Codebase list ntl / upstream/11.0.0 doc / GF2EX.txt
upstream/11.0.0

Tree @upstream/11.0.0 (Download .tar.gz)

GF2EX.txt @upstream/11.0.0raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/**************************************************************************\

MODULE: GF2EX

SUMMARY:

The class GF2EX represents polynomials over GF2E,
and so can be used, for example, for arithmentic in GF(2^n)[X].
However, except where mathematically necessary (e.g., GCD computations),
GF2E need not be a field.

\**************************************************************************/

#include <NTL/GF2E.h>
#include <NTL/vec_GF2E.h>

class GF2EX {
public:

   GF2EX(); // initial value 0

   GF2EX(const GF2EX& a); // copy
   explicit GF2EX(const GF2E& a);  // promotion
   explicit GF2EX(GF2 a); 
   explicit GF2EX(long a); 

   GF2EX& operator=(const GF2EX& a); // assignment
   GF2EX& operator=(const GF2E& a);
   GF2EX& operator=(GF2 a);
   GF2EX& operator=(long a);

   ~GF2EX(); // destructor


   GF2EX(GF2EX&& a); 
   // move constructor (C++11 only)
   // declared noexcept unless NTL_EXCEPTIONS flag is set

#ifndef NTL_DISABLE_MOVE_ASSIGN
   GF2EX& operator=(GF2EX&& a); 
   // move assignment (C++11 only)
   // declared noexcept unless NTL_EXCEPTIONS flag is set
#endif


   GF2EX(INIT_MONO_TYPE, long i, const GF2E& c); 
   GF2EX(INIT_MONO_TYPE, long i, GF2 c); 
   GF2EX(INIT_MONO_TYPE, long i, long c); 
   // initialize to c*X^i, invoke as GF2EX(INIT_MONO, i, c)

   GF2EX(INIT_MONO_TYPE, long i); 
   // initialize to X^i, invoke as GF2EX(INIT_MONO, i)




   // typedefs to aid in generic programming

   typedef GF2E coeff_type;
   typedef GF2EXModulus modulus_type;
   // ...

};





/**************************************************************************\

                              Accessing coefficients

The degree of a polynomial f is obtained as deg(f),
where the zero polynomial, by definition, has degree -1.

A polynomial f is represented as a coefficient vector.
Coefficients may be accesses in one of two ways.

The safe, high-level method is to call the function
coeff(f, i) to get the coefficient of X^i in the polynomial f,
and to call the function SetCoeff(f, i, a) to set the coefficient
of X^i in f to the scalar a.

One can also access the coefficients more directly via a lower level 
interface.  The coefficient of X^i in f may be accessed using 
subscript notation f[i].  In addition, one may write f.SetLength(n)
to set the length of the underlying coefficient vector to n,
and f.SetMaxLength(n) to allocate space for n coefficients,
without changing the coefficient vector itself.

After setting coefficients using this low-level interface,
one must ensure that leading zeros in the coefficient vector
are stripped afterwards by calling the function f.normalize().

NOTE: the coefficient vector of f may also be accessed directly
as f.rep; however, this is not recommended. Also, for a properly
normalized polynomial f, we have f.rep.length() == deg(f)+1,
and deg(f) >= 0  =>  f.rep[deg(f)] != 0.

\**************************************************************************/



long deg(const GF2EX& a);  // return deg(a); deg(0) == -1.

const GF2E& coeff(const GF2EX& a, long i);
// returns the coefficient of X^i, or zero if i not in range

const GF2E& LeadCoeff(const GF2EX& a);
// returns leading term of a, or zero if a == 0

const GF2E& ConstTerm(const GF2EX& a);
// returns constant term of a, or zero if a == 0

void SetCoeff(GF2EX& x, long i, const GF2E& a);
void SetCoeff(GF2EX& x, long i, GF2 a);
void SetCoeff(GF2EX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0

void SetCoeff(GF2EX& x, long i);
// makes coefficient of X^i equal to 1;  error is raised if i < 0

void SetX(GF2EX& x); // x is set to the monomial X

long IsX(const GF2EX& a); // test if x = X




GF2E& GF2EX::operator[](long i); 
const GF2E& GF2EX::operator[](long i) const;
// indexing operators: f[i] is the coefficient of X^i ---
// i should satsify i >= 0 and i <= deg(f).
// No range checking (unless NTL_RANGE_CHECK is defined).

void GF2EX::SetLength(long n);
// f.SetLength(n) sets the length of the inderlying coefficient
// vector to n --- after this call, indexing f[i] for i = 0..n-1
// is valid.

void GF2EX::normalize();  
// f.normalize() strips leading zeros from coefficient vector of f

void GF2EX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The
// polynomial that f represents is unchanged.






