Codebase list libffi-platypus-perl / v1.20_01
v1.20_01

Tree @v1.20_01 (Download .tar.gz)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
# FFI::Platypus [![Build Status](https://api.cirrus-ci.com/github/Perl5-FFI/FFI-Platypus.svg)](https://cirrus-ci.com/github/Perl5-FFI/FFI-Platypus) [![Build Status](https://secure.travis-ci.org/Perl5-FFI/FFI-Platypus.png)](http://travis-ci.org/Perl5-FFI/FFI-Platypus) ![windows](https://github.com/Perl5-FFI/FFI-Platypus/workflows/windows/badge.svg) ![macos](https://github.com/Perl5-FFI/FFI-Platypus/workflows/macos/badge.svg)

Write Perl bindings to non-Perl libraries with FFI. No XS required.

# SYNOPSIS

```perl
use FFI::Platypus;

# for all new code you should use api => 1
my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(undef); # search libc

# call dynamically
$ffi->function( puts => ['string'] => 'int' )->call("hello world");

# attach as a xsub and call (much faster)
$ffi->attach( puts => ['string'] => 'int' );
puts("hello world");
```

# DESCRIPTION

Platypus is a library for creating interfaces to machine code libraries
written in languages like C, [C++](https://metacpan.org/pod/FFI::Platypus::Lang::CPP),
[Fortran](https://metacpan.org/pod/FFI::Platypus::Lang::Fortran),
[Rust](https://metacpan.org/pod/FFI::Platypus::Lang::Rust),
[Pascal](https://metacpan.org/pod/FFI::Platypus::Lang::Pascal). Essentially anything that gets
compiled into machine code.  This implementation uses `libffi` to
accomplish this task.  `libffi` is battle tested by a number of other
scripting and virtual machine languages, such as Python and Ruby to
serve a similar role.  There are a number of reasons why you might want
to write an extension with Platypus instead of XS:

- FFI / Platypus does not require messing with the guts of Perl

    XS is less of an API and more of the guts of perl splayed out to do
    whatever you want.  That may at times be very powerful, but it can also
    be a frustrating exercise in hair pulling.

- FFI / Platypus is portable

    Lots of languages have FFI interfaces, and it is subjectively easier to
    port an extension written in FFI in Perl or another language to FFI in
    another language or Perl.  One goal of the Platypus Project is to reduce
    common interface specifications to a common format like JSON that could
    be shared between different languages.

- FFI / Platypus could be a bridge to Perl 6

    One of those "other" languages could be Perl 6 and Perl 6 already has an
    FFI interface I am told.

- FFI / Platypus can be reimplemented

    In a bright future with multiple implementations of Perl 5, each
    interpreter will have its own implementation of Platypus, allowing
    extensions to be written once and used on multiple platforms, in much
    the same way that Ruby-FFI extensions can be use in Ruby, JRuby and
    Rubinius.

- FFI / Platypus is pure perl (sorta)

    One Platypus script or module works on any platform where the libraries
    it uses are available.  That means you can deploy your Platypus script
    in a shared filesystem where they may be run on different platforms.  It
    also means that Platypus modules do not need to be installed in the
    platform specific Perl library path.

- FFI / Platypus is not C or C++ centric

    XS is implemented primarily as a bunch of C macros, which requires at
    least some understanding of C, the C pre-processor, and some C++ caveats
    (since on some platforms Perl is compiled and linked with a C++
    compiler). Platypus on the other hand could be used to call other
    compiled languages, like [Fortran](https://metacpan.org/pod/FFI::Platypus::Lang::Fortran),
    [Rust](https://metacpan.org/pod/FFI::Platypus::Lang::Rust),
    [Pascal](https://metacpan.org/pod/FFI::Platypus::Lang::Pascal), [C++](https://metacpan.org/pod/FFI::Platypus::Lang::CPP),
    or even [assembly](https://metacpan.org/pod/FFI::Platypus::Lang::ASM), allowing you to focus
    on your strengths.

- FFI / Platypus does not require a parser

    [Inline](https://metacpan.org/pod/Inline) isolates the extension developer from XS to some extent, but
    it also requires a parser.  The various [Inline](https://metacpan.org/pod/Inline) language bindings are
    a great technical achievement, but I think writing a parser for every
    language that you want to interface with is a bit of an anti-pattern.

This document consists of an API reference, a set of examples, some
support and development (for contributors) information.  If you are new
to Platypus or FFI, you may want to skip down to the
[EXAMPLES](#examples) to get a taste of what you can do with Platypus.

Platypus has extensive documentation of types at [FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type)
and its custom types API at [FFI::Platypus::API](https://metacpan.org/pod/FFI::Platypus::API).

You are **strongly** encouraged to use API level 1 for all new code.
There are a number of improvements and design fixes that you get
for free.  You should even consider updating existing modules to
use API level 1 where feasible.  How do I do that you might ask?
Simply pass in the API level to the platypus constructor.

```perl
my $ffi = FFI::Platypus->new( api => 1 );
```

The Platypus documentation has already been updated to assume API
level 1.

# CONSTRUCTORS

## new

```perl
my $ffi = FFI::Platypus->new( api => 1, %options);
```

Create a new instance of [FFI::Platypus](https://metacpan.org/pod/FFI::Platypus).

Any types defined with this instance will be valid for this instance
only, so you do not need to worry about stepping on the toes of other
CPAN FFI / Platypus Authors.

Any functions found will be out of the list of libraries specified with
the [lib](#lib) attribute.

### options

- api

    Sets the API level.  Legal values are

    - `0`

        Original API level.  See [FFI::Platypus::TypeParser::Version0](https://metacpan.org/pod/FFI::Platypus::TypeParser::Version0) for details
        on the differences.

    - `1`

        Enable the next generation type parser which allows pass-by-value records
        and type decoration on basic types.  Using API level 1 prior to Platypus
        version 1.00 will trigger a (noisy) warning.

        All new code should be written with this set to 1!  The Platypus documentation
        assumes this api level is set.

- lib

    Either a pathname (string) or a list of pathnames (array ref of strings)
    to pre-populate the [lib](#lib) attribute.  Use `[undef]` to search the
    current process for symbols.

    0.48

    `undef` (without the array reference) can be used to search the current
    process for symbols.

- ignore\_not\_found

    \[version 0.15\]

    Set the [ignore\_not\_found](#ignore_not_found) attribute.

- lang

    \[version 0.18\]

    Set the [lang](#lang) attribute.

# ATTRIBUTES

## lib

```perl
$ffi->lib($path1, $path2, ...);
my @paths = $ffi->lib;
```

The list of libraries to search for symbols in.

The most portable and reliable way to find dynamic libraries is by using
[FFI::CheckLib](https://metacpan.org/pod/FFI::CheckLib), like this:

```perl
use FFI::CheckLib 0.06;
$ffi->lib(find_lib_or_die lib => 'archive');
  # finds libarchive.so on Linux
  #       libarchive.bundle on OS X
  #       libarchive.dll (or archive.dll) on Windows
  #       cygarchive-13.dll on Cygwin
  #       ...
  # and will die if it isn't found
```

[FFI::CheckLib](https://metacpan.org/pod/FFI::CheckLib) has a number of options, such as checking for specific
symbols, etc.  You should consult the documentation for that module.

As a special case, if you add `undef` as a "library" to be searched,
Platypus will also search the current process for symbols. This is
mostly useful for finding functions in the standard C library, without
having to know the name of the standard c library for your platform (as
it turns out it is different just about everywhere!).

