Codebase list weasyprint / debian/48-1 weasyprint / images.py
debian/48-1

Tree @debian/48-1 (Download .tar.gz)

images.py @debian/48-1raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""
    weasyprint.images
    -----------------

    Fetch and decode images in various formats.

    :copyright: Copyright 2011-2019 Simon Sapin and contributors, see AUTHORS.
    :license: BSD, see LICENSE for details.

"""

import math
from io import BytesIO
from xml.etree import ElementTree

import cairocffi
import cairosvg.parser
import cairosvg.surface

from .layout.percentages import percentage
from .logger import LOGGER
from .urls import URLFetchingError, fetch

try:
    from cairocffi import pixbuf
except OSError:
    pixbuf = None

assert cairosvg.surface.cairo is cairocffi, (
    'CairoSVG is using pycairo instead of cairocffi. '
    'Make sure it is not imported before WeasyPrint.')


# Map values of the image-rendering property to cairo FILTER values:
# Values are normalized to lower case.
IMAGE_RENDERING_TO_FILTER = {
    'auto': cairocffi.FILTER_BILINEAR,
    'crisp-edges': cairocffi.FILTER_BEST,
    'pixelated': cairocffi.FILTER_NEAREST,
}


class ImageLoadingError(ValueError):
    """An error occured when loading an image.

    The image data is probably corrupted or in an invalid format.

    """

    @classmethod
    def from_exception(cls, exception):
        name = type(exception).__name__
        value = str(exception)
        return cls('%s: %s' % (name, value) if value else name)


class RasterImage(object):
    def __init__(self, image_surface):
        self.image_surface = image_surface
        self._intrinsic_width = image_surface.get_width()
        self._intrinsic_height = image_surface.get_height()
        self.intrinsic_ratio = (
            self._intrinsic_width / self._intrinsic_height
            if self._intrinsic_height != 0 else float('inf'))

    def get_intrinsic_size(self, image_resolution, _font_size):
        # Raster images are affected by the 'image-resolution' property.
        return (self._intrinsic_width / image_resolution,
                self._intrinsic_height / image_resolution)

    def draw(self, context, concrete_width, concrete_height, image_rendering):
        has_size = (
            concrete_width > 0
            and concrete_height > 0
            and self._intrinsic_width > 0
            and self._intrinsic_height > 0
        )
        if not has_size:
            return

        # Use the real intrinsic size here,
        # not affected by 'image-resolution'.
        context.scale(concrete_width / self._intrinsic_width,
                      concrete_height / self._intrinsic_height)
        context.set_source_surface(self.image_surface)
        context.get_source().set_filter(
            IMAGE_RENDERING_TO_FILTER[image_rendering])
        context.paint()


class ScaledSVGSurface(cairosvg.surface.SVGSurface):
    """
    Have the cairo Surface object have intrinsic dimension
    in pixels instead of points.
    """
    @property
    def device_units_per_user_units(self):
        scale = super(ScaledSVGSurface, self).device_units_per_user_units
        return scale / 0.75


class FakeSurface(object):
    """Fake CairoSVG surface used to get SVG attributes."""
    context_height = 0
    context_width = 0
    font_size = 12
    dpi = 96


class SVGImage(object):
    def __init__(self, svg_data, base_url, url_fetcher):
        # Don’t pass data URIs to CairoSVG.
        # They are useless for relative URIs anyway.
        self._base_url = (
            base_url if not base_url.lower().startswith('data:') else None)
        self._svg_data = svg_data
        self._url_fetcher = url_fetcher

        try:
            self._tree = ElementTree.fromstring(self._svg_data)
        except Exception as e:
            raise ImageLoadingError.from_exception(e)

    def _cairosvg_url_fetcher(self, src, mimetype):
        data = self._url_fetcher(src)
        if 'string' in data:
            return data['string']
        return data['file_obj'].read()

    def get_intrinsic_size(self, _image_resolution, font_size):
        # Vector images may be affected by the font size.
        fake_surface = FakeSurface()
        fake_surface.font_size = font_size
        # Percentages don't provide an intrinsic size, we transform percentages
        # into 0 using a (0, 0) context size:
        # http://www.w3.org/TR/SVG/coords.html#IntrinsicSizing
        self._width = cairosvg.surface.size(
            fake_surface, self._tree.get('width'))
        self._height = cairosvg.surface.size(
            fake_surface, self._tree.get('height'))
        _, _, viewbox = cairosvg.surface.node_format(fake_surface, self._tree)
        self._intrinsic_width = self._width or None
        self._intrinsic_height = self._height or None
        self.intrinsic_ratio = None
        if viewbox:
            if self._width and self._height:
                self.intrinsic_ratio = self._width / self._height
            else:
                if viewbox[2] and viewbox[3]:
                    self.intrinsic_ratio = viewbox[2] / viewbox[3]
                    if self._width:
                        self._intrinsic_height = (
                            self._width / self.intrinsic_ratio)
                    elif self._height:
                        self._intrinsic_width = (
                            self._height * self.intrinsic_ratio)
        elif self._width and self._height:
            self.intrinsic_ratio = self._width / self._height
        return self._intrinsic_width, self._intrinsic_height

