Codebase list ntl / upstream/11.0.0 doc / ZZX.cpp.html
upstream/11.0.0

Tree @upstream/11.0.0 (Download .tar.gz)

ZZX.cpp.html @upstream/11.0.0raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-10.5.0test/doc/ZZX.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Constant { color: #ff8c00; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>

<script type='text/javascript'>
<!--

-->
</script>
</head>
<body>
<pre id='vimCodeElement'>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">MODULE: ZZX</span>

<span class="Comment">SUMMARY:</span>

<span class="Comment">The class ZZX implements polynomials in ZZ[X], i.e., univariate</span>
<span class="Comment">polynomials with integer coefficients.</span>

<span class="Comment">Polynomial multiplication is implemented using one of 4 different</span>
<span class="Comment">algorithms:</span>

<span class="Comment">1) classical </span>

<span class="Comment">2) Karatsuba</span>

<span class="Comment">3) Schoenhage &amp; Strassen --- performs an FFT by working</span>
<span class="Comment">     modulo a &quot;Fermat number&quot; of appropriate size...</span>
<span class="Comment">     good for polynomials with huge coefficients</span>
<span class="Comment">     and moderate degree</span>

<span class="Comment">4) CRT/FFT --- performs an FFT by working modulo several</span>
<span class="Comment">     small primes...good for polynomials with moderate coefficients</span>
<span class="Comment">     and huge degree.</span>

<span class="Comment">The choice of algorithm is somewhat heuristic, and may not always be</span>
<span class="Comment">perfect.</span>

<span class="Comment">Many thanks to Juergen Gerhard &lt;jngerhar@plato.uni-paderborn.de&gt; for</span>
<span class="Comment">pointing out the deficiency in the NTL-1.0 ZZX arithmetic, and for</span>
<span class="Comment">contributing the Schoenhage/Strassen code.</span>

<span class="Comment">Extensive use is made of modular algorithms to enhance performance</span>
<span class="Comment">(e.g., the GCD algorithm and amny others).</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="PreProc">#include </span><span class="String">&lt;NTL/vec_ZZ.h&gt;</span>
<span class="PreProc">#include </span><span class="String">&quot;zz_pX.h&quot;</span>
<span class="PreProc">#include </span><span class="String">&lt;NTL/ZZ_pX.h&gt;</span>


<span class="Type">class</span> ZZX {
<span class="Statement">public</span>:


   ZZX(); <span class="Comment">// initial value 0</span>

   ZZX(<span class="Type">const</span> ZZX&amp; a); <span class="Comment">// copy</span>
   <span class="Type">explicit</span> ZZX(<span class="Type">const</span> ZZ&amp; a); <span class="Comment">// promotion</span>
   <span class="Type">explicit</span> ZZX(<span class="Type">long</span> a); <span class="Comment">// promotion</span>

   ~ZZX();


   ZZX(ZZX&amp;&amp; a);
   <span class="Comment">// move constructor (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>

   ZZX&amp; <span class="Statement">operator</span>=(ZZX&amp;&amp; a);
   <span class="Comment">// move assignment (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>


   ZZX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">const</span> ZZ&amp; c);
   ZZX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">long</span> c);
   <span class="Comment">// initial value c*X^i, invoke as ZZX(INIT_MONO, i, c)</span>

   ZZX(INIT_MONO_TYPE, <span class="Type">long</span> i);
   <span class="Comment">// initial value X^i, invoke as ZZX(INIT_MONO, i)</span>

   ZZX&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZX&amp; a); <span class="Comment">// assignment</span>
   ZZX&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ&amp; a);
   ZZX&amp; <span class="Statement">operator</span>=(<span class="Type">long</span> a);

   <span class="Type">typedef</span> ZZ coeff_type;

   <span class="Comment">// ...</span>

};




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Accessing coefficients</span>