You may also use the ["find\_lib"](#find_lib) method as a shortcut:

```perl
$ffi->find_lib( lib => 'archive' );
```

## ignore\_not\_found

\[version 0.15\]

```perl
$ffi->ignore_not_found(1);
my $ignore_not_found = $ffi->ignore_not_found;
```

Normally the [attach](#attach) and [function](#function) methods will
throw an exception if it cannot find the name of the function you
provide it.  This will change the behavior such that
[function](#function) will return `undef` when the function is not
found and [attach](#attach) will ignore functions that are not found.
This is useful when you are writing bindings to a library and have many
optional functions and you do not wish to wrap every call to
[function](#function) or [attach](#attach) in an `eval`.

## lang

\[version 0.18\]

```
$ffi->lang($language);
```

Specifies the foreign language that you will be interfacing with. The
default is C.  The foreign language specified with this attribute
changes the default native types (for example, if you specify
[Rust](https://metacpan.org/pod/FFI::Platypus::Lang::Rust), you will get `i32` as an alias for
`sint32` instead of `int` as you do with [C](https://metacpan.org/pod/FFI::Platypus::Lang::C)).

If the foreign language plugin supports it, this will also enable
Platypus to find symbols using the demangled names (for example, if you
specify [CPP](https://metacpan.org/pod/FFI::Platypus::Lang::CPP) for C++ you can use method names
like `Foo::get_bar()` with ["attach"](#attach) or ["function"](#function).

## api

\[version 1.11\]

```perl
my $level = $ffi->api;
```

Returns the API level of the Platypus instance.

# METHODS

## type

```perl
$ffi->type($typename);
$ffi->type($typename => $alias);
```

Define a type.  The first argument is the native or C name of the type.
The second argument (optional) is an alias name that you can use to
refer to this new type.  See [FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type) for legal type
definitions.

Examples:

```perl
$ffi->type('sint32');            # oly checks to see that sint32 is a valid type
$ffi->type('sint32' => 'myint'); # creates an alias myint for sint32
$ffi->type('bogus');             # dies with appropriate diagnostic
```

## custom\_type

```perl
$ffi->custom_type($alias => {
  native_type         => $native_type,
  native_to_perl      => $coderef,
  perl_to_native      => $coderef,
  perl_to_native_post => $coderef,
});
```

Define a custom type.  See [FFI::Platypus::Type#Custom-Types](https://metacpan.org/pod/FFI::Platypus::Type#Custom-Types) for details.

## load\_custom\_type

```perl
$ffi->load_custom_type($name => $alias, @type_args);
```

Load the custom type defined in the module _$name_, and make an alias
_$alias_. If the custom type requires any arguments, they may be passed
in as _@type\_args_. See [FFI::Platypus::Type#Custom-Types](https://metacpan.org/pod/FFI::Platypus::Type#Custom-Types) for
details.

If _$name_ contains `::` then it will be assumed to be a fully
qualified package name. If not, then `FFI::Platypus::Type::` will be
prepended to it.

## types

```perl
my @types = $ffi->types;
my @types = FFI::Platypus->types;
```

Returns the list of types that FFI knows about.  This will include the
native `libffi` types (example: `sint32`, `opaque` and `double`) and
the normal C types (example: `unsigned int`, `uint32_t`), any types
that you have defined using the [type](#type) method, and custom types.

The list of types that Platypus knows about varies somewhat from
platform to platform, [FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type) includes a list of the core
types that you can always count on having access to.

It can also be called as a class method, in which case, no user defined
or custom types will be included in the list.

## type\_meta

```perl
my $meta = $ffi->type_meta($type_name);
my $meta = FFI::Platypus->type_meta($type_name);
```

Returns a hash reference with the meta information for the given type.

It can also be called as a class method, in which case, you won't be
able to get meta data on user defined types.

The format of the meta data is implementation dependent and subject to
change.  It may be useful for display or debugging.

Examples:

```perl
my $meta = $ffi->type_meta('int');        # standard int type
my $meta = $ffi->type_meta('int[64]');    # array of 64 ints
$ffi->type('int[128]' => 'myintarray');
my $meta = $ffi->type_meta('myintarray'); # array of 128 ints
```

## mangler

```
$ffi->mangler(\&mangler);
```

Specify a customer mangler to be used for symbol lookup.  This is usually useful
when you are writing bindings for a library where all of the functions have the
same prefix.  Example:

```perl
$ffi->mangler(sub {
  my($symbol) = @_;
  return "foo_$symbol";
});

$ffi->function( get_bar => [] => 'int' );  # attaches foo_get_bar

my $f = $ffi->function( set_baz => ['int'] => 'void' );
$f->call(22); # calls foo_set_baz
```

## function

```perl
my $function = $ffi->function($name => \@argument_types => $return_type);
my $function = $ffi->function($address => \@argument_types => $return_type);
my $function = $ffi->function($name => \@argument_types => $return_type, \&wrapper);
my $function = $ffi->function($address => \@argument_types => $return_type, \&wrapper);
```

Returns an object that is similar to a code reference in that it can be
called like one.

Caveat: many situations require a real code reference, so at the price
of a performance penalty you can get one like this:

```perl
my $function = $ffi->function(...);
my $coderef = sub { $function->(@_) };
```

It may be better, and faster to create a real Perl function using the
[attach](#attach) method.

In addition to looking up a function by name you can provide the address
of the symbol yourself:

```perl
my $address = $ffi->find_symbol('my_functon');
my $function = $ffi->function($address => ...);
```

Under the covers, [function](#function) uses [find\_symbol](#find_symbol)
when you provide it with a name, but it is useful to keep this in mind
as there are alternative ways of obtaining a functions address.
Example: a C function could return the address of another C function
that you might want to call, or modules such as [FFI::TinyCC](https://metacpan.org/pod/FFI::TinyCC) produce
machine code at runtime that you can call from Platypus.

\[version 0.76\]

If the last argument is a code reference, then it will be used as a
wrapper around the function when called.  The first argument to the wrapper
will be the inner function, or if it is later attached an xsub.  This can be
used if you need to verify/modify input/output data.

Examples:

```perl
my $function = $ffi->function('my_function_name', ['int', 'string'] => 'string');
my $return_string = $function->(1, "hi there");
```

\[version 0.91\]

```perl
my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => $return_type);
my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => $return_type, \&wrapper);
```

Version 0.91 and later allows you to creat functions for c variadic functions
(such as printf, scanf, etc) which can take a variable number of arguments.
The first set of arguments are the fixed set, the second set are the variable
arguments to bind with.  The variable argument types must be specified in order
to create a function object, so if you need to call variadic function with
different set of arguments then you will need to create a new function object
each time:

```perl
# int printf(const char *fmt, ...);
$ffi->function( printf => ['string'] => ['int'] => 'int' )
    ->call("print integer %d\n", 42);
$ffi->function( printf => ['string'] => ['string'] => 'int' )
    ->call("print string %s\n", 'platypus');
```

Some older versions of libffi and possibly some platforms may not support
variadic functions.  If you try to create a one, then an exception will be
thrown.

## attach

```perl
$ffi->attach($name => \@argument_types => $return_type);
$ffi->attach([$c_name => $perl_name] => \@argument_types => $return_type);
$ffi->attach([$address => $perl_name] => \@argument_types => $return_type);
$ffi->attach($name => \@argument_types => $return_type, \&wrapper);
$ffi->attach([$c_name => $perl_name] => \@argument_types => $return_type, \&wrapper);
$ffi->attach([$address => $perl_name] => \@argument_types => $return_type, \&wrapper);
```

Find and attach a C function as a real live Perl xsub.  The advantage of
attaching a function over using the [function](#function) method is that
it is much much much faster since no object resolution needs to be done.
The disadvantage is that it locks the function and the [FFI::Platypus](https://metacpan.org/pod/FFI::Platypus)
instance into memory permanently, since there is no way to deallocate an
xsub.