/**************************************************************************\

                                  Comparison

\**************************************************************************/


long operator==(const GF2EX& a, const GF2EX& b);
long operator!=(const GF2EX& a, const GF2EX& b);

long IsZero(const GF2EX& a); // test for 0
long IsOne(const GF2EX& a); // test for 1

// PROMOTIONS: ==, != promote {long,GF2,GF2E} to GF2EX on (a, b).

/**************************************************************************\

                                   Addition

\**************************************************************************/

// operator notation:

GF2EX operator+(const GF2EX& a, const GF2EX& b);
GF2EX operator-(const GF2EX& a, const GF2EX& b);
GF2EX operator-(const GF2EX& a);

GF2EX& operator+=(GF2EX& x, const GF2EX& a);
GF2EX& operator+=(GF2EX& x, const GF2E& a);
GF2EX& operator+=(GF2EX& x, GF2 a);
GF2EX& operator+=(GF2EX& x, long a);


GF2EX& operator++(GF2EX& x);  // prefix
void operator++(GF2EX& x, int);  // postfix

GF2EX& operator-=(GF2EX& x, const GF2EX& a);
GF2EX& operator-=(GF2EX& x, const GF2E& a);
GF2EX& operator-=(GF2EX& x, GF2 a);
GF2EX& operator-=(GF2EX& x, long a);

GF2EX& operator--(GF2EX& x);  // prefix
void operator--(GF2EX& x, int);  // postfix

// procedural versions:

void add(GF2EX& x, const GF2EX& a, const GF2EX& b); // x = a + b
void sub(GF2EX& x, const GF2EX& a, const GF2EX& b); // x = a - b 
void negate(GF2EX& x, const GF2EX& a); // x = - a 

// PROMOTIONS: +, -, add, sub promote {long,GF2,GF2E} to GF2EX on (a, b).



/**************************************************************************\

                               Multiplication

\**************************************************************************/

// operator notation:

GF2EX operator*(const GF2EX& a, const GF2EX& b);

GF2EX& operator*=(GF2EX& x, const GF2EX& a);
GF2EX& operator*=(GF2EX& x, const GF2E& a);
GF2EX& operator*=(GF2EX& x, GF2 a);
GF2EX& operator*=(GF2EX& x, long a);


// procedural versions:


void mul(GF2EX& x, const GF2EX& a, const GF2EX& b); // x = a * b

void sqr(GF2EX& x, const GF2EX& a); // x = a^2
GF2EX sqr(const GF2EX& a); 

// PROMOTIONS: *, mul promote {long,GF2,GF2E} to GF2EX on (a, b).

void power(GF2EX& x, const GF2EX& a, long e);  // x = a^e (e >= 0)
GF2EX power(const GF2EX& a, long e);


/**************************************************************************\

                               Shift Operations

LeftShift by n means multiplication by X^n
RightShift by n means division by X^n

A negative shift amount reverses the direction of the shift.

\**************************************************************************/

// operator notation:

GF2EX operator<<(const GF2EX& a, long n);
GF2EX operator>>(const GF2EX& a, long n);

GF2EX& operator<<=(GF2EX& x, long n);
GF2EX& operator>>=(GF2EX& x, long n);

// procedural versions:

void LeftShift(GF2EX& x, const GF2EX& a, long n); 
GF2EX LeftShift(const GF2EX& a, long n);

void RightShift(GF2EX& x, const GF2EX& a, long n); 
GF2EX RightShift(const GF2EX& a, long n); 



/**************************************************************************\

                                  Division

\**************************************************************************/

// operator notation:

