Platypus->new( api => 1 );
     $ffi->lib(find_lib_or_die lib => 'bz2');
     
     $ffi->attach(
       [ BZ2_bzBuffToBuffCompress => 'compress' ] => [
         'opaque',                           # dest
         'unsigned int *',                   # dest length
         'opaque',                           # source
         'unsigned int',                     # source length
         'int',                              # blockSize100k
         'int',                              # verbosity
         'int',                              # workFactor
       ] => 'int',
       sub {
         my $sub = shift;
         my($source,$source_length) = scalar_to_buffer $_[0];
         my $dest_length = int(length($source)*1.01) + 1 + 600;
         my $dest = malloc $dest_length;
         my $r = $sub->($dest, \$dest_length, $source, $source_length, 9, 0, 30);
         die "bzip2 error $r" unless $r == 0;
         my $compressed = buffer_to_scalar($dest, $dest_length);
         free $dest;
         $compressed;
       },
     );
     
     $ffi->attach(
       [ BZ2_bzBuffToBuffDecompress => 'decompress' ] => [
         'opaque',                           # dest
         'unsigned int *',                   # dest length
         'opaque',                           # source
         'unsigned int',                     # source length
         'int',                              # small
         'int',                              # verbosity
       ] => 'int',
       sub {
         my $sub = shift;
         my($source, $source_length) = scalar_to_buffer $_[0];
         my $dest_length = $_[1];
         my $dest = malloc $dest_length;
         my $r = $sub->($dest, \$dest_length, $source, $source_length, 0, 0);
         die "bzip2 error $r" unless $r == 0;
         my $decompressed = buffer_to_scalar($dest, $dest_length);
         free $dest;
         $decompressed;
       },
     );
     
     my $original = "hello compression world\n";
     my $compressed = compress($original);
     print decompress($compressed, length $original);

    Discussion: bzip2 is a compression library. For simple one shot
    attempts at compression/decompression when you expect the original and
    the result to fit within memory it provides two convenience functions
    BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDecompress.

    The first four arguments of both of these C functions are identical,
    and represent two buffers. One buffer is the source, the second is the
    destination. For the destination, the length is passed in as a pointer
    to an integer. On input this integer is the size of the destination
    buffer, and thus the maximum size of the compressed or decompressed
    data. When the function returns the actual size of compressed or
    compressed data is stored in this integer.

    This is normal stuff for C, but in Perl our buffers are scalars and
    they already know how large they are. In this sort of situation,
    wrapping the C function in some Perl code can make your interface a
    little more Perl like. In order to do this, just provide a code
    reference as the last argument to the "attach" method. The first
    argument to this wrapper will be a code reference to the C function.
    The Perl arguments will come in after that. This allows you to modify /
    convert the arguments to conform to the C API. What ever value you
    return from the wrapper function will be returned back to the original
    caller.

 The Win32 API

     use utf8;
     use FFI::Platypus 1.00;
     
     my $ffi = FFI::Platypus->new(
       api  => 1,
       lib  => [undef],
     );
     
     # see FFI::Platypus::Lang::Win32
     $ffi->lang('Win32');
     
     # Send a Unicode string to the Windows API MessageBoxW function.
     use constant MB_OK                   => 0x00000000;
     use constant MB_DEFAULT_DESKTOP_ONLY => 0x00020000;
     $ffi->attach( [MessageBoxW => 'MessageBox'] => [ 'HWND', 'LPCWSTR', 'LPCWSTR', 'UINT'] => 'int' );
     MessageBox(undef, "I ❤️ Platypus", "Confession", MB_OK|MB_DEFAULT_DESKTOP_ONLY);

    Discussion: The API used by Microsoft Windows present some unique
    challenges. On 32 bit systems a different ABI is used than what is used
    by the standard C library. It also provides a rats nest of type
    aliases. Finally if you want to talk Unicode to any of the Windows API
    you will need to use UTF-16LE instead of utf-8 which is native to Perl.
    (The Win32 API refers to these as LPWSTR and LPCWSTR types). As much as
    possible the Win32 "language" plugin attempts to handle this
    transparently. For more details see FFI::Platypus::Lang::Win32.