If just one _$name_ is given, then the function will be attached in
Perl with the same name as it has in C.  The second form allows you to
give the Perl function a different name.  You can also provide an
address (the third form), just like with the [function](#function)
method.

Examples:

```perl
$ffi->attach('my_functon_name', ['int', 'string'] => 'string');
$ffi->attach(['my_c_functon_name' => 'my_perl_function_name'], ['int', 'string'] => 'string');
my $string1 = my_function_name($int);
my $string2 = my_perl_function_name($int);
```

\[version 0.20\]

If the last argument is a code reference, then it will be used as a
wrapper around the attached xsub.  The first argument to the wrapper
will be the inner xsub.  This can be used if you need to verify/modify
input/output data.

Examples:

```perl
$ffi->attach('my_function', ['int', 'string'] => 'string', sub {
  my($my_function_xsub, $integer, $string) = @_;
  $integer++;
  $string .= " and another thing";
  my $return_string = $my_function_xsub->($integer, $string);
  $return_string =~ s/Belgium//; # HHGG remove profanity
  $return_string;
});
```

\[version 0.91\]

```perl
$ffi->attach($name => \@fixed_argument_types => \@var_argument_types, $return_type);
$ffi->attach($name => \@fixed_argument_types => \@var_argument_types, $return_type, \&wrapper);
```

As of version 0.91 you can attach a variadic functions, if it is supported
by the platform / libffi that you are using.  For details see the `function`
documentation.  If not supported by the implementation then an exception
will be thrown.

## closure

```perl
my $closure = $ffi->closure($coderef);
my $closure = FFI::Platypus->closure($coderef);
```

Prepares a code reference so that it can be used as a FFI closure (a
Perl subroutine that can be called from C code).  For details on
closures, see [FFI::Platypus::Type#Closures](https://metacpan.org/pod/FFI::Platypus::Type#Closures) and [FFI::Platypus::Closure](https://metacpan.org/pod/FFI::Platypus::Closure).

## cast

```perl
my $converted_value = $ffi->cast($original_type, $converted_type, $original_value);
```

The `cast` function converts an existing _$original\_value_ of type
_$original\_type_ into one of type _$converted\_type_.  Not all types
are supported, so care must be taken.  For example, to get the address
of a string, you can do this:

```perl
my $address = $ffi->cast('string' => 'opaque', $string_value);
```

Something that won't work is trying to cast an array to anything:

```perl
my $address = $ffi->cast('int[10]' => 'opaque', \@list);  # WRONG
```

## attach\_cast

```perl
$ffi->attach_cast("cast_name", $original_type, $converted_type);
my $converted_value = cast_name($original_value);
```

This function attaches a cast as a permanent xsub.  This will make it
faster and may be useful if you are calling a particular cast a lot.

## sizeof

```perl
my $size = $ffi->sizeof($type);
my $size = FFI::Platypus->sizeof($type);
```

Returns the total size of the given type in bytes.  For example to get
the size of an integer:

```perl
my $intsize = $ffi->sizeof('int');   # usually 4
my $longsize = $ffi->sizeof('long'); # usually 4 or 8 depending on platform
```

You can also get the size of arrays

```perl
my $intarraysize = $ffi->sizeof('int[64]');  # usually 4*64
my $intarraysize = $ffi->sizeof('long[64]'); # usually 4*64 or 8*64
                                             # depending on platform
```

Keep in mind that "pointer" types will always be the pointer / word size
for the platform that you are using.  This includes strings, opaque and
pointers to other types.

This function is not very fast, so you might want to save this value as
a constant, particularly if you need the size in a loop with many
iterations.

## alignof

\[version 0.21\]

```perl
my $align = $ffi->alignof($type);
```

Returns the alignment of the given type in bytes.

## find\_lib

\[version 0.20\]

```perl
$ffi->find_lib( lib => $libname );
```

This is just a shortcut for calling [FFI::CheckLib#find\_lib](https://metacpan.org/pod/FFI::CheckLib#find_lib) and
updating the ["lib"](#lib) attribute appropriately.  Care should be taken
though, as this method simply passes its arguments to
[FFI::CheckLib#find\_lib](https://metacpan.org/pod/FFI::CheckLib#find_lib), so if your module or script is depending on a
specific feature in [FFI::CheckLib](https://metacpan.org/pod/FFI::CheckLib) then make sure that you update your
prerequisites appropriately.

## find\_symbol

```perl
my $address = $ffi->find_symbol($name);
```

Return the address of the given symbol (usually function).

## bundle

\[version 0.96 api = 1+\]

```
$ffi->bundle($package, \@args);
$ffi->bundle(\@args);
$ffi->bundle($package);
$ffi->bundle;
```

This is an interface for bundling compiled code with your
distribution intended to eventually replace the `package` method documented
above.  See [FFI::Platypus::Bundle](https://metacpan.org/pod/FFI::Platypus::Bundle) for details on how this works.

## package

\[version 0.15 api = 0\]

```perl
$ffi->package($package, $file); # usually __PACKAGE__ and __FILE__ can be used
$ffi->package;                  # autodetect
```

**Note**: This method is officially discouraged in favor of `bundle`
described above.

If you use [FFI::Build](https://metacpan.org/pod/FFI::Build) (or the older deprecated [Module::Build::FFI](https://metacpan.org/pod/Module::Build::FFI)
to bundle C code with your distribution, you can use this method to tell
the [FFI::Platypus](https://metacpan.org/pod/FFI::Platypus) instance to look for symbols that came with the
dynamic library that was built when your distribution was installed.

## abis

```perl
my $href = $ffi->abis;
my $href = FFI::Platypus->abis;
```

Get the legal ABIs supported by your platform and underlying
implementation.  What is supported can vary a lot by CPU and by
platform, or even between 32 and 64 bit on the same CPU and platform.
They keys are the "ABI" names, also known as "calling conventions".  The
values are integers used internally by the implementation to represent
those ABIs.

## abi

```
$ffi->abi($name);
```

Set the ABI or calling convention for use in subsequent calls to
["function"](#function) or ["attach"](#attach).  May be either a string name or integer
value from the ["abis"](#abis) method above.

# EXAMPLES

Here are some examples.  These examples
are provided in full with the Platypus distribution in the "examples"
directory.  There are also some more examples in [FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type)
that are related to types.

## Integer conversions

```perl
use FFI::Platypus;

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(undef);

$ffi->attach(puts => ['string'] => 'int');
$ffi->attach(atoi => ['string'] => 'int');

puts(atoi('56'));
```

**Discussion**: `puts` and `atoi` should be part of the standard C
library on all platforms.  `puts` prints a string to standard output,
and `atoi` converts a string to integer.  Specifying `undef` as a
library tells Platypus to search the current process for symbols, which
includes the standard c library.

## libnotify

```perl
use FFI::CheckLib;
use FFI::Platypus;

# NOTE: I ported this from anoter Perl FFI library and it seems to work most
# of the time, but also seems to SIGSEGV sometimes.  I saw the same behavior
# in the old version, and am not really familiar with the libnotify API to
# say what is the cause.  Patches welcome to fix it.

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(find_lib_or_exit lib => 'notify');

$ffi->attach(notify_init   => ['string'] => 'void');
$ffi->attach(notify_uninit => []       => 'void');
$ffi->attach([notify_notification_new    => 'notify_new']    => ['string', 'string', 'string']           => 'opaque');
$ffi->attach([notify_notification_update => 'notify_update'] => ['opaque', 'string', 'string', 'string'] => 'void');
$ffi->attach([notify_notification_show   => 'notify_show']   => ['opaque', 'opaque']                     => 'void');

notify_init('FFI::Platypus');
my $n = notify_new('','','');
notify_update($n, 'FFI::Platypus', 'It works!!!', 'media-playback-start');
notify_show($n, undef);
notify_uninit();
```

**Discussion**: libnotify is a desktop GUI notification library for the
GNOME Desktop environment. This script sends a notification event that
should show up as a balloon, for me it did so in the upper right hand
corner of my screen.