<span class="Comment">The degree of a polynomial f is obtained as deg(f),</span>
<span class="Comment">where the zero polynomial, by definition, has degree -1.</span>

<span class="Comment">A polynomial f is represented as a coefficient vector.</span>
<span class="Comment">Coefficients may be accesses in one of two ways.</span>

<span class="Comment">The safe, high-level method is to call the function</span>
<span class="Comment">coeff(f, i) to get the coefficient of X^i in the polynomial f,</span>
<span class="Comment">and to call the function SetCoeff(f, i, a) to set the coefficient</span>
<span class="Comment">of X^i in f to the scalar a.</span>

<span class="Comment">One can also access the coefficients more directly via a lower level </span>
<span class="Comment">interface.  The coefficient of X^i in f may be accessed using </span>
<span class="Comment">subscript notation f[i].  In addition, one may write f.SetLength(n)</span>
<span class="Comment">to set the length of the underlying coefficient vector to n,</span>
<span class="Comment">and f.SetMaxLength(n) to allocate space for n coefficients,</span>
<span class="Comment">without changing the coefficient vector itself.</span>

<span class="Comment">After setting coefficients using this low-level interface,</span>
<span class="Comment">one must ensure that leading zeros in the coefficient vector</span>
<span class="Comment">are stripped afterwards by calling the function f.normalize().</span>

<span class="Comment">NOTE: the coefficient vector of f may also be accessed directly</span>
<span class="Comment">as f.rep; however, this is not recommended. Also, for a properly</span>
<span class="Comment">normalized polynomial f, we have f.rep.length() == deg(f)+1,</span>
<span class="Comment">and deg(f) &gt;= 0  =&gt;  f.rep[deg(f)] != 0.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>



<span class="Type">long</span> deg(<span class="Type">const</span> ZZX&amp; a);  <span class="Comment">// return deg(a); deg(0) == -1.</span>

<span class="Type">const</span> ZZ&amp; coeff(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> i);
<span class="Comment">// returns the coefficient of X^i, or zero if i not in range</span>

<span class="Type">const</span> ZZ&amp; LeadCoeff(<span class="Type">const</span> ZZX&amp; a);
<span class="Comment">// returns leading term of a, or zero if a == 0</span>

<span class="Type">const</span> ZZ&amp; ConstTerm(<span class="Type">const</span> ZZX&amp; a);
<span class="Comment">// returns constant term of a, or zero if a == 0</span>

<span class="Type">void</span> SetCoeff(ZZX&amp; x, <span class="Type">long</span> i, <span class="Type">const</span> ZZ&amp; a);
<span class="Type">void</span> SetCoeff(ZZX&amp; x, <span class="Type">long</span> i, <span class="Type">long</span> a);
<span class="Comment">// makes coefficient of X^i equal to a; error is raised if i &lt; 0</span>

<span class="Type">void</span> SetCoeff(ZZX&amp; x, <span class="Type">long</span> i);
<span class="Comment">// makes coefficient of X^i equal to 1;  error is raised if i &lt; 0</span>

<span class="Type">void</span> SetX(ZZX&amp; x); <span class="Comment">// x is set to the monomial X</span>

<span class="Type">long</span> IsX(<span class="Type">const</span> ZZX&amp; a); <span class="Comment">// test if x = X</span>




ZZ&amp; ZZX::<span class="Statement">operator</span>[](<span class="Type">long</span> i);
<span class="Type">const</span> ZZ&amp; ZZX::<span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing operators: f[i] is the coefficient of X^i ---</span>
<span class="Comment">// i should satsify i &gt;= 0 and i &lt;= deg(f).</span>
<span class="Comment">// No range checking (unless NTL_RANGE_CHECK is defined).</span>

<span class="Type">void</span> ZZX::SetLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetLength(n) sets the length of the inderlying coefficient</span>
<span class="Comment">// vector to n --- after this call, indexing f[i] for i = 0..n-1</span>
<span class="Comment">// is valid.</span>