 bundle your own code

    ffi/foo.c:

     #include <ffi_platypus_bundle.h>
     #include <string.h>
     
     typedef struct {
       char *name;
       int value;
     } foo_t;
     
     foo_t*
     foo__new(const char *class_name, const char *name, int value)
     {
       (void)class_name;
       foo_t *self = malloc( sizeof( foo_t ) );
       self->name = strdup(name);
       self->value = value;
       return self;
     }
     
     const char *
     foo__name(foo_t *self)
     {
       return self->name;
     }
     
     int
     foo__value(foo_t *self)
     {
       return self->value;
     }
     
     void
     foo__DESTROY(foo_t *self)
     {
       free(self->name);
       free(self);
     }

    lib/Foo.pm:

     package Foo;
     
     use strict;
     use warnings;
     use FFI::Platypus 1.00;
     
     {
       my $ffi = FFI::Platypus->new( api => 1 );
     
       $ffi->type('object(Foo)' => 'foo_t');
       $ffi->mangler(sub {
         my $name = shift;
         $name =~ s/^/foo__/;
         $name;
       });
     
       $ffi->bundle;
     
       $ffi->attach( new =>     [ 'string', 'string', 'int' ] => 'foo_t'  );
       $ffi->attach( name =>    [ 'foo_t' ]                   => 'string' );
       $ffi->attach( value =>   [ 'foo_t' ]                   => 'int'    );
       $ffi->attach( DESTROY => [ 'foo_t' ]                   => 'void'   );
     }
     
     1;

    You can bundle your own C (or other compiled language) code with your
    Perl extension. Sometimes this is helpful for smoothing over the
    interface of a C library which is not very FFI friendly. Sometimes you
    may want to write some code in C for a tight loop. Either way, you can
    do this with the Platypus bundle interface. See FFI::Platypus::Bundle
    for more details.

    Also related is the bundle constant interface, which allows you to
    define Perl constants in C space. See FFI::Platypus::Constant for
    details.

FAQ

 How do I get constants defined as macros in C header files

    This turns out to be a challenge for any language calling into C, which
    frequently uses #define macros to define constants like so:

     #define FOO_STATIC  1
     #define FOO_DYNAMIC 2
     #define FOO_OTHER   3

    As macros are expanded and their definitions are thrown away by the C
    pre-processor there isn't any way to get the name/value mappings from
    the compiled dynamic library.

    You can manually create equivalent constants in your Perl source:

     use constant FOO_STATIC  => 1;
     use constant FOO_DYNAMIC => 2;
     use constant FOO_OTHER   => 3;

    If there are a lot of these types of constants you might want to
    consider using a tool (Convert::Binary::C can do this) that can extract
    the constants for you.

    See also the "Integer constants" example in FFI::Platypus::Type.

    You can also use the new Platypus bundle interface to define Perl
    constants from C space. This is more reliable, but does require a
    compiler at install time. It is recommended mainly for writing bindings
    against libraries that have constants that can vary widely from
    platform to platform. See FFI::Platypus::Constant for details.

 What about enums?

    The C enum types are integers. The underlying type is up to the
    platform, so Platypus provides enum and senum types for unsigned and
    singed enums respectively. At least some compilers treat signed and
    unsigned enums as different types. The enum values are essentially the
    same as macro constants described above from an FFI perspective. Thus
    the process of defining enum values is identical to the process of
    defining macro constants in Perl.

    For more details on enumerated types see "Enum types" in
    FFI::Platypus::Type.

    There is also a type plugin (FFI::Platypus::Type::Enum) that can be
    helpful in writing interfaces that use enums.

 Memory leaks

    There are a couple places where memory is allocated, but never
    deallocated that may look like memory leaks by tools designed to find
    memory leaks like valgrind. This memory is intended to be used for the
    lifetime of the perl process so there normally this isn't a problem
    unless you are embedding a Perl interpreter which doesn't closely match
    the lifetime of your overall application.