The most portable way to find the correct name and location of a dynamic
library is via the [FFI::CheckLib#find\_lib](https://metacpan.org/pod/FFI::CheckLib#find_lib) family of functions.  If
you are putting together a CPAN distribution, you should also consider
using [FFI::CheckLib#check\_lib\_or\_exit](https://metacpan.org/pod/FFI::CheckLib#check_lib_or_exit) function in your `Build.PL` or
`Makefile.PL` file (If you are using [Dist::Zilla](https://metacpan.org/pod/Dist::Zilla), check out the
[Dist::Zilla::Plugin::FFI::CheckLib](https://metacpan.org/pod/Dist::Zilla::Plugin::FFI::CheckLib) plugin). This will provide a user
friendly diagnostic letting the user know that the required library is
missing, and reduce the number of bogus CPAN testers results that you
will get.

Also in this example, we rename some of the functions when they are
placed into Perl space to save typing:

```perl
$ffi->attach( [notify_notification_new => 'notify_new']
  => ['string','string','string']
  => 'opaque'
);
```

When you specify a list reference as the "name" of the function the
first element is the symbol name as understood by the dynamic library.
The second element is the name as it will be placed in Perl space.

Later, when we call `notify_new`:

```perl
my $n = notify_new('','','');
```

We are really calling the C function `notify_notification_new`.

## Allocating and freeing memory

```perl
use FFI::Platypus;
use FFI::Platypus::Memory qw( malloc free memcpy );

my $ffi = FFI::Platypus->new( api => 1 );
my $buffer = malloc 12;

memcpy $buffer, $ffi->cast('string' => 'opaque', "hello there"), length "hello there\0";

print $ffi->cast('opaque' => 'string', $buffer), "\n";

free $buffer;
```

**Discussion**: `malloc` and `free` are standard memory allocation
functions available from the standard c library and.  Interfaces to
these and other memory related functions are provided by the
[FFI::Platypus::Memory](https://metacpan.org/pod/FFI::Platypus::Memory) module.

## structured data records

```perl
package My::UnixTime;

use FFI::Platypus::Record;

record_layout_1(qw(
    int    tm_sec
    int    tm_min
    int    tm_hour
    int    tm_mday
    int    tm_mon
    int    tm_year
    int    tm_wday
    int    tm_yday
    int    tm_isdst
    long   tm_gmtoff
    string tm_zone
));

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(undef);
# define a record class My::UnixTime and alias it to "tm"
$ffi->type("record(My::UnixTime)*" => 'tm');

# attach the C localtime function as a constructor
$ffi->attach( localtime => ['time_t*'] => 'tm', sub {
  my($inner, $class, $time) = @_;
  $time = time unless defined $time;
  $inner->(\$time);
});

package main;

# now we can actually use our My::UnixTime class
my $time = My::UnixTime->localtime;
printf "time is %d:%d:%d %s\n",
  $time->tm_hour,
  $time->tm_min,
  $time->tm_sec,
  $time->tm_zone;
```

**Discussion**: C and other machine code languages frequently provide
interfaces that include structured data records (known as "structs" in
C).  They sometimes provide an API in which you are expected to
manipulate these records before and/or after passing them along to C
functions.  There are a few ways of dealing with such interfaces, but
the easiest way is demonstrated here defines a record class using a
specific layout.  For more details see [FFI::Platypus::Record](https://metacpan.org/pod/FFI::Platypus::Record).
([FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type) includes some other ways of manipulating
structured data records).

The C `localtime` function takes a pointer to a record, hence we suffix
the type with a star: `record(My::UnixTime)*`.  If the function takes
a record in pass-by-value mode then we'd just say `record(My::UnixTime)`
with no star suffix.

## libuuid

```perl
use FFI::CheckLib;
use FFI::Platypus;
use FFI::Platypus::Memory qw( malloc free );

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(find_lib_or_exit lib => 'uuid');
$ffi->type('string(37)*' => 'uuid_string');
$ffi->type('record(16)*' => 'uuid_t');

$ffi->attach(uuid_generate => ['uuid_t'] => 'void');
$ffi->attach(uuid_unparse  => ['uuid_t','uuid_string'] => 'void');

my $uuid = "\0" x 16;  # uuid_t
uuid_generate($uuid);

my $string = "\0" x 37; # 36 bytes to store a UUID string
                        # + NUL termination
uuid_unparse($uuid, $string);

print "$string\n";
```

**Discussion**: libuuid is a library used to generate unique identifiers
(UUID) for objects that may be accessible beyond the local system.  The
library is or was part of the Linux e2fsprogs package.

Knowing the size of objects is sometimes important.  In this example, we
use the [sizeof](#sizeof) function to get the size of 16 characters (in
this case it is simply 16 bytes).  We also know that the strings
"deparsed" by `uuid_unparse` are exactly 37 bytes.

## puts and getpid

```perl
use FFI::Platypus;

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(undef);

$ffi->attach(puts => ['string'] => 'int');
$ffi->attach(getpid => [] => 'int');

puts(getpid());
```

**Discussion**: `puts` is part of standard C library on all platforms.
`getpid` is available on Unix type platforms.

## Math library

```perl
use FFI::Platypus;
use FFI::CheckLib;

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(undef);
$ffi->attach(puts => ['string'] => 'int');
$ffi->attach(fdim => ['double','double'] => 'double');

puts(fdim(7.0, 2.0));

$ffi->attach(cos => ['double'] => 'double');

puts(cos(2.0));

$ffi->attach(fmax => ['double', 'double'] => 'double');

puts(fmax(2.0,3.0));
```

**Discussion**: On UNIX the standard c library math functions are
frequently provided in a separate library `libm`, so you could search
for those symbols in "libm.so", but that won't work on non-UNIX
platforms like Microsoft Windows.  Fortunately Perl uses the math
library so these symbols are already in the current process so you can
use `undef` as the library to find them.

## Strings

```perl
use FFI::Platypus;

my $ffi = FFI::Platypus->new;
$ffi->lib(undef);
$ffi->attach(puts => ['string'] => 'int');
$ffi->attach(strlen => ['string'] => 'int');

puts(strlen('somestring'));

$ffi->attach(strstr => ['string','string'] => 'string');

puts(strstr('somestring', 'string'));

#attach puts => [string] => int;

puts(puts("lol"));

$ffi->attach(strerror => ['int'] => 'string');

puts(strerror(2));
```

**Discussion**: Strings are not a native type to `libffi` but the are
handled seamlessly by Platypus.

## Attach function from pointer

```perl
use FFI::TinyCC;
use FFI::Platypus;

my $ffi = FFI::Platypus->new( api => 1 );
my $tcc = FFI::TinyCC->new;

$tcc->compile_string(q{
  int
  add(int a, int b)
  {
    return a+b;
  }
});

my $address = $tcc->get_symbol('add');

$ffi->attach( [ $address => 'add' ] => ['int','int'] => 'int' );

print add(1,2), "\n";
```

**Discussion**: Sometimes you will have a pointer to a function from a
source other than Platypus that you want to call.  You can use that
address instead of a function name for either of the
[function](#function) or [attach](#attach) methods.  In this example we
use [FFI::TinyCC](https://metacpan.org/pod/FFI::TinyCC) to compile a short piece of C code and to give us the
address of one of its functions, which we then use to create a perl xsub
to call it.