<span class="Type">void</span> ZZX::normalize();
<span class="Comment">// f.normalize() strips leading zeros from coefficient vector of f</span>

<span class="Type">void</span> ZZX::SetMaxLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The</span>
<span class="Comment">// polynomial that f represents is unchanged.</span>







<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Comparison</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);

<span class="Type">long</span> IsZero(<span class="Type">const</span> ZZX&amp; a);  <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(<span class="Type">const</span> ZZX&amp; a);  <span class="Comment">// test for 1</span>

<span class="Comment">// PROMOTIONS: operators ==, != promote {long, ZZ} to ZZX on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                   Addition</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZX <span class="Statement">operator</span>+(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
ZZX <span class="Statement">operator</span>-(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
ZZX <span class="Statement">operator</span>-(<span class="Type">const</span> ZZX&amp; a); <span class="Comment">// unary -</span>

ZZX&amp; <span class="Statement">operator</span>+=(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a);
ZZX&amp; <span class="Statement">operator</span>-=(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a);

ZZX&amp; <span class="Statement">operator</span>++(ZZX&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(ZZX&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>

ZZX&amp; <span class="Statement">operator</span>--(ZZX&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(ZZX&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>


<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> add(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b); <span class="Comment">// x = a - b</span>
<span class="Type">void</span> negate(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a); <span class="Comment">// x = -a</span>

<span class="Comment">// PROMOTIONS: binary +, - and procedures add, sub promote {long, ZZ} </span>
<span class="Comment">// to ZZX on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Multiplication</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZX <span class="Statement">operator</span>*(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);

ZZX&amp; <span class="Statement">operator</span>*=(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a);


<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> mul(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b); <span class="Comment">// x = a * b</span>

<span class="Type">void</span> sqr(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a); <span class="Comment">// x = a^2</span>
ZZX sqr(<span class="Type">const</span> ZZX&amp; a);

<span class="Comment">// PROMOTIONS: operator * and procedure mul promote {long, ZZ} to ZZX </span>
<span class="Comment">// on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Shift Operations</span>

<span class="Comment">LeftShift by n means multiplication by X^n</span>
<span class="Comment">RightShift by n means division by X^n</span>

<span class="Comment">A negative shift amount reverses the direction of the shift.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZX <span class="Statement">operator</span>&lt;&lt;(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
ZZX <span class="Statement">operator</span>&gt;&gt;(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);

ZZX&amp; <span class="Statement">operator</span>&lt;&lt;=(ZZX&amp; x, <span class="Type">long</span> n);
ZZX&amp; <span class="Statement">operator</span>&gt;&gt;=(ZZX&amp; x, <span class="Type">long</span> n);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> LeftShift(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
ZZX LeftShift(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> RightShift(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
ZZX RightShift(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Division</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// Given polynomials a, b in ZZ[X], there exist polynomials</span>
<span class="Comment">// q, r in QQ[X] such that a = b*q + r, deg(r) &lt; deg(b).</span>
<span class="Comment">// These routines return q and/or r if q and/or r lie(s) in ZZ[X],</span>
<span class="Comment">// and otherwise raise an error.  </span>

<span class="Comment">// Note that if the leading coefficient of b is 1 or -1, </span>
<span class="Comment">// then q and r always lie in ZZ[X], and no error can occur.</span>

<span class="Comment">// For example, you can write f/2 for a ZZX f.  If all coefficients</span>
<span class="Comment">// of f are even, the result is f with a factor of two removed;</span>
<span class="Comment">// otherwise, an error is raised.  More generally, f/g will be</span>
<span class="Comment">// evaluate q in ZZ[X] such that f = q*g if such a q exists,</span>
<span class="Comment">// and will otherwise raise an error.</span>

<span class="Comment">// See also below the routines for pseudo-division and division</span>
<span class="Comment">// predicates for routines that are perhaps more useful in</span>
<span class="Comment">// some situations.</span>