    Specifically:

    type cache

      some types are cached and not freed. These are needed as long as
      there are FFI functions that could be called.

    attached functions

      Attaching a function as an xsub will definitely allocate memory that
      won't be freed because the xsub could be called at any time,
      including in END blocks.

    The Platypus team plans on adding a hook to free some of this "leaked"
    memory for use cases where Perl and Platypus are embedded in a larger
    application where the lifetime of the Perl process is significantly
    smaller than the overall lifetime of the whole process.

 I get seg faults on some platforms but not others with a library using
 pthreads.

    On some platforms, Perl isn't linked with libpthreads if Perl threads
    are not enabled. On some platforms this doesn't seem to matter,
    libpthreads can be loaded at runtime without much ill-effect. (Linux
    from my experience doesn't seem to mind one way or the other). Some
    platforms are not happy about this, and about the only thing that you
    can do about it is to build Perl such that it links with libpthreads
    even if it isn't a threaded Perl.

    This is not really an FFI issue, but a Perl issue, as you will have the
    same problem writing XS code for the such libraries.

 Doesn't work on Perl 5.10.0.

    I try as best as possible to support the same range of Perls as the
    Perl toolchain. That means all the way back to 5.8.1. Unfortunately,
    5.10.0 seems to have a problem that is difficult to diagnose. Patches
    to fix are welcome, if you want to help out on this, please see:

    https://github.com/PerlFFI/FFI-Platypus/issues/68

    Since this is an older buggy version of Perl it is recommended that you
    instead upgrade to 5.10.1 or later.

CAVEATS

    Platypus and Native Interfaces like libffi rely on the availability of
    dynamic libraries. Things not supported include:

    Systems that lack dynamic library support

      Like MS-DOS

    Systems that are not supported by libffi

      Like OpenVMS

    Languages that do not support using dynamic libraries from other
    languages

      Like older versions of Google's Go. This is a problem for C / XS code
      as well.

    Languages that do not compile to machine code

      Like .NET based languages and Java.

    The documentation has a bias toward using FFI / Platypus with C. This
    is my fault, as my background in mainly in C/C++ programmer (when I am
    not writing Perl). In many places I use "C" as a short form for "any
    language that can generate machine code and is callable from C". I
    welcome pull requests to the Platypus core to address this issue. In an
    attempt to ease usage of Platypus by non C programmers, I have written
    a number of foreign language plugins for various popular languages (see
    the SEE ALSO below). These plugins come with examples specific to those
    languages, and documentation on common issues related to using those
    languages with FFI. In most cases these are available for easy adoption
    for those with the know-how or the willingness to learn. If your
    language doesn't have a plugin YET, that is just because you haven't
    written it yet.

SUPPORT

    IRC: #native on irc.perl.org

    (click for instant chat room login)
    <http://chat.mibbit.com/#native@irc.perl.org>

    If something does not work the way you think it should, or if you have
    a feature request, please open an issue on this project's GitHub Issue
    tracker:

    https://github.com/perlFFI/FFI-Platypus/issues

CONTRIBUTING

    If you have implemented a new feature or fixed a bug then you may make
    a pull request on this project's GitHub repository:

    https://github.com/PerlFFI/FFI-Platypus/pulls

    This project is developed using Dist::Zilla. The project's git
    repository also comes with the Makefile.PL file necessary for building,
    testing (and even installing if necessary) without Dist::Zilla. Please
    keep in mind though that these files are generated so if changes need
    to be made to those files they should be done through the project's
    dist.ini file. If you do use Dist::Zilla and already have the necessary
    plugins installed, then I encourage you to run dzil test before making
    any pull requests. This is not a requirement, however, I am happy to
    integrate especially smaller patches that need tweaking to fit the
    project standards. I may push back and ask you to write a test case or
    alter the formatting of a patch depending on the amount of time I have
    and the amount of code that your patch touches.

    This project's GitHub issue tracker listed above is not Write-Only. If
    you want to contribute then feel free to browse through the existing
    issues and see if there is something you feel you might be good at and
    take a whack at the problem. I frequently open issues myself that I
    hope will be accomplished by someone in the future but do not have time
    to immediately implement myself.