[FFI::TinyCC](https://metacpan.org/pod/FFI::TinyCC) embeds the Tiny C Compiler (tcc) to provide a
just-in-time (JIT) compilation service for FFI.

## libzmq

```perl
use constant ZMQ_IO_THREADS  => 1;
use constant ZMQ_MAX_SOCKETS => 2;
use constant ZMQ_REQ => 3;
use constant ZMQ_REP => 4;
use FFI::CheckLib qw( find_lib_or_exit );
use FFI::Platypus;
use FFI::Platypus::Memory qw( malloc );
use FFI::Platypus::Buffer qw( scalar_to_buffer buffer_to_scalar );

my $endpoint = "ipc://zmq-ffi-$$";
my $ffi = FFI::Platypus->new( api => 1 );

$ffi->lib(undef); # for puts
$ffi->attach(puts => ['string'] => 'int');

$ffi->lib(find_lib_or_exit lib => 'zmq');
$ffi->attach(zmq_version => ['int*', 'int*', 'int*'] => 'void');

my($major,$minor,$patch);
zmq_version(\$major, \$minor, \$patch);
puts("libzmq version $major.$minor.$patch");
die "this script only works with libzmq 3 or better" unless $major >= 3;

$ffi->type('opaque'       => 'zmq_context');
$ffi->type('opaque'       => 'zmq_socket');
$ffi->type('opaque'       => 'zmq_msg_t');
$ffi->attach(zmq_ctx_new  => [] => 'zmq_context');
$ffi->attach(zmq_ctx_set  => ['zmq_context', 'int', 'int'] => 'int');
$ffi->attach(zmq_socket   => ['zmq_context', 'int'] => 'zmq_socket');
$ffi->attach(zmq_connect  => ['opaque', 'string'] => 'int');
$ffi->attach(zmq_bind     => ['zmq_socket', 'string'] => 'int');
$ffi->attach(zmq_send     => ['zmq_socket', 'opaque', 'size_t', 'int'] => 'int');
$ffi->attach(zmq_msg_init => ['zmq_msg_t'] => 'int');
$ffi->attach(zmq_msg_recv => ['zmq_msg_t', 'zmq_socket', 'int'] => 'int');
$ffi->attach(zmq_msg_data => ['zmq_msg_t'] => 'opaque');
$ffi->attach(zmq_errno    => [] => 'int');
$ffi->attach(zmq_strerror => ['int'] => 'string');

my $context = zmq_ctx_new();
zmq_ctx_set($context, ZMQ_IO_THREADS, 1);

my $socket1 = zmq_socket($context, ZMQ_REQ);
zmq_connect($socket1, $endpoint);

my $socket2 = zmq_socket($context, ZMQ_REP);
zmq_bind($socket2, $endpoint);

do { # send
  our $sent_message = "hello there";
  my($pointer, $size) = scalar_to_buffer $sent_message;
  my $r = zmq_send($socket1, $pointer, $size, 0);
  die zmq_strerror(zmq_errno()) if $r == -1;
};

do { # recv
  my $msg_ptr  = malloc 100;
  zmq_msg_init($msg_ptr);
  my $size     = zmq_msg_recv($msg_ptr, $socket2, 0);
  die zmq_strerror(zmq_errno()) if $size == -1;
  my $data_ptr = zmq_msg_data($msg_ptr);
  my $recv_message = buffer_to_scalar $data_ptr, $size;
  print "recv_message = $recv_message\n";
};
```

**Discussion**: ØMQ is a high-performance asynchronous messaging library.
There are a few things to note here.

Firstly, sometimes there may be multiple versions of a library in the
wild and you may need to verify that the library on a system meets your
needs (alternatively you could support multiple versions and configure
your bindings dynamically).  Here we use `zmq_version` to ask libzmq
which version it is.

`zmq_version` returns the version number via three integer pointer
arguments, so we use the pointer to integer type: `int *`.  In order to
pass pointer types, we pass a reference. In this case it is a reference
to an undefined value, because zmq\_version will write into the pointers
the output values, but you can also pass in references to integers,
floating point values and opaque pointer types.  When the function
returns the `$major` variable (and the others) has been updated and we
can use it to verify that it supports the API that we require.

Notice that we define three aliases for the `opaque` type:
`zmq_context`, `zmq_socket` and `zmq_msg_t`.  While this isn't
strictly necessary, since Platypus and C treat all three of these types
the same, it is useful form of documentation that helps describe the
functionality of the interface.

Finally we attach the necessary functions, send and receive a message.
If you are interested, there is a fully fleshed out ØMQ Perl interface
implemented using FFI called [ZMQ::FFI](https://metacpan.org/pod/ZMQ::FFI).

## libarchive

```perl
use FFI::Platypus      ();
use FFI::CheckLib      qw( find_lib_or_exit );

# This example uses FreeBSD's libarchive to list the contents of any
# archive format that it suppors.  We've also filled out a part of
# the ArchiveWrite class that could be used for writing archive formats
# supported by libarchive

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(find_lib_or_exit lib => 'archive');
$ffi->type('object(Archive)'      => 'archive_t');
$ffi->type('object(ArchiveRead)'  => 'archive_read_t');
$ffi->type('object(ArchiveWrite)' => 'archive_write_t');
$ffi->type('object(ArchiveEntry)' => 'archive_entry_t');

package Archive;

# base class is "abstract" having no constructor or destructor

$ffi->mangler(sub {
  my($name) = @_;
  "archive_$name";
});
$ffi->attach( error_string => ['archive_t'] => 'string' );

package ArchiveRead;

our @ISA = qw( Archive );

$ffi->mangler(sub {
  my($name) = @_;
  "archive_read_$name";
});

$ffi->attach( new                   => ['string']                        => 'archive_read_t' );
$ffi->attach( [ free => 'DESTROY' ] => ['archive_t']                     => 'void' );
$ffi->attach( support_filter_all    => ['archive_t']                     => 'int' );
$ffi->attach( support_format_all    => ['archive_t']                     => 'int' );
$ffi->attach( open_filename         => ['archive_t','string','size_t']   => 'int' );
$ffi->attach( next_header2          => ['archive_t', 'archive_entry_t' ] => 'int' );
$ffi->attach( data_skip             => ['archive_t']                     => 'int' );
# ... define additional read methods

package ArchiveWrite;

our @ISA = qw( Archive );

$ffi->mangler(sub {
  my($name) = @_;
  "archive_write_$name";
});

$ffi->attach( new                   => ['string'] => 'archive_write_t' );
$ffi->attach( [ free => 'DESTROY' ] => ['archive_write_t'] => 'void' );
# ... define additional write methods

package ArchiveEntry;

$ffi->mangler(sub {
  my($name) = @_;
  "archive_entry_$name";
});

$ffi->attach( new => ['string']     => 'archive_entry_t' );
$ffi->attach( [ free => 'DESTROY' ] => ['archive_entry_t'] => 'void' );
$ffi->attach( pathname              => ['archive_entry_t'] => 'string' );
# ... define additional entry methods

package main;

use constant ARCHIVE_OK => 0;

# this is a Perl version of the C code here:
# https://github.com/libarchive/libarchive/wiki/Examples#List_contents_of_Archive_stored_in_File

my $archive_filename = shift @ARGV;
unless(defined $archive_filename)
{
  print "usage: $0 archive.tar\n";
  exit;
}

my $archive = ArchiveRead->new;
$archive->support_filter_all;
$archive->support_format_all;

my $r = $archive->open_filename($archive_filename, 1024);
die "error opening $archive_filename: ", $archive->error_string
  unless $r == ARCHIVE_OK;

my $entry = ArchiveEntry->new;

while($archive->next_header2($entry) == ARCHIVE_OK)
{
  print $entry->pathname, "\n";
  $archive->data_skip;
}
```

**Discussion**: libarchive is the implementation of `tar` for FreeBSD
provided as a library and available on a number of platforms.