<span class="Comment">// operator notation: </span>

ZZX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
ZZX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZ&amp; b);
ZZX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> b);

ZZX <span class="Statement">operator</span>%(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);

ZZX&amp; <span class="Statement">operator</span>/=(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; b);
ZZX&amp; <span class="Statement">operator</span>/=(ZZX&amp; x, <span class="Type">const</span> ZZ&amp; b);
ZZX&amp; <span class="Statement">operator</span>/=(ZZX&amp; x, <span class="Type">long</span> b);

ZZX&amp; <span class="Statement">operator</span>%=(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; b);


<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> DivRem(ZZX&amp; q, ZZX&amp; r, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Comment">// computes q, r such that a = b q + r and deg(r) &lt; deg(b).</span>
<span class="Comment">// requires LeadCoeff(b) is a unit (+1, -1); otherwise,</span>
<span class="Comment">// an error is raised.</span>

<span class="Type">void</span> div(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Type">void</span> div(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">void</span> div(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> b);
<span class="Comment">// same as DivRem, but only computes q</span>

<span class="Type">void</span> rem(ZZX&amp; r, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Comment">// same as DivRem, but only computes r</span>



<span class="Comment">// divide predicates:</span>

<span class="Type">long</span> divide(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Type">long</span> divide(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> divide(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>


<span class="Type">long</span> divide(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Type">long</span> divide(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZ&amp; b);
<span class="Type">long</span> divide(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> b);
<span class="Comment">// if b | a, returns 1; otherwise returns 0</span>

<span class="Comment">// These algorithms employ a modular approach, performing the division</span>
<span class="Comment">// modulo small primes (reconstructing q via the CRT).  It is</span>
<span class="Comment">// usually much faster than the general division routines above</span>
<span class="Comment">// (especially when b does not divide a).</span>


<span class="Type">void</span> content(ZZ&amp; d, <span class="Type">const</span> ZZX&amp; f);
ZZ content(<span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// d = content of f, sign(d) == sign(LeadCoeff(f)); content(0) == 0</span>

<span class="Type">void</span> PrimitivePart(ZZX&amp; pp, <span class="Type">const</span> ZZX&amp; f);
ZZX PrimitivePart(<span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// pp = primitive part of f, LeadCoeff(pp) &gt;= 0; PrimitivePart(0) == 0</span>



<span class="Comment">// pseudo-division:</span>

<span class="Type">void</span> PseudoDivRem(ZZX&amp; q, ZZX&amp; r, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Comment">// performs pseudo-division: computes q and r with deg(r) &lt; deg(b),</span>
<span class="Comment">// and LeadCoeff(b)^(deg(a)-deg(b)+1) a = b q + r.  Only the classical</span>
<span class="Comment">// algorithm is used.</span>

<span class="Type">void</span> PseudoDiv(ZZX&amp; q, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
ZZX PseudoDiv(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Comment">// same as PseudoDivRem, but only computes q</span>

<span class="Type">void</span> PseudoRem(ZZX&amp; r, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
ZZX PseudoRem(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Comment">// same as PseudoDivRem, but only computes r</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  GCD's</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> GCD(ZZX&amp; d, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
ZZX GCD(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b);
<span class="Comment">// d = gcd(a, b), LeadCoeff(d) &gt;= 0.  Uses a modular algorithm.</span>


<span class="Type">void</span> XGCD(ZZ&amp; r, ZZX&amp; s, ZZX&amp; t, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b,
          <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
<span class="Comment">// r = resultant of a and b; if r != 0, then computes s and t such</span>
<span class="Comment">// that: a*s + b*t = r; otherwise s and t not affected.  if</span>
<span class="Comment">// !deterministic, then resultant computation may use a randomized</span>
<span class="Comment">// strategy that errs with probability no more than 2^{-80}.</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Input/Output</span>