GF2EX operator/(const GF2EX& a, const GF2EX& b);
GF2EX operator/(const GF2EX& a, const GF2E& b);
GF2EX operator/(const GF2EX& a, GF2 b);
GF2EX operator/(const GF2EX& a, long b);

GF2EX operator%(const GF2EX& a, const GF2EX& b);

GF2EX& operator/=(GF2EX& x, const GF2EX& a);
GF2EX& operator/=(GF2EX& x, const GF2E& a);
GF2EX& operator/=(GF2EX& x, GF2 a);
GF2EX& operator/=(GF2EX& x, long a);

GF2EX& operator%=(GF2EX& x, const GF2EX& a);

// procedural versions:


void DivRem(GF2EX& q, GF2EX& r, const GF2EX& a, const GF2EX& b);
// q = a/b, r = a%b

void div(GF2EX& q, const GF2EX& a, const GF2EX& b);
void div(GF2EX& q, const GF2EX& a, const GF2E& b);
void div(GF2EX& q, const GF2EX& a, GF2 b);
void div(GF2EX& q, const GF2EX& a, long b);
// q = a/b

void rem(GF2EX& r, const GF2EX& a, const GF2EX& b);
// r = a%b

long divide(GF2EX& q, const GF2EX& a, const GF2EX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0

long divide(const GF2EX& a, const GF2EX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0


/**************************************************************************\

                                   GCD's

These routines are intended for use when GF2E is a field.

\**************************************************************************/


void GCD(GF2EX& x, const GF2EX& a, const GF2EX& b);
GF2EX GCD(const GF2EX& a, const GF2EX& b); 
// x = GCD(a, b),  x is always monic (or zero if a==b==0).


void XGCD(GF2EX& d, GF2EX& s, GF2EX& t, const GF2EX& a, const GF2EX& b);
// d = gcd(a,b), a s + b t = d 


/**************************************************************************\

                                  Input/Output

I/O format:

   [a_0 a_1 ... a_n],

represents the polynomial a_0 + a_1*X + ... + a_n*X^n.

On output, all coefficients will be polynomials of degree < GF2E::degree() and
a_n not zero (the zero polynomial is [ ]).  On input, the coefficients
are arbitrary polynomials which are reduced modulo GF2E::modulus(), and leading
zeros stripped.

\**************************************************************************/

istream& operator>>(istream& s, GF2EX& x);
ostream& operator<<(ostream& s, const GF2EX& a);


/**************************************************************************\

                              Some utility routines

\**************************************************************************/


void diff(GF2EX& x, const GF2EX& a); // x = derivative of a
GF2EX diff(const GF2EX& a); 

void MakeMonic(GF2EX& x); 
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case

void reverse(GF2EX& x, const GF2EX& a, long hi);
GF2EX reverse(const GF2EX& a, long hi);

void reverse(GF2EX& x, const GF2EX& a);
GF2EX reverse(const GF2EX& a);

// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version

void VectorCopy(vec_GF2E& x, const GF2EX& a, long n);
vec_GF2E VectorCopy(const GF2EX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.




/**************************************************************************\

                             Random Polynomials

\**************************************************************************/

void random(GF2EX& x, long n);
GF2EX random_GF2EX(long n);
// x = random polynomial of degree < n 


/**************************************************************************\

                    Polynomial Evaluation and related problems

\**************************************************************************/


void BuildFromRoots(GF2EX& x, const vec_GF2E& a);
GF2EX BuildFromRoots(const vec_GF2E& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()

void eval(GF2E& b, const GF2EX& f, const GF2E& a);
GF2E eval(const GF2EX& f, const GF2E& a);
// b = f(a)

void eval(GF2E& b, const GF2X& f, const GF2E& a);
GF2E eval(const GF2EX& f, const GF2E& a);
// b = f(a); uses ModComp algorithm for GF2X

void eval(vec_GF2E& b, const GF2EX& f, const vec_GF2E& a);
vec_GF2E eval(const GF2EX& f, const vec_GF2E& a);
//  b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()

void interpolate(GF2EX& f, const vec_GF2E& a, const vec_GF2E& b);
GF2EX interpolate(const vec_GF2E& a, const vec_GF2E& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i].  

/**************************************************************************\

                       Arithmetic mod X^n

Required: n >= 0; otherwise, an error is raised.