One interesting thing about libarchive is that it provides a kind of
object oriented interface via opaque pointers.  This example creates an
abstract class `Archive`, and concrete classes `ArchiveWrite`,
`ArchiveRead` and `ArchiveEntry`.  The concrete classes can even be
inherited from and extended just like any Perl classes because of the
way the custom types are implemented.  We use Platypus's `object`
type for this implementation, which is a wrapper around an `opaque`
(can also be an integer) type that is blessed into a particular class.

Another advanced feature of this example is that we define a mangler
to modify the symbol resolution for each class.  This means we can do
this when we define a method for Archive:

```perl
$ffi->attach( support_filter_all => ['archive_t'] => 'int' );
```

Rather than this:

```perl
$ffi->attach(
  [ archive_read_support_filter_all => 'support_read_filter_all' ] =>
  ['archive_t'] => 'int' );
);
```

## unix open

```perl
use FFI::Platypus;

{
  package FD;

  use constant O_RDONLY => 0;
  use constant O_WRONLY => 1;
  use constant O_RDWR   => 2;

  use constant IN  => bless \do { my $in=0  }, __PACKAGE__;
  use constant OUT => bless \do { my $out=1 }, __PACKAGE__;
  use constant ERR => bless \do { my $err=2 }, __PACKAGE__;

  my $ffi = FFI::Platypus->new( api => 1, lib => [undef]);

  $ffi->type('object(FD,int)' => 'fd');

  $ffi->attach( [ 'open' => 'new' ] => [ 'string', 'int', 'mode_t' ] => 'fd' => sub {
    my($xsub, $class, $fn, @rest) = @_;
    my $fd = $xsub->($fn, @rest);
    die "error opening $fn $!" if $$fd == -1;
    $fd;
  });

  $ffi->attach( write => ['fd', 'string', 'size_t' ] => 'ssize_t' );
  $ffi->attach( read  => ['fd', 'string', 'size_t' ] => 'ssize_t' );
  $ffi->attach( close => ['fd'] => 'int' );
}

my $fd = FD->new("$0", FD::O_RDONLY);

my $buffer = "\0" x 10;

while(my $br = $fd->read($buffer, 10))
{
  FD::OUT->write($buffer, $br);
}

$fd->close;
```

**Discussion**: The Unix file system calls use an integer handle for
each open file.  We can use the same `object` type that we used
for libarchive above, except we let platypus know that the underlying
type is `int` instead of `opaque` (the latter being the default for
the `object` type).  Mainly just for demonstration since Perl has much
better IO libraries, but now we have an OO interface to the Unix IO
functions.

## bzip2

```perl
use FFI::Platypus 0.20 (); # 0.20 required for using wrappers
use FFI::CheckLib qw( find_lib_or_die );
use FFI::Platypus::Buffer qw( scalar_to_buffer buffer_to_scalar );
use FFI::Platypus::Memory qw( malloc free );

my $ffi = FFI::Platypus->new( api => 1 );
$ffi->lib(find_lib_or_die lib => 'bz2');

$ffi->attach(
  [ BZ2_bzBuffToBuffCompress => 'compress' ] => [
    'opaque',                           # dest
    'unsigned int *',                   # dest length
    'opaque',                           # source
    'unsigned int',                     # source length
    'int',                              # blockSize100k
    'int',                              # verbosity
    'int',                              # workFactor
  ] => 'int',
  sub {
    my $sub = shift;
    my($source,$source_length) = scalar_to_buffer $_[0];
    my $dest_length = int(length($source)*1.01) + 1 + 600;
    my $dest = malloc $dest_length;
    my $r = $sub->($dest, \$dest_length, $source, $source_length, 9, 0, 30);
    die "bzip2 error $r" unless $r == 0;
    my $compressed = buffer_to_scalar($dest, $dest_length);
    free $dest;
    $compressed;
  },
);

$ffi->attach(
  [ BZ2_bzBuffToBuffDecompress => 'decompress' ] => [
    'opaque',                           # dest
    'unsigned int *',                   # dest length
    'opaque',                           # source
    'unsigned int',                     # source length
    'int',                              # small
    'int',                              # verbosity
  ] => 'int',
  sub {
    my $sub = shift;
    my($source, $source_length) = scalar_to_buffer $_[0];
    my $dest_length = $_[1];
    my $dest = malloc $dest_length;
    my $r = $sub->($dest, \$dest_length, $source, $source_length, 0, 0);
    die "bzip2 error $r" unless $r == 0;
    my $decompressed = buffer_to_scalar($dest, $dest_length);
    free $dest;
    $decompressed;
  },
);

my $original = "hello compression world\n";
my $compressed = compress($original);
print decompress($compressed, length $original);
```

**Discussion**: bzip2 is a compression library.  For simple one shot
attempts at compression/decompression when you expect the original and
the result to fit within memory it provides two convenience functions
`BZ2_bzBuffToBuffCompress` and `BZ2_bzBuffToBuffDecompress`.

The first four arguments of both of these C functions are identical, and
represent two buffers.  One buffer is the source, the second is the
destination.  For the destination, the length is passed in as a pointer
to an integer.  On input this integer is the size of the destination
buffer, and thus the maximum size of the compressed or decompressed
data.  When the function returns the actual size of compressed or
compressed data is stored in this integer.

This is normal stuff for C, but in Perl our buffers are scalars and they
already know how large they are.  In this sort of situation, wrapping
the C function in some Perl code can make your interface a little more
Perl like.  In order to do this, just provide a code reference as the
last argument to the ["attach"](#attach) method.  The first argument to this
wrapper will be a code reference to the C function.  The Perl arguments
will come in after that.  This allows you to modify / convert the
arguments to conform to the C API.  What ever value you return from the
wrapper function will be returned back to the original caller.

## bundle your own code

`ffi/foo.c`:

```
#include <ffi_platypus_bundle.h>
#include <string.h>

typedef struct {
  char *name;
  int value;
} foo_t;

foo_t*
foo__new(const char *class_name, const char *name, int value)
{
  (void)class_name;
  foo_t *self = malloc( sizeof( foo_t ) );
  self->name = strdup(name);
  self->value = value;
  return self;
}

const char *
foo__name(foo_t *self)
{
  return self->name;
}

int
foo__value(foo_t *self)
{
  return self->value;
}

void
foo__DESTROY(foo_t *self)
{
  free(self->name);
  free(self);
}
```

`lib/Foo.pm`:

```perl
package Foo;

use strict;
use warnings;
use FFI::Platypus;

{
  my $ffi = FFI::Platypus->new( api => 1 );

  $ffi->type('object(Foo)' => 'foo_t');
  $ffi->mangler(sub {
    my $name = shift;
    $name =~ s/^/foo__/;
    $name;
  });

  $ffi->bundle;

  $ffi->attach( new =>     [ 'string', 'string', 'int' ] => 'foo_t'  );
  $ffi->attach( name =>    [ 'foo_t' ]                   => 'string' );
  $ffi->attach( value =>   [ 'foo_t' ]                   => 'int'    );
  $ffi->attach( DESTROY => [ 'foo_t' ]                   => 'void'   );
}

1;
```

You can bundle your own C (or other compiled language) code with your
Perl extension.  Sometimes this is helpful for smoothing over the
interface of a C library which is not very FFI friendly.  Sometimes
you may want to write some code in C for a tight loop.  Either way,
you can do this with the Platypus bundle interface.  See
[FFI::Platypus::Bundle](https://metacpan.org/pod/FFI::Platypus::Bundle) for more details.