<span class="Comment">I/O format:</span>

<span class="Comment">   [a_0 a_1 ... a_n],</span>

<span class="Comment">represents the polynomial a_0 + a_1*X + ... + a_n*X^n.</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


istream&amp; <span class="Statement">operator</span>&gt;&gt;(istream&amp; s, ZZX&amp; x);
ostream&amp; <span class="Statement">operator</span>&lt;&lt;(ostream&amp; s, <span class="Type">const</span> ZZX&amp; a);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             Some utility routines</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> diff(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a); <span class="Comment">// x = derivative of a</span>
ZZX diff(<span class="Type">const</span> ZZX&amp; a);

<span class="Type">long</span> MaxBits(<span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// returns max NumBits of coefficients of f</span>

<span class="Type">void</span> reverse(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> hi);
ZZX reverse(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> hi);

<span class="Type">void</span> reverse(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a);
ZZX reverse(<span class="Type">const</span> ZZX&amp; a);

<span class="Comment">// x = reverse of a[0]..a[hi] (hi &gt;= -1);</span>
<span class="Comment">// hi defaults to deg(a) in second version</span>


<span class="Type">void</span> VectorCopy(vec_ZZ&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
vec_ZZ VectorCopy(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
<span class="Comment">// x = copy of coefficient vector of a of length exactly n.</span>
<span class="Comment">// input is truncated or padded with zeroes as appropriate.</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                       Arithmetic mod X^n</span>

<span class="Comment">All routines require n &gt;= 0, otherwise an error is raised.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> trunc(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> m); <span class="Comment">// x = a % X^m</span>
ZZX trunc(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> m);

<span class="Type">void</span> MulTrunc(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b, <span class="Type">long</span> n);
ZZX MulTrunc(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b, <span class="Type">long</span> n);
<span class="Comment">// x = a * b % X^n</span>

<span class="Type">void</span> SqrTrunc(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
ZZX SqrTrunc(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
<span class="Comment">// x = a^2 % X^n</span>

<span class="Type">void</span> InvTrunc(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
ZZX InvTrunc(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> n);
<span class="Comment">// computes x = a^{-1} % X^m.  Must have ConstTerm(a) invertible.</span>




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Modular Arithmetic</span>

<span class="Comment">The modulus f must be monic with deg(f) &gt; 0, </span>
<span class="Comment">and other arguments must have smaller degree.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> MulMod(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b, <span class="Type">const</span> ZZX&amp; f);
ZZX MulMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b, <span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// x = a * b mod f</span>

<span class="Type">void</span> SqrMod(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
ZZX SqrMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// x = a^2 mod f</span>

<span class="Type">void</span> MulByXMod(ZZX&amp; x, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
ZZX MulByXMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// x = a*X mod f</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                  traces, norms, resultants, discriminants,</span>
<span class="Comment">                   minimal and characteristic polynomials</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> TraceMod(ZZ&amp; res, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
ZZ TraceMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// res = trace of (a mod f).  f must be monic, 0 &lt; deg(f), deg(a) &lt;</span>
<span class="Comment">// deg(f)</span>

<span class="Type">void</span> TraceVec(vec_ZZ&amp; S, <span class="Type">const</span> ZZX&amp; f);
vec_ZZ TraceVec(<span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// S[i] = Trace(X^i mod f), for i = 0..deg(f)-1.</span>
<span class="Comment">// f must be a monic polynomial.</span>


<span class="Comment">// The following routines use a modular approach.</span>

<span class="Type">void</span> resultant(ZZ&amp; res, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
ZZ resultant(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; b, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
<span class="Comment">// res = resultant of a and b. If !deterministic, then it may use a</span>
<span class="Comment">// randomized strategy that errs with probability no more than</span>
<span class="Comment">// 2^{-80}.</span>