\**************************************************************************/

void trunc(GF2EX& x, const GF2EX& a, long n); // x = a % X^n
GF2EX trunc(const GF2EX& a, long n); 

void MulTrunc(GF2EX& x, const GF2EX& a, const GF2EX& b, long n);
GF2EX MulTrunc(const GF2EX& a, const GF2EX& b, long n);
// x = a * b % X^n

void SqrTrunc(GF2EX& x, const GF2EX& a, long n);
GF2EX SqrTrunc(const GF2EX& a, long n);
// x = a^2 % X^n

void InvTrunc(GF2EX& x, const GF2EX& a, long n);
GF2EX InvTrunc(GF2EX& x, const GF2EX& a, long n);
// computes x = a^{-1} % X^m.  Must have ConstTerm(a) invertible.

/**************************************************************************\

                Modular Arithmetic (without pre-conditioning)

Arithmetic mod f.

All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.


NOTE: if you want to do many computations with a fixed f, use the
GF2EXModulus data structure and associated routines below for better
performance.

\**************************************************************************/

void MulMod(GF2EX& x, const GF2EX& a, const GF2EX& b, const GF2EX& f);
GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EX& f);
// x = (a * b) % f

void SqrMod(GF2EX& x, const GF2EX& a, const GF2EX& f);
GF2EX SqrMod(const GF2EX& a, const GF2EX& f);
// x = a^2 % f

void MulByXMod(GF2EX& x, const GF2EX& a, const GF2EX& f);
GF2EX MulByXMod(const GF2EX& a, const GF2EX& f);
// x = (a * X) mod f

void InvMod(GF2EX& x, const GF2EX& a, const GF2EX& f);
GF2EX InvMod(const GF2EX& a, const GF2EX& f);
// x = a^{-1} % f, error is a is not invertible

long InvModStatus(GF2EX& x, const GF2EX& a, const GF2EX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)


/**************************************************************************\

                     Modular Arithmetic with Pre-Conditioning

If you need to do a lot of arithmetic modulo a fixed f, build
GF2EXModulus F for f.  This pre-computes information about f that
speeds up subsequent computations.

As an example, the following routine the product modulo f of a vector
of polynomials.

#include <NTL/GF2EX.h>

void product(GF2EX& x, const vec_GF2EX& v, const GF2EX& f)
{
   GF2EXModulus F(f);
   GF2EX res;
   res = 1;
   long i;
   for (i = 0; i < v.length(); i++)
      MulMod(res, res, v[i], F); 
   x = res;
}

NOTE: A GF2EX may be used wherever a GF2EXModulus is required,
and a GF2EXModulus may be used wherever a GF2EX is required.


\**************************************************************************/

class GF2EXModulus {
public:
   GF2EXModulus(); // initially in an unusable state

   GF2EXModulus(const GF2EX& f); // initialize with f, deg(f) > 0

   GF2EXModulus(const GF2EXModulus&); // copy

   GF2EXModulus& operator=(const GF2EXModulus&); // assignment

   ~GF2EXModulus(); // destructor

   operator const GF2EX& () const; // implicit read-only access to f

   const GF2EX& val() const; // explicit read-only access to f
};

void build(GF2EXModulus& F, const GF2EX& f);
// pre-computes information about f and stores it in F.  Must have
// deg(f) > 0.  Note that the declaration GF2EXModulus F(f) is
// equivalent to GF2EXModulus F; build(F, f).

// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).


long deg(const GF2EXModulus& F);  // return n=deg(f)

void MulMod(GF2EX& x, const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);
GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n

void SqrMod(GF2EX& x, const GF2EX& a, const GF2EXModulus& F);
GF2EX SqrMod(const GF2EX& a, const GF2EXModulus& F);
// x = a^2 % f; deg(a) < n

void PowerMod(GF2EX& x, const GF2EX& a, const ZZ& e, const GF2EXModulus& F);
GF2EX PowerMod(const GF2EX& a, const ZZ& e, const GF2EXModulus& F);

void PowerMod(GF2EX& x, const GF2EX& a, long e, const GF2EXModulus& F);
GF2EX PowerMod(const GF2EX& a, long e, const GF2EXModulus& F);