Also related is the bundle constant interface, which allows you to
define Perl constants in C space.  See [FFI::Platypus::Constant](https://metacpan.org/pod/FFI::Platypus::Constant)
for details.

# FAQ

## How do I get constants defined as macros in C header files

This turns out to be a challenge for any language calling into C, which
frequently uses `#define` macros to define constants like so:

```
#define FOO_STATIC  1
#define FOO_DYNAMIC 2
#define FOO_OTHER   3
```

As macros are expanded and their definitions are thrown away by the C pre-processor
there isn't any way to get the name/value mappings from the compiled dynamic
library.

You can manually create equivalent constants in your Perl source:

```perl
use constant FOO_STATIC  => 1;
use constant FOO_DYNAMIC => 2;
use constant FOO_OTHER   => 3;
```

If there are a lot of these types of constants you might want to consider using
a tool ([Convert::Binary::C](https://metacpan.org/pod/Convert::Binary::C) can do this) that can extract the constants for you.

See also the "Integer constants" example in [FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type).

You can also use the new Platypus bundle interface to define Perl constants
from C space.  This is more reliable, but does require a compiler at install
time.  It is recommended mainly for writing bindings against libraries that
have constants that can vary widely from platform to platform.  See
[FFI::Platypus::Constant](https://metacpan.org/pod/FFI::Platypus::Constant) for details.

## What about enums?

The C enum types are integers.  The underlying type is up to the platform, so
Platypus provides `enum` and `senum` types for unsigned and singed enums
respectively.  At least some compilers treat signed and unsigned enums as
different types.  The enum _values_ are essentially the same as macro constants
described above from an FFI perspective.  Thus the process of defining enum values
is identical to the process of defining macro constants in Perl.

For more details on enumerated types see ["Enum types" in FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type#Enum-types).

## Memory leaks

There are a couple places where memory is allocated, but never deallocated that may
look like memory leaks by tools designed to find memory leaks like valgrind.  This
memory is intended to be used for the lifetime of the perl process so there normally
this isn't a problem unless you are embedding a Perl interpreter which doesn't closely
match the lifetime of your overall application.

Specifically:

- type cache

    some types are cached and not freed.  These are needed as long as there are FFI
    functions that could be called.

- attached functions

    Attaching a function as an xsub will definitely allocate memory that won't be freed
    because the xsub could be called at any time, including in `END` blocks.

The Platypus team plans on adding a hook to free some of this "leaked" memory
for use cases where Perl and Platypus are embedded in a larger application
where the lifetime of the Perl process is significantly smaller than the
overall lifetime of the whole process.

## I get seg faults on some platforms but not others with a library using pthreads.

On some platforms, Perl isn't linked with `libpthreads` if Perl threads are not
enabled.  On some platforms this doesn't seem to matter, `libpthreads` can be
loaded at runtime without much ill-effect.  (Linux from my experience doesn't seem
to mind one way or the other).  Some platforms are not happy about this, and about
the only thing that you can do about it is to build Perl such that it links with
`libpthreads` even if it isn't a threaded Perl.

This is not really an FFI issue, but a Perl issue, as you will have the same
problem writing XS code for the such libraries.

## Doesn't work on Perl 5.10.0.

I try as best as possible to support the same range of Perls as the Perl toolchain.
That means all the way back to 5.8.1.  Unfortunately, 5.10.0 seems to have a problem
that is difficult to diagnose.  Patches to fix are welcome, if you want to help
out on this, please see:

[https://github.com/Perl5-FFI/FFI-Platypus/issues/68](https://github.com/Perl5-FFI/FFI-Platypus/issues/68)

Since this is an older buggy version of Perl it is recommended that you instead
upgrade to 5.10.1 or later.

# CAVEATS

Platypus and Native Interfaces like libffi rely on the availability of
dynamic libraries.  Things not supported include:

- Systems that lack dynamic library support

    Like MS-DOS

- Systems that are not supported by libffi

    Like OpenVMS

- Languages that do not support using dynamic libraries from other languages

    Like older versions of Google's Go. This is a problem for C / XS code as well.

- Languages that do not compile to machine code

    Like .NET based languages and Java.

The documentation has a bias toward using FFI / Platypus with C.  This
is my fault, as my background in mainly in C/C++ programmer (when I am
not writing Perl).  In many places I use "C" as a short form for "any
language that can generate machine code and is callable from C".  I
welcome pull requests to the Platypus core to address this issue.  In an
attempt to ease usage of Platypus by non C programmers, I have written a
number of foreign language plugins for various popular languages (see
the SEE ALSO below).  These plugins come with examples specific to those
languages, and documentation on common issues related to using those
languages with FFI.  In most cases these are available for easy adoption
for those with the know-how or the willingness to learn.  If your
language doesn't have a plugin YET, that is just because you haven't
written it yet.

# SUPPORT

IRC: #native on irc.perl.org

[(click for instant chat room login)](http://chat.mibbit.com/#native@irc.perl.org)

If something does not work the way you think it should, or if you have a
feature request, please open an issue on this project's GitHub Issue
tracker:

[https://github.com/perl5-FFI/FFI-Platypus/issues](https://github.com/perl5-FFI/FFI-Platypus/issues)

# CONTRIBUTING

If you have implemented a new feature or fixed a bug then you may make a
pull request on this project's GitHub repository:

[https://github.com/Perl5-FFI/FFI-Platypus/pulls](https://github.com/Perl5-FFI/FFI-Platypus/pulls)

This project is developed using [Dist::Zilla](https://metacpan.org/pod/Dist::Zilla).  The project's git
repository also comes with the `Makefile.PL` file necessary
for building, testing (and even installing if necessary) without
[Dist::Zilla](https://metacpan.org/pod/Dist::Zilla).  Please keep in mind though that these files are
generated so if changes need to be made to those files they should be
done through the project's `dist.ini` file.  If you do use
[Dist::Zilla](https://metacpan.org/pod/Dist::Zilla) and already have the necessary plugins installed, then I
encourage you to run `dzil test` before making any pull requests.  This
is not a requirement, however, I am happy to integrate especially
smaller patches that need tweaking to fit the project standards.  I may
push back and ask you to write a test case or alter the formatting of a
patch depending on the amount of time I have and the amount of code that
your patch touches.

This project's GitHub issue tracker listed above is not Write-Only.  If
you want to contribute then feel free to browse through the existing
issues and see if there is something you feel you might be good at and
take a whack at the problem.  I frequently open issues myself that I
hope will be accomplished by someone in the future but do not have time
to immediately implement myself.

Another good area to help out in is documentation.  I try to make sure
that there is good document coverage, that is there should be
documentation describing all the public features and warnings about
common pitfalls, but an outsider's or alternate view point on such
things would be welcome; if you see something confusing or lacks
sufficient detail I encourage documentation only pull requests to
improve things.

The Platypus distribution comes with a test library named `libtest`
that is normally automatically built by `./Build test`.  If you prefer
to use `prove` or run tests directly, you can use the `./Build
libtest` command to build it.  Example:

```
% perl Makefile.PL
% make
% make ffi-test
% prove -bv t
# or an individual test
% perl -Mblib t/ffi_platypus_memory.t
```

The build process also respects these environment variables:

- FFI\_PLATYPUS\_DEBUG\_FAKE32

    When building Platypus on 32 bit Perls, it will use the [Math::Int64](https://metacpan.org/pod/Math::Int64) C
    API and make [Math::Int64](https://metacpan.org/pod/Math::Int64) a prerequisite.  Setting this environment
    variable will force Platypus to build with both of those options on a 64
    bit Perl as well.