<span class="Type">void</span> NormMod(ZZ&amp; res, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
ZZ NormMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
<span class="Comment">// res = norm of (a mod f).  f must be monic, 0 &lt; deg(f), deg(a) &lt;</span>
<span class="Comment">// deg(f). If !deterministic, then it may use a randomized strategy</span>
<span class="Comment">// that errs with probability no more than 2^{-80}.</span>



<span class="Type">void</span> discriminant(ZZ&amp; d, <span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
ZZ discriminant(<span class="Type">const</span> ZZX&amp; a, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
<span class="Comment">// d = discriminant of a = (-1)^{m(m-1)/2} resultant(a, a')/lc(a),</span>
<span class="Comment">// where m = deg(a). If !deterministic, then it may use a randomized</span>
<span class="Comment">// strategy that errs with probability no more than 2^{-80}.</span>


<span class="Type">void</span> CharPolyMod(ZZX&amp; g, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
ZZX CharPolyMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f, <span class="Type">long</span> deterministic=<span class="Constant">0</span>);
<span class="Comment">// g = char poly of (a mod f).  f must be monic.  If !deterministic,</span>
<span class="Comment">// then it may use a randomized strategy that errs with probability no</span>
<span class="Comment">// more than 2^{-80}.</span>


<span class="Type">void</span> MinPolyMod(ZZX&amp; g, <span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
ZZX MinPolyMod(<span class="Type">const</span> ZZX&amp; a, <span class="Type">const</span> ZZX&amp; f);
<span class="Comment">// g = min poly of (a mod f).  f must be monic, 0 &lt; deg(f), deg(a) &lt;</span>
<span class="Comment">// deg(f).  May use a probabilistic strategy that errs with</span>
<span class="Comment">// probability no more than 2^{-80}.</span>




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                  Incremental Chinese Remaindering</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">long</span> CRT(ZZX&amp; a, ZZ&amp; prod, <span class="Type">const</span> zz_pX&amp; A);
<span class="Type">long</span> CRT(ZZX&amp; a, ZZ&amp; prod, <span class="Type">const</span> ZZ_pX&amp; A);
<span class="Comment">// Incremental Chinese Remaindering: If p is the current zz_p/ZZ_p modulus with</span>
<span class="Comment">// (p, prod) = 1; Computes a' such that a' = a mod prod and a' = A mod p,</span>
<span class="Comment">// with coefficients in the interval (-p*prod/2, p*prod/2]; </span>
<span class="Comment">// Sets a := a', prod := p*prod, and returns 1 if a's value changed.</span>





<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                vectors of ZZX's</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">typedef</span> Vec&lt;ZZX&gt; vec_ZZX; <span class="Comment">// backward compatibility</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                Miscellany</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> clear(ZZX&amp; x); <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(ZZX&amp; x); <span class="Comment">// x = 1</span>

<span class="Type">void</span> ZZX::kill();
<span class="Comment">// f.kill() sets f to 0 and frees all memory held by f.  Equivalent to</span>
<span class="Comment">// f.rep.kill().</span>

ZZX::ZZX(INIT_SIZE_TYPE, <span class="Type">long</span> n);
<span class="Comment">// ZZX(INIT_SIZE, n) initializes to zero, but space is pre-allocated</span>
<span class="Comment">// for n coefficients</span>

<span class="Type">static</span> <span class="Type">const</span> ZZX&amp; zero();
<span class="Comment">// ZZX::zero() is a read-only reference to 0</span>

<span class="Type">void</span> ZZX::swap(ZZX&amp; x);
<span class="Type">void</span> swap(ZZX&amp; x, ZZX&amp; y);
<span class="Comment">// swap (by swapping pointers)</span>


ZZX::ZZX(<span class="Type">long</span> i, <span class="Type">const</span> ZZ&amp; c);
ZZX::ZZX(<span class="Type">long</span> i, <span class="Type">long</span> c);
<span class="Comment">// initial value c*X^i, provided for backward compatibility</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->