// x = a^e % f; e >= 0, deg(a) < n.  Uses a sliding window algorithm.
// (e may be negative)

void PowerXMod(GF2EX& x, const ZZ& e, const GF2EXModulus& F);
GF2EX PowerXMod(const ZZ& e, const GF2EXModulus& F);

void PowerXMod(GF2EX& x, long e, const GF2EXModulus& F);
GF2EX PowerXMod(long e, const GF2EXModulus& F);

// x = X^e % f (e may be negative)

void rem(GF2EX& x, const GF2EX& a, const GF2EXModulus& F);
// x = a % f

void DivRem(GF2EX& q, GF2EX& r, const GF2EX& a, const GF2EXModulus& F);
// q = a/f, r = a%f

void div(GF2EX& q, const GF2EX& a, const GF2EXModulus& F);
// q = a/f

// operator notation:

GF2EX operator/(const GF2EX& a, const GF2EXModulus& F);
GF2EX operator%(const GF2EX& a, const GF2EXModulus& F);

GF2EX& operator/=(GF2EX& x, const GF2EXModulus& F);
GF2EX& operator%=(GF2EX& x, const GF2EXModulus& F);



/**************************************************************************\

                             vectors of GF2EX's

\**************************************************************************/

typedef Vec<GF2EX> vec_GF2EX; // backward compatibility



/**************************************************************************\

                              Modular Composition

Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.

The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.


\**************************************************************************/

void CompMod(GF2EX& x, const GF2EX& g, const GF2EX& h, const GF2EXModulus& F);
GF2EX CompMod(const GF2EX& g, const GF2EX& h, 
                    const GF2EXModulus& F);

// x = g(h) mod f; deg(h) < n

void Comp2Mod(GF2EX& x1, GF2EX& x2, const GF2EX& g1, const GF2EX& g2,
              const GF2EX& h, const GF2EXModulus& F);
// xi = gi(h) mod f (i=1,2); deg(h) < n.


void Comp3Mod(GF2EX& x1, GF2EX& x2, GF2EX& x3, 
              const GF2EX& g1, const GF2EX& g2, const GF2EX& g3,
              const GF2EX& h, const GF2EXModulus& F);
// xi = gi(h) mod f (i=1..3); deg(h) < n.



/**************************************************************************\

                     Composition with Pre-Conditioning

If a single h is going to be used with many g's then you should build
a GF2EXArgument for h, and then use the compose routine below.  The
routine build computes and stores h, h^2, ..., h^m mod f.  After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies.  Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.

\**************************************************************************/


struct GF2EXArgument {
   vec_GF2EX H;
};

void build(GF2EXArgument& H, const GF2EX& h, const GF2EXModulus& F, long m);
// Pre-Computes information about h.  m > 0, deg(h) < n.

void CompMod(GF2EX& x, const GF2EX& g, const GF2EXArgument& H, 
             const GF2EXModulus& F);

GF2EX CompMod(const GF2EX& g, const GF2EXArgument& H, 
                    const GF2EXModulus& F);

extern thread_local long GF2EXArgBound;

// Initially 0.  If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// GF2EXArgBound KB.  Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below, 
// and indirectly affects many routines in GF2EXFactoring.

/**************************************************************************\

                     power projection routines

\**************************************************************************/

void project(GF2E& x, const GF2EVector& a, const GF2EX& b);
GF2E project(const GF2EVector& a, const GF2EX& b);
// x = inner product of a with coefficient vector of b


void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k,
                   const GF2EX& h, const GF2EXModulus& F);

vec_GF2E ProjectPowers(const vec_GF2E& a, long k,
                   const GF2EX& h, const GF2EXModulus& F);

// Computes the vector

//    project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).  