    ```
    % env FFI_PLATYPUS_DEBUG_FAKE32=1 perl Makefile.PL
    DEBUG_FAKE32:
      + making Math::Int64 a prereq
      + Using Math::Int64's C API to manipulate 64 bit values
    Generating a Unix-style Makefile
    Writing Makefile for FFI::Platypus
    Writing MYMETA.yml and MYMETA.json
    %
    ```

- FFI\_PLATYPUS\_NO\_ALLOCA

    Platypus uses the non-standard and somewhat controversial C function
    `alloca` by default on platforms that support it.  I believe that
    Platypus uses it responsibly to allocate small amounts of memory for
    argument type parameters, and does not use it to allocate large
    structures like arrays or buffers.  If you prefer not to use `alloca`
    despite these precautions, then you can turn its use off by setting this
    environment variable when you run `Makefile.PL`:

    ```perl
    helix% env FFI_PLATYPUS_NO_ALLOCA=1 perl Makefile.PL
    NO_ALLOCA:
      + alloca() will not be used, even if your platform supports it.
    Generating a Unix-style Makefile
    Writing Makefile for FFI::Platypus
    Writing MYMETA.yml and MYMETA.json
    ```

- V

    When building platypus may hide some of the excessive output when
    probing and building, unless you set `V` to a true value.

    ```
    % env V=1 perl Makefile.PL
    % make V=1
    ...
    ```

## Coding Guidelines

- Do not hesitate to make code contribution.  Making useful contributions
is more important than following byzantine bureaucratic coding
regulations.  We can always tweak things later.
- Please make an effort to follow existing coding style when making pull
requests.
- Platypus supports all production Perl releases since 5.8.1.  For that
reason, please do not introduce any code that requires a newer version
of Perl.

## Performance Testing

As Mark Twain was fond of saying there are four types of lies: lies,
damn lies, statistics and benchmarks.  That being said, it can sometimes
be helpful to compare the runtime performance of Platypus if you are
making significant changes to the Platypus Core.  For that I use
\`FFI-Performance\`, which can be found in my GitHub repository here:

- [https://github.com/Perl5-FFI/FFI-Performance](https://github.com/Perl5-FFI/FFI-Performance)

## System integrators

This distribution uses [Alien::FFI](https://metacpan.org/pod/Alien::FFI) in fallback mode, meaning if
the system doesn't provide `pkg-config` and `libffi` it will attempt
to download `libffi` and build it from source.  If you are including
Platypus in a larger system (for example a Linux distribution) you
only need to make sure to declare `pkg-config` or `pkgconf` and
the development package for `libffi` as prereqs for this module.

# SEE ALSO

- [NativeCall](https://metacpan.org/pod/NativeCall)

    Promising interface to Platypus inspired by Perl 6.

- [FFI::Platypus::Type](https://metacpan.org/pod/FFI::Platypus::Type)

    Type definitions for Platypus.

- [FFI::Platypus::Record](https://metacpan.org/pod/FFI::Platypus::Record)

    Define structured data records (C "structs") for use with
    Platypus.

- [FFI::Platypus::API](https://metacpan.org/pod/FFI::Platypus::API)

    The custom types API for Platypus.

- [FFI::Platypus::Memory](https://metacpan.org/pod/FFI::Platypus::Memory)

    Memory functions for FFI.

- [FFI::CheckLib](https://metacpan.org/pod/FFI::CheckLib)

    Find dynamic libraries in a portable way.

- [FFI::TinyCC](https://metacpan.org/pod/FFI::TinyCC)

    JIT compiler for FFI.

- [FFI::Platypus::Lang::C](https://metacpan.org/pod/FFI::Platypus::Lang::C)

    Documentation and tools for using Platypus with the C programming
    language

- [FFI::Platypus::Lang::CPP](https://metacpan.org/pod/FFI::Platypus::Lang::CPP)

    Documentation and tools for using Platypus with the C++ programming
    language

- [FFI::Platypus::Lang::Fortran](https://metacpan.org/pod/FFI::Platypus::Lang::Fortran)

    Documentation and tools for using Platypus with Fortran

- [FFI::Platypus::Lang::Pascal](https://metacpan.org/pod/FFI::Platypus::Lang::Pascal)

    Documentation and tools for using Platypus with Free Pascal

- [FFI::Platypus::Lang::Rust](https://metacpan.org/pod/FFI::Platypus::Lang::Rust)

    Documentation and tools for using Platypus with the Rust programming
    language

- [FFI::Platypus::Lang::ASM](https://metacpan.org/pod/FFI::Platypus::Lang::ASM)

    Documentation and tools for using Platypus with the Assembly

- [Convert::Binary::C](https://metacpan.org/pod/Convert::Binary::C)

    A great interface for decoding C data structures, including `struct`s,
    `enum`s, `#define`s and more.

- [pack and unpack](https://metacpan.org/pod/perlpacktut)

    Native to Perl functions that can be used to decode C `struct` types.

- [C::Scan](https://metacpan.org/pod/C::Scan)

    This module can extract constants and other useful objects from C header
    files that may be relevant to an FFI application.  One downside is that
    its use may require development packages to be installed.

- [Win32::API](https://metacpan.org/pod/Win32::API)

    Microsoft Windows specific FFI style interface.

- [Ctypes](https://gitorious.org/perl-ctypes)

    Ctypes was intended as a FFI style interface for Perl, but was never
    part of CPAN, and at least the last time I tried it did not work with
    recent versions of Perl.

- [FFI](https://metacpan.org/pod/FFI)

    Older, simpler, less featureful FFI.  It used to be implemented
    using FSF's `ffcall`.  Because `ffcall` has been unsupported for
    some time, I reimplemented this module using [FFI::Platypus](https://metacpan.org/pod/FFI::Platypus).

- [C::DynaLib](https://metacpan.org/pod/C::DynaLib)

    Another FFI for Perl that doesn't appear to have worked for a long time.

- [C::Blocks](https://metacpan.org/pod/C::Blocks)

    Embed a tiny C compiler into your Perl scripts.

- [Alien::FFI](https://metacpan.org/pod/Alien::FFI)

    Provides libffi for Platypus during its configuration and build stages.

- [P5NCI](https://metacpan.org/pod/P5NCI)

    Yet another FFI like interface that does not appear to be supported or
    under development anymore.

# ACKNOWLEDGMENTS

In addition to the contributors mentioned below, I would like to
acknowledge Brock Wilcox (AWWAIID) and Meredith Howard (MHOWARD) whose
work on `FFI::Sweet` not only helped me get started with FFI but
significantly influenced the design of Platypus.

Dan Book, who goes by Grinnz on IRC for answering user questions about
FFI and Platypus.

In addition I'd like to thank Alessandro Ghedini (ALEXBIO) whose work
on another Perl FFI library helped drive some of the development ideas
for [FFI::Platypus](https://metacpan.org/pod/FFI::Platypus).

# AUTHOR

Author: Graham Ollis <plicease@cpan.org>

Contributors:

Bakkiaraj Murugesan (bakkiaraj)

Dylan Cali (calid)

pipcet

Zaki Mughal (zmughal)

Fitz Elliott (felliott)

Vickenty Fesunov (vyf)

Gregor Herrmann (gregoa)

Shlomi Fish (shlomif)

Damyan Ivanov

Ilya Pavlov (Ilya33)

Petr Pisar (ppisar)

Mohammad S Anwar (MANWAR)

Håkon Hægland (hakonhagland, HAKONH)

Meredith (merrilymeredith, MHOWARD)

Diab Jerius (DJERIUS)

# COPYRIGHT AND LICENSE

This software is copyright (c) 2015,2016,2017,2018,2019 by Graham Ollis.

This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.