    Another good area to help out in is documentation. I try to make sure
    that there is good document coverage, that is there should be
    documentation describing all the public features and warnings about
    common pitfalls, but an outsider's or alternate view point on such
    things would be welcome; if you see something confusing or lacks
    sufficient detail I encourage documentation only pull requests to
    improve things.

    The Platypus distribution comes with a test library named libtest that
    is normally automatically built by ./Build test. If you prefer to use
    prove or run tests directly, you can use the ./Build libtest command to
    build it. Example:

     % perl Makefile.PL
     % make
     % make ffi-test
     % prove -bv t
     # or an individual test
     % perl -Mblib t/ffi_platypus_memory.t

    The build process also respects these environment variables:

    FFI_PLATYPUS_DEBUG_FAKE32

      When building Platypus on 32 bit Perls, it will use the Math::Int64 C
      API and make Math::Int64 a prerequisite. Setting this environment
      variable will force Platypus to build with both of those options on a
      64 bit Perl as well.

       % env FFI_PLATYPUS_DEBUG_FAKE32=1 perl Makefile.PL
       DEBUG_FAKE32:
         + making Math::Int64 a prereq
         + Using Math::Int64's C API to manipulate 64 bit values
       Generating a Unix-style Makefile
       Writing Makefile for FFI::Platypus
       Writing MYMETA.yml and MYMETA.json
       %

    FFI_PLATYPUS_NO_ALLOCA

      Platypus uses the non-standard and somewhat controversial C function
      alloca by default on platforms that support it. I believe that
      Platypus uses it responsibly to allocate small amounts of memory for
      argument type parameters, and does not use it to allocate large
      structures like arrays or buffers. If you prefer not to use alloca
      despite these precautions, then you can turn its use off by setting
      this environment variable when you run Makefile.PL:

       helix% env FFI_PLATYPUS_NO_ALLOCA=1 perl Makefile.PL
       NO_ALLOCA:
         + alloca() will not be used, even if your platform supports it.
       Generating a Unix-style Makefile
       Writing Makefile for FFI::Platypus
       Writing MYMETA.yml and MYMETA.json

    V

      When building platypus may hide some of the excessive output when
      probing and building, unless you set V to a true value.

       % env V=1 perl Makefile.PL
       % make V=1
       ...

 Coding Guidelines

      * Do not hesitate to make code contribution. Making useful
      contributions is more important than following byzantine bureaucratic
      coding regulations. We can always tweak things later.

      * Please make an effort to follow existing coding style when making
      pull requests.

      * Platypus supports all production Perl releases since 5.8.1. For
      that reason, please do not introduce any code that requires a newer
      version of Perl.

 Performance Testing

    As Mark Twain was fond of saying there are four types of lies: lies,
    damn lies, statistics and benchmarks. That being said, it can sometimes
    be helpful to compare the runtime performance of Platypus if you are
    making significant changes to the Platypus Core. For that I use
    `FFI-Performance`, which can be found in my GitHub repository here:

    https://github.com/PerlFFI/FFI-Performance

 System integrators

    This distribution uses Alien::FFI in fallback mode, meaning if the
    system doesn't provide pkg-config and libffi it will attempt to
    download libffi and build it from source. If you are including Platypus
    in a larger system (for example a Linux distribution) you only need to
    make sure to declare pkg-config or pkgconf and the development package
    for libffi as prereqs for this module.

SEE ALSO

    NativeCall

      Promising interface to Platypus inspired by Raku.

    FFI::Platypus::Type

      Type definitions for Platypus.

    FFI::Platypus::Record

      Define structured data records (C "structs") for use with Platypus.

    FFI::C

      Another interface for defining structured data records for use with
      Platypus. Its advantage over FFI::Platypus::Record is that it
      supports unions and nested data structures. Its disadvantage is that
      it doesn't support passing structs by-value.

    FFI::Platypus::API

      The custom types API for Platypus.