// This operation is the "transpose" of the modular composition operation.

void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k,
                   const GF2EXArgument& H, const GF2EXModulus& F);

vec_GF2E ProjectPowers(const vec_GF2E& a, long k,
                   const GF2EXArgument& H, const GF2EXModulus& F);

// same as above, but uses a pre-computed GF2EXArgument

class GF2EXTransMultiplier { /* ... */ };

void build(GF2EXTransMultiplier& B, const GF2EX& b, const GF2EXModulus& F);



void UpdateMap(vec_GF2E& x, const vec_GF2E& a,
               const GF2EXMultiplier& B, const GF2EXModulus& F);

vec_GF2E UpdateMap(const vec_GF2E& a,
               const GF2EXMultiplier& B, const GF2EXModulus& F);

// Computes the vector

//    project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)

// Restriction: a.length() <= deg(F), deg(b) < deg(F).
// This is "transposed" MulMod by B.
// Input may have "high order" zeroes stripped.
// Output always has high order zeroes stripped.


/**************************************************************************\

                              Minimum Polynomials

These routines should be used only when GF2E is a field.

All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.

\**************************************************************************/


void MinPolySeq(GF2EX& h, const vec_GF2E& a, long m);
GF2EX MinPolySeq(const vec_GF2E& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m


void ProbMinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);

void ProbMinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F);

// computes the monic minimal polynomial if (g mod f).  m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n.  The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/2^{GF2E::degree()}.

void MinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);

void MinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F);

// same as above, but guarantees that result is correct

void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);

void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F);

// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible.  The algorithm is
// deterministic (and is always correct).


/**************************************************************************\

           Composition and Minimal Polynomials in towers

These are implementations of algorithms that will be described
and analyzed in a forthcoming paper.

GF2E need not be a field.

\**************************************************************************/


void CompTower(GF2EX& x, const GF2X& g, const GF2EXArgument& h,
             const GF2EXModulus& F);

GF2EX CompTower(const GF2X& g, const GF2EXArgument& h,
             const GF2EXModulus& F);

void CompTower(GF2EX& x, const GF2X& g, const GF2EX& h,
             const GF2EXModulus& F);

GF2EX CompTower(const GF2X& g, const GF2EX& h,
             const GF2EXModulus& F);


// x = g(h) mod f


void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F,
                      long m);

GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);

void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);

GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F);

// Uses a probabilistic algorithm to compute the minimal
// polynomial of (g mod f) over GF2.
// The parameter m is a bound on the degree of the minimal polynomial
// (default = deg(f)*GF2E::degree()).
// In general, the result will be a divisor of the true minimimal
// polynomial.  For correct results, use the MinPoly routines below.



void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);

GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);

void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);

GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F);

// Same as above, but result is always correct.


void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);

GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);

void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);

GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F);

// Same as above, but assumes the minimal polynomial is
// irreducible, and uses a slightly faster, deterministic algorithm.



/**************************************************************************\

                   Traces, norms, resultants

\**************************************************************************/


void TraceMod(GF2E& x, const GF2EX& a, const GF2EXModulus& F);
GF2E TraceMod(const GF2EX& a, const GF2EXModulus& F);

void TraceMod(GF2E& x, const GF2EX& a, const GF2EX& f);
GF2E TraceMod(const GF2EX& a, const GF2EXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)


void TraceVec(vec_GF2E& S, const GF2EX& f);
vec_GF2E TraceVec(const GF2EX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)

// The above trace routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].

void NormMod(GF2E& x, const GF2EX& a, const GF2EX& f);
GF2E NormMod(const GF2EX& a, const GF2EX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)

void resultant(GF2E& x, const GF2EX& a, const GF2EX& b);
GF2E resultant(const GF2EX& a, const GF2EX& b);
// x = resultant(a, b)

// NormMod and resultant require that GF2E is a field.



/**************************************************************************\

                           Miscellany


\**************************************************************************/


void clear(GF2EX& x) // x = 0
void set(GF2EX& x); // x = 1


void GF2EX::kill();
// f.kill() sets f to 0 and frees all memory held by f.  Equivalent to
// f.rep.kill().

GF2EX::GF2EX(INIT_SIZE_TYPE, long n);
// GF2EX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients

static const GF2EX& zero();
// GF2EX::zero() is a read-only reference to 0

void GF2EX::swap(GF2EX& x);
void swap(GF2EX& x, GF2EX& y); 
// swap (via "pointer swapping")

GF2EX::GF2EX(long i, const GF2E& c); 
GF2EX::GF2EX(long i, GF2 c); 
GF2EX::GF2EX(long i, long c); 
// initialize to X^i*c, provided for backward compatibility