    def draw(self, context, concrete_width, concrete_height, _image_rendering):
        try:
            svg = ScaledSVGSurface(
                cairosvg.parser.Tree(
                    bytestring=self._svg_data, url=self._base_url,
                    url_fetcher=self._cairosvg_url_fetcher),
                output=None, dpi=96, output_width=concrete_width,
                output_height=concrete_height)
            if svg.width and svg.height:
                context.scale(
                    concrete_width / svg.width, concrete_height / svg.height)
                context.set_source_surface(svg.cairo)
                context.paint()
        except Exception as e:
            LOGGER.error(
                'Failed to draw an SVG image at %s : %s', self._base_url, e)


def get_image_from_uri(cache, url_fetcher, url, forced_mime_type=None):
    """Get a cairo Pattern from an image URI."""
    missing = object()
    image = cache.get(url, missing)
    if image is not missing:
        return image

    try:
        with fetch(url_fetcher, url) as result:
            if 'string' in result:
                string = result['string']
            else:
                string = result['file_obj'].read()
            mime_type = forced_mime_type or result['mime_type']
            if mime_type == 'image/svg+xml':
                # No fallback for XML-based mimetypes as defined by MIME
                # Sniffing Standard, see https://mimesniff.spec.whatwg.org/
                image = SVGImage(string, url, url_fetcher)
            else:
                # Try to rely on given mimetype
                try:
                    if mime_type == 'image/png':
                        try:
                            surface = cairocffi.ImageSurface.create_from_png(
                                BytesIO(string))
                        except Exception as exception:
                            raise ImageLoadingError.from_exception(exception)
                        else:
                            image = RasterImage(surface)
                    else:
                        image = None
                except ImageLoadingError:
                    image = None

                # Relying on mimetype didn't work, give the image to GDK-Pixbuf
                if not image:
                    if pixbuf is None:
                        raise ImageLoadingError(
                            'Could not load GDK-Pixbuf. PNG and SVG are '
                            'the only image formats available.')
                    try:
                        image = SVGImage(string, url, url_fetcher)
                    except BaseException:
                        try:
                            surface, format_name = (
                                pixbuf.decode_to_image_surface(string))
                        except pixbuf.ImageLoadingError as exception:
                            raise ImageLoadingError(str(exception))
                        if format_name == 'jpeg':
                            surface.set_mime_data('image/jpeg', string)
                        image = RasterImage(surface)
    except (URLFetchingError, ImageLoadingError) as exc:
        LOGGER.error('Failed to load image at "%s" (%s)', url, exc)
        image = None
    cache[url] = image
    return image


def process_color_stops(gradient_line_size, positions):
    """
    Gradient line size: distance between the starting point and ending point.
    Positions: list of None, or Dimension in px or %.
               0 is the starting point, 1 the ending point.

    http://dev.w3.org/csswg/css-images-3/#color-stop-syntax

    Return processed color stops, as a list of floats in px.

    """
    positions = [
        percentage(position, gradient_line_size) for position in positions]
    # First and last default to 100%
    if positions[0] is None:
        positions[0] = 0
    if positions[-1] is None:
        positions[-1] = gradient_line_size

    # Make sure positions are increasing.
    previous_pos = positions[0]
    for i, position in enumerate(positions):
        if position is not None:
            if position < previous_pos:
                positions[i] = previous_pos
            else:
                previous_pos = position

    # Assign missing values
    previous_i = -1
    for i, position in enumerate(positions):
        if position is not None:
            base = positions[previous_i]
            increment = (position - base) / (i - previous_i)
            for j in range(previous_i + 1, i):
                positions[j] = base + j * increment
            previous_i = i
    return positions


def normalize_stop_postions(positions):
    """Normalize to [0..1]."""
    first = positions[0]
    last = positions[-1]
    total_length = last - first
    if total_length != 0:
        positions = [(pos - first) / total_length for pos in positions]
    else:
        positions = [0 for _ in positions]
    return first, last, positions


def gradient_average_color(colors, positions):
    """
    http://dev.w3.org/csswg/css-images-3/#find-the-average-color-of-a-gradient
    """
    nb_stops = len(positions)
    assert nb_stops > 1
    assert nb_stops == len(colors)
    total_length = positions[-1] - positions[0]
    if total_length == 0:
        positions = list(range(nb_stops))
        total_length = nb_stops - 1
    premul_r = [r * a for r, g, b, a in colors]
    premul_g = [g * a for r, g, b, a in colors]
    premul_b = [b * a for r, g, b, a in colors]
    alpha = [a for r, g, b, a in colors]
    result_r = result_g = result_b = result_a = 0
    total_weight = 2 * total_length
    for i, position in enumerate(positions[1:], 1):
        weight = (position - positions[i - 1]) / total_weight
        for j in (i - 1, i):
            result_r += premul_r[j] * weight
            result_g += premul_g[j] * weight
            result_b += premul_b[j] * weight
            result_a += alpha[j] * weight
    # Un-premultiply:
    return (result_r / result_a, result_g / result_a,
            result_b / result_a, result_a) if result_a != 0 else (0, 0, 0, 0)


PATTERN_TYPES = dict(
    linear=cairocffi.LinearGradient,
    radial=cairocffi.RadialGradient,
    solid=cairocffi.SolidPattern)


class Gradient(object):
    def __init__(self, color_stops, repeating):
        assert color_stops
        #: List of (r, g, b, a), list of Dimension
        self.colors = [color for color, position in color_stops]
        self.stop_positions = [position for color, position in color_stops]
        #: bool
        self.repeating = repeating

    def get_intrinsic_size(self, _image_resolution, _font_size):
        # Gradients are not affected by image resolution, parent or font size.
        return None, None

    intrinsic_ratio = None

    def draw(self, context, concrete_width, concrete_height, _image_rendering):
        scale_y, type_, init, stop_positions, stop_colors = self.layout(
            concrete_width, concrete_height, context.user_to_device_distance)
        context.scale(1, scale_y)
        pattern = PATTERN_TYPES[type_](*init)
        for position, color in zip(stop_positions, stop_colors):
            pattern.add_color_stop_rgba(position, *color)
        pattern.set_extend(cairocffi.EXTEND_REPEAT if self.repeating
                           else cairocffi.EXTEND_PAD)
        context.set_source(pattern)
        context.paint()

    def layout(self, width, height, user_to_device_distance):
        """width, height: Gradient box. Top-left is at coordinates (0, 0).
        user_to_device_distance: a (dx, dy) -> (ddx, ddy) function

        Returns (scale_y, type_, init, positions, colors).
        scale_y: float, used for ellipses radial gradients. 1 otherwise.
        positions: list of floats in [0..1].
                   0 at the starting point, 1 at the ending point.
        colors: list of (r, g, b, a)
        type_ is either:
            'solid': init is (r, g, b, a). positions and colors are empty.
            'linear': init is (x0, y0, x1, y1)
                      coordinates of the starting and ending points.
            'radial': init is (cx0, cy0, radius0, cx1, cy1, radius1)
                      coordinates of the starting end ending circles

        """
        raise NotImplementedError


class LinearGradient(Gradient):
    def __init__(self, color_stops, direction, repeating):
        Gradient.__init__(self, color_stops, repeating)
        #: ('corner', keyword) or ('angle', radians)
        self.direction_type, self.direction = direction

    def layout(self, width, height, user_to_device_distance):
        if len(self.colors) == 1:
            return 1, 'solid', self.colors[0], [], []
        # (dx, dy) is the unit vector giving the direction of the gradient.
        # Positive dx: right, positive dy: down.
        if self.direction_type == 'corner':
            factor_x, factor_y = {
                'top_left': (-1, -1), 'top_right': (1, -1),
                'bottom_left': (-1, 1), 'bottom_right': (1, 1)}[self.direction]
            diagonal = math.hypot(width, height)
            # Note the direction swap: dx based on height, dy based on width
            # The gradient line is perpendicular to a diagonal.
            dx = factor_x * height / diagonal
            dy = factor_y * width / diagonal
        else:
            angle = self.direction  # 0 upwards, then clockwise
            dx = math.sin(angle)
            dy = -math.cos(angle)
        # Distance between center and ending point,
        # ie. half of between the starting point and ending point:
        distance = abs(width * dx) + abs(height * dy)
        positions = process_color_stops(distance, self.stop_positions)
        first, last, positions = normalize_stop_postions(positions)
        device_per_user_units = math.hypot(*user_to_device_distance(dx, dy))
        if (last - first) * device_per_user_units < len(positions):
            if self.repeating:
                color = gradient_average_color(self.colors, positions)
                return 1, 'solid', color, [], []
            else:
                # 100 is an Arbitrary non-zero number of device units.
                offset = 100 / device_per_user_units
                if first != last:
                    factor = (offset + last - first) / (last - first)
                    positions = [pos / factor for pos in positions]
                last += offset
        start_x = (width - dx * distance) / 2
        start_y = (height - dy * distance) / 2
        points = (start_x + dx * first, start_y + dy * first,
                  start_x + dx * last, start_y + dy * last)
        return 1, 'linear', points, positions, self.colors


class RadialGradient(Gradient):
    def __init__(self, color_stops, shape, size, center, repeating):
        Gradient.__init__(self, color_stops, repeating)
        # Center of the ending shape. (origin_x, pos_x, origin_y, pos_y)
        self.center = center
        #: Type of ending shape: 'circle' or 'ellipse'
        self.shape = shape
        # size_type: 'keyword'
        #   size: 'closest-corner', 'farthest-corner',
        #         'closest-side', or 'farthest-side'
        # size_type: 'explicit'
        #   size: (radius_x, radius_y)
        self.size_type, self.size = size

    def layout(self, width, height, user_to_device_distance):
        if len(self.colors) == 1:
            return 1, 'solid', self.colors[0], [], []
        origin_x, center_x, origin_y, center_y = self.center
        center_x = percentage(center_x, width)
        center_y = percentage(center_y, height)
        if origin_x == 'right':
            center_x = width - center_x
        if origin_y == 'bottom':
            center_y = height - center_y

        size_x, size_y = self._resolve_size(width, height, center_x, center_y)
        # http://dev.w3.org/csswg/css-images-3/#degenerate-radials
        if size_x == size_y == 0:
            size_x = size_y = 1e-7
        elif size_x == 0:
            size_x = 1e-7
            size_y = 1e7
        elif size_y == 0:
            size_x = 1e7
            size_y = 1e-7
        scale_y = size_y / size_x

        colors = self.colors
        positions = process_color_stops(size_x, self.stop_positions)
        gradient_line_size = positions[-1] - positions[0]
        if self.repeating and any(
            gradient_line_size * unit < len(positions)
            for unit in (math.hypot(*user_to_device_distance(1, 0)),
                         math.hypot(*user_to_device_distance(0, scale_y)))):
            color = gradient_average_color(colors, positions)
            return 1, 'solid', color, [], []

        if positions[0] < 0:
            # Cairo does not like negative radiuses,
            # shift into the positive realm.
            if self.repeating:
                offset = gradient_line_size * math.ceil(
                    -positions[0] / gradient_line_size)
                positions = [p + offset for p in positions]
            else:
                for i, position in enumerate(positions):
                    if position > 0:
                        # `i` is the first positive stop.
                        # Interpolate with the previous to get the color at 0.
                        assert i > 0
                        color = colors[i]
                        neg_color = colors[i - 1]
                        neg_position = positions[i - 1]
                        assert neg_position < 0
                        intermediate_color = gradient_average_color(
                            [neg_color, neg_color, color, color],
                            [neg_position, 0, 0, position])
                        colors = [intermediate_color] + colors[i:]
                        positions = [0] + positions[i:]
                        break
                else:
                    # All stops are negatives,
                    # everything is "padded" with the last color.
                    return 1, 'solid', self.colors[-1], [], []

        first, last, positions = normalize_stop_postions(positions)
        if last == first:
            last += 100  # Arbitrary non-zero

        circles = (center_x, center_y / scale_y, first,
                   center_x, center_y / scale_y, last)
        return scale_y, 'radial', circles, positions, colors

    def _resolve_size(self, width, height, center_x, center_y):
        if self.size_type == 'explicit':
            size_x, size_y = self.size
            size_x = percentage(size_x, width)
            size_y = percentage(size_y, height)
            return size_x, size_y
        left = abs(center_x)
        right = abs(width - center_x)
        top = abs(center_y)
        bottom = abs(height - center_y)
        pick = min if self.size.startswith('closest') else max
        if self.size.endswith('side'):
            if self.shape == 'circle':
                size_xy = pick(left, right, top, bottom)
                return size_xy, size_xy
            # else: ellipse
            return pick(left, right), pick(top, bottom)
        # else: corner
        if self.shape == 'circle':
            size_xy = pick(math.hypot(left, top), math.hypot(left, bottom),
                           math.hypot(right, top), math.hypot(right, bottom))
            return size_xy, size_xy
        # else: ellipse
        corner_x, corner_y = pick(
            (left, top), (left, bottom), (right, top), (right, bottom),
            key=lambda a: math.hypot(*a))
        return corner_x * math.sqrt(2), corner_y * math.sqrt(2)