    FFI::Platypus::Memory

      Memory functions for FFI.

    FFI::CheckLib

      Find dynamic libraries in a portable way.

    FFI::TinyCC

      JIT compiler for FFI.

    FFI::Platypus::Lang::C

      Documentation and tools for using Platypus with the C programming
      language

    FFI::Platypus::Lang::CPP

      Documentation and tools for using Platypus with the C++ programming
      language

    FFI::Platypus::Lang::Fortran

      Documentation and tools for using Platypus with Fortran

    FFI::Platypus::Lang::Go

      Documentation and tools for using Platypus with Go

    FFI::Platypus::Lang::Pascal

      Documentation and tools for using Platypus with Free Pascal

    FFI::Platypus::Lang::Rust

      Documentation and tools for using Platypus with the Rust programming
      language

    FFI::Platypus::Lang::ASM

      Documentation and tools for using Platypus with the Assembly

    FFI::Platypus::Lang::Win32

      Documentation and tools for using Platypus with the Win32 API.

    Wasm and Wasm::Wasmtime

      Modules for writing WebAssembly bindings in Perl. This allows you to
      call functions written in any language supported by WebAssembly.
      These modules are also implemented using Platypus.

    Convert::Binary::C

      A great interface for decoding C data structures, including structs,
      enums, #defines and more.

    pack and unpack

      Native to Perl functions that can be used to decode C struct types.

    C::Scan

      This module can extract constants and other useful objects from C
      header files that may be relevant to an FFI application. One downside
      is that its use may require development packages to be installed.

    Win32::API

      Microsoft Windows specific FFI style interface.

    Ctypes <https://gitorious.org/perl-ctypes>

      Ctypes was intended as a FFI style interface for Perl, but was never
      part of CPAN, and at least the last time I tried it did not work with
      recent versions of Perl.

    FFI

      Older, simpler, less featureful FFI. It used to be implemented using
      FSF's ffcall. Because ffcall has been unsupported for some time, I
      reimplemented this module using FFI::Platypus.

    C::DynaLib

      Another FFI for Perl that doesn't appear to have worked for a long
      time.

    C::Blocks

      Embed a tiny C compiler into your Perl scripts.

    Alien::FFI

      Provides libffi for Platypus during its configuration and build
      stages.

    P5NCI

      Yet another FFI like interface that does not appear to be supported
      or under development anymore.

ACKNOWLEDGMENTS

    In addition to the contributors mentioned below, I would like to
    acknowledge Brock Wilcox (AWWAIID) and Meredith Howard (MHOWARD) whose
    work on FFI::Sweet not only helped me get started with FFI but
    significantly influenced the design of Platypus.

    Dan Book, who goes by Grinnz on IRC for answering user questions about
    FFI and Platypus.

    In addition I'd like to thank Alessandro Ghedini (ALEXBIO) whose work
    on another Perl FFI library helped drive some of the development ideas
    for FFI::Platypus.

AUTHOR

    Author: Graham Ollis <plicease@cpan.org>

    Contributors:

    Bakkiaraj Murugesan (bakkiaraj)

    Dylan Cali (calid)

    pipcet

    Zaki Mughal (zmughal)

    Fitz Elliott (felliott)

    Vickenty Fesunov (vyf)

    Gregor Herrmann (gregoa)

    Shlomi Fish (shlomif)

    Damyan Ivanov

    Ilya Pavlov (Ilya33)

    Petr Písař (ppisar)

    Mohammad S Anwar (MANWAR)

    Håkon Hægland (hakonhagland, HAKONH)

    Meredith (merrilymeredith, MHOWARD)

    Diab Jerius (DJERIUS)

    Eric Brine (IKEGAMI)

    szTheory

    José Joaquín Atria (JJATRIA)

    Pete Houston (openstrike, HOUSTON)

COPYRIGHT AND LICENSE

    This software is copyright (c) 2015,2016,2017,2018,2019,2020 by Graham
    Ollis.

    This is free software; you can redistribute it and/or modify it under
    the same terms as the Perl 5 programming language